
ECC Summer School, Bordeaux, France — September 23–25, 2015

Software and Hardware Implementation
of Elliptic Curve Cryptography

Jérémie Detrey
CARAMEL team, LORIA

INRIA Nancy – Grand Est, France
Jeremie.Detrey@loria.fr

/* */ C,A,
/* */ R,a,
/* */ M,E,

L,i=
5,e,

d[5],Q[999]={0};main(N){for
(;i--;e=scanf("%" "d",d+i));for(A =*d;
++i<A ;++Q[i*i% A],R= i[Q]?
R:i); for(;i --;) for(M =A;M
--;N +=!M*Q [E%A],e+= Q[(A
+E*E- R*L* L%A) %A]) for(
E=i,L=M,a=4;a;C= i*E+R*M*L,L=(M*E +i*L)

%A,E=C%A+a --[d]);printf ("%d"
"\n",
(e+N*
N)/2

/* cc caramel.c; echo f3 f2 f1 f0 p | ./a.out */ -A);}

CARAMEL

Context: Elliptic curves

I Let us consider a finite field Fq and an elliptic curve E/Fq

e.g., E : y 2 = x3 + Ax + B , with parameters A,B ∈ Fq and char(Fq) 6= 2, 3

I The set of Fq-rational points of E is defined as

E (Fq) = {(x , y) ∈ Fq × Fq | (x , y) satisfy E} ∪ {O}

I Additive group law: E (Fq) is an abelian group

• addition via the “chord and tangent” method
• O is the neutral element

[See D. Robert’s lectures]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 1 / 60

Context: Elliptic curves

I Let us consider a finite field Fq and an elliptic curve E/Fq

e.g., E : y 2 = x3 + Ax + B , with parameters A,B ∈ Fq and char(Fq) 6= 2, 3

I The set of Fq-rational points of E is defined as

E (Fq) = {(x , y) ∈ Fq × Fq | (x , y) satisfy E} ∪ {O}

I Additive group law: E (Fq) is an abelian group

• addition via the “chord and tangent” method
• O is the neutral element

[See D. Robert’s lectures]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 1 / 60

Context: Elliptic curves

I Let us consider a finite field Fq and an elliptic curve E/Fq

e.g., E : y 2 = x3 + Ax + B , with parameters A,B ∈ Fq and char(Fq) 6= 2, 3

I The set of Fq-rational points of E is defined as

E (Fq) = {(x , y) ∈ Fq × Fq | (x , y) satisfy E} ∪ {O}

I Additive group law: E (Fq) is an abelian group

• addition via the “chord and tangent” method
• O is the neutral element

[See D. Robert’s lectures]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 1 / 60

The group law

EO

EO

P

Q

P + Q

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 2 / 60

The group law

EO

EO

P

Q

P + Q

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 2 / 60

The group law

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

P + Q

O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 2 / 60

The group law

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

P + Q

O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 2 / 60

Scalar multiplication and discrete logarithm

I E (Fq) is a finite abelian group:

• let G be a cyclic subgroup of E (Fq)
• let ` = #G the order of G and P ∈ G a generator of G

G = 〈P〉 = {O,P , 2P , 3P , . . . , (`− 1)P}

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 3 / 60

Scalar multiplication and discrete logarithm

I E (Fq) is a finite abelian group:

• let G be a cyclic subgroup of E (Fq)
• let ` = #G the order of G and P ∈ G a generator of G

G = 〈P〉 = {O,P , 2P , 3P , . . . , (`− 1)P}

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 3 / 60

Scalar multiplication and discrete logarithm

I E (Fq) is a finite abelian group:

• let G be a cyclic subgroup of E (Fq)
• let ` = #G the order of G and P ∈ G a generator of G

G = 〈P〉 = {O,P , 2P , 3P , . . . , (`− 1)P}

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 3 / 60

Scalar multiplication and discrete logarithm

I E (Fq) is a finite abelian group:

• let G be a cyclic subgroup of E (Fq)
• let ` = #G the order of G and P ∈ G a generator of G

G = 〈P〉 = {O,P , 2P , 3P , . . . , (`− 1)P}

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 3 / 60

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, discrete logarithm can only be computed in exponential
time (as far as we know):

Q = Pk

k

[See E. Thomé’s lectures, and S. Galbraith’s and M. Kosters’ talks]

I That’s a one-way function

⇒ Public-key cryptography!

• private key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 4 / 60

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, discrete logarithm can only be computed in exponential
time (as far as we know):

Q = Pk

k

[See E. Thomé’s lectures, and S. Galbraith’s and M. Kosters’ talks]

I That’s a one-way function

⇒ Public-key cryptography!

• private key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 4 / 60

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, discrete logarithm can only be computed in exponential
time (as far as we know):

Q = Pk

k

[See E. Thomé’s lectures, and S. Galbraith’s and M. Kosters’ talks]

I That’s a one-way function

⇒ Public-key cryptography!

• private key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 4 / 60

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, discrete logarithm can only be computed in exponential
time (as far as we know):

Q = Pk

k

[See E. Thomé’s lectures, and S. Galbraith’s and M. Kosters’ talks]

I That’s a one-way function

⇒ Public-key cryptography!

• private key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 4 / 60

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, discrete logarithm can only be computed in exponential
time (as far as we know):

Q = Pk

k

[See E. Thomé’s lectures, and S. Galbraith’s and M. Kosters’ talks]

I That’s a one-way function

⇒ Public-key cryptography!

• private key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 4 / 60

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, discrete logarithm can only be computed in exponential
time (as far as we know):

Q = Pk

k

[See E. Thomé’s lectures, and S. Galbraith’s and M. Kosters’ talks]

I That’s a one-way function

⇒ Public-key cryptography!

• private key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 4 / 60

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, discrete logarithm can only be computed in exponential
time (as far as we know):

Q = Pk

k

[See E. Thomé’s lectures, and S. Galbraith’s and M. Kosters’ talks]

I That’s a one-way function ⇒ Public-key cryptography!

• private key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 4 / 60

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, discrete logarithm can only be computed in exponential
time (as far as we know):

Q = Pk

k

[See E. Thomé’s lectures, and S. Galbraith’s and M. Kosters’ talks]

I That’s a one-way function ⇒ Public-key cryptography!

• private key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 4 / 60

Example 1: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 5 / 60

Example 1: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?

P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 5 / 60

Example 1: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?

P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 5 / 60

Example 1: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 5 / 60

Example 1: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 5 / 60

Example 1: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb

Pa

Pb

a Pb abP

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 5 / 60

Example 1: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 5 / 60

Example 1: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 5 / 60

Example 2: EC ElGamal encryption

bAlice Bob

PKI
P Pb

P

bP

k
Pk

Pkb

kP

kPkb P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 6 / 60

Example 2: EC ElGamal encryption

bAlice Bob

PKI
P Pb

P

bP

k
Pk

Pkb

kP

kPkb P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 6 / 60

Example 2: EC ElGamal encryption

bAlice Bob

PKI
P Pb

P

bP

k
Pk

Pkb

kP

kPkb P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 6 / 60

Example 2: EC ElGamal encryption

bAlice Bob

PKI
P Pb

P

bP

k

Pk

Pkb

kP

kPkb P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 6 / 60

Example 2: EC ElGamal encryption

bAlice Bob

PKI
P Pb

P

bP

k
Pk

Pkb

kP

kPkb P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 6 / 60

Example 2: EC ElGamal encryption

bAlice Bob

PKI
P Pb

P

bP

k
Pk

Pkb

kP

kPkb P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 6 / 60

Example 2: EC ElGamal encryption

bAlice Bob

PKI
P Pb

P

bP

k
Pk

Pkb

kP

kP

kb P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 6 / 60

Example 2: EC ElGamal encryption

bAlice Bob

PKI
P Pb

P

bP

k
Pk

Pkb

kP

kPkb P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 6 / 60

Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (1 double scalar mult)

I etc.

I Other important operations might be required, such as pairings
[See J. Krämer’s talk]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 7 / 60

Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (1 double scalar mult)

I etc.

I Other important operations might be required, such as pairings
[See J. Krämer’s talk]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 7 / 60

Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (1 double scalar mult)

I etc.

I Other important operations might be required, such as pairings
[See J. Krämer’s talk]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 7 / 60

Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (1 double scalar mult)

I etc.

I Other important operations might be required, such as pairings
[See J. Krämer’s talk]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 7 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]
• cache attacks?
• branch-prediction attacks?
• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?

• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]
• cache attacks?
• branch-prediction attacks?
• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?

• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]
• cache attacks?
• branch-prediction attacks?
• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]
• cache attacks?
• branch-prediction attacks?
• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]
• cache attacks?
• branch-prediction attacks?
• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]
• cache attacks?
• branch-prediction attacks?
• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]

• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]
• cache attacks?
• branch-prediction attacks?
• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)

• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]
• cache attacks?
• branch-prediction attacks?
• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]

• fault attacks? [See J. Krämer’s talk]
• cache attacks?
• branch-prediction attacks?
• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]

• cache attacks?
• branch-prediction attacks?
• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]
• cache attacks?

• branch-prediction attacks?
• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]
• cache attacks?
• branch-prediction attacks?

• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]
• cache attacks?
• branch-prediction attacks?
• power or electromagnetic analysis?

• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (FREAK, LogJam, etc.) [See N. Heninger’s talk]
• curve attacks? (weak curves, twist security, etc.)
• timing attacks? [See P. Schwabe’s talk]
• fault attacks? [See J. Krämer’s talk]
• cache attacks?
• branch-prediction attacks?
• power or electromagnetic analysis?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 8 / 60

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 9 / 60

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)

• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 9 / 60

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)

• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 9 / 60

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)

• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 9 / 60

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 9 / 60

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 9 / 60

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 9 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic primitives (ECDH, ECDSA, etc.)
• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)
• native integer arithmetic (CPU instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)

• cryptographic primitives (ECDH, ECDSA, etc.)
• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)
• native integer arithmetic (CPU instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic primitives (ECDH, ECDSA, etc.)

• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)
• native integer arithmetic (CPU instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic primitives (ECDH, ECDSA, etc.)
• scalar multiplication

• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)
• native integer arithmetic (CPU instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic primitives (ECDH, ECDSA, etc.)
• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)

• finite field arithmetic (addition, multiplication, inversion, etc.)
• native integer arithmetic (CPU instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic primitives (ECDH, ECDSA, etc.)
• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)

• native integer arithmetic (CPU instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic primitives (ECDH, ECDSA, etc.)
• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)
• native integer arithmetic (CPU instruction set)

• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic primitives (ECDH, ECDSA, etc.)
• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)
• native integer arithmetic (CPU instruction set)
• logic circuits (registers, multiplexers, adders, etc.)

• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic primitives (ECDH, ECDSA, etc.)
• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)
• native integer arithmetic (CPU instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires

• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic primitives (ECDH, ECDSA, etc.)
• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)
• native integer arithmetic (CPU instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic primitives (ECDH, ECDSA, etc.)
• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)
• native integer arithmetic (CPU instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic primitives (ECDH, ECDSA, etc.)
• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)
• native integer arithmetic (CPU instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Implementation layers

I A complete ECC implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic primitives (ECDH, ECDSA, etc.)
• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)
• native integer arithmetic (CPU instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ ECC is no more secure than its weakest link

I In these lectures, we will mostly focus on the green layers

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 10 / 60

Available implementations

I There already exist several free-software, open-source implementations of ECC (or
of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box [Ask P. Schwabe about it]
• PAVOIS project (announced) [See A. Tisserand’s talk]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 11 / 60

Available implementations

I There already exist several free-software, open-source implementations of ECC (or
of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.

• at the cryptographic primitive level:
RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box [Ask P. Schwabe about it]
• PAVOIS project (announced) [See A. Tisserand’s talk]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 11 / 60

Available implementations

I There already exist several free-software, open-source implementations of ECC (or
of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.

• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box [Ask P. Schwabe about it]
• PAVOIS project (announced) [See A. Tisserand’s talk]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 11 / 60

Available implementations

I There already exist several free-software, open-source implementations of ECC (or
of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)

• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box [Ask P. Schwabe about it]
• PAVOIS project (announced) [See A. Tisserand’s talk]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 11 / 60

Available implementations

I There already exist several free-software, open-source implementations of ECC (or
of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box [Ask P. Schwabe about it]
• PAVOIS project (announced) [See A. Tisserand’s talk]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 11 / 60

Available implementations

I There already exist several free-software, open-source implementations of ECC (or
of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box [Ask P. Schwabe about it]
• PAVOIS project (announced) [See A. Tisserand’s talk]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 11 / 60

Available implementations

I There already exist several free-software, open-source implementations of ECC (or
of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box [Ask P. Schwabe about it]

• PAVOIS project (announced) [See A. Tisserand’s talk]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 11 / 60

Available implementations

I There already exist several free-software, open-source implementations of ECC (or
of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box [Ask P. Schwabe about it]
• PAVOIS project (announced) [See A. Tisserand’s talk]

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 11 / 60

Some references

Elliptic Curves in Cryptography,
Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart.
London Mathematical Society 265,
Cambridge University Press, 1999.

Advances in Elliptic Curves Cryptography,
Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart (editors).
London Mathematical Society 317,
Cambridge University Press, 2005.

Mathematics of Public-Key Cryptography,
Steven D. Galbraith.
Cambridge University Press, 2012.

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 12 / 60

Some references

Guide to Elliptic Curve Cryptography,
Darrel Hankerson, Alfred Menezes, and Scott Vanstone.
Springer, 2004.

Handbook of Elliptic and Hyperelliptic Curve Cryptography,
Henri Cohen and Gerhard Frey (editors).
Chapman & Hall / CRC, 2005.

Proceedings of the CHES workshop and of other crypto conferences.

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 13 / 60

Outline

I. Scalar multiplication

II. Elliptic curve arithmetic

III. Finite field arithmetic

IV. Software considerations

V. Notions of hardware design

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 14 / 60

Outline

I. Scalar multiplication

II. Elliptic curve arithmetic

III. Finite field arithmetic

IV. Software considerations

V. Notions of hardware design

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 15 / 60

Scalar multiplication

I Given k in Z/`Z and P in G ⊆ E (Fq), we want to compute

kP = P + P + . . . + P︸ ︷︷ ︸
k times

I Size of ` (and k) for crypto applications: between 250 and 500 bits

I Repeated addition, in O(k) complexity, is out of the question!

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 16 / 60

Scalar multiplication

I Given k in Z/`Z and P in G ⊆ E (Fq), we want to compute

kP = P + P + . . . + P︸ ︷︷ ︸
k times

I Size of ` (and k) for crypto applications: between 250 and 500 bits

I Repeated addition, in O(k) complexity, is out of the question!

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 16 / 60

Scalar multiplication

I Given k in Z/`Z and P in G ⊆ E (Fq), we want to compute

kP = P + P + . . . + P︸ ︷︷ ︸
k times

I Size of ` (and k) for crypto applications: between 250 and 500 bits

I Repeated addition, in O(k) complexity, is out of the question!

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 16 / 60

Double-and-add algorithm

I Available operations on E (Fq):

• point addition: (Q,R) 7→ Q + R
• point doubling: Q 7→ 2Q = Q + Q

I Idea: iterative algorithm based on the binary expansion of k

• start from the most significant bit of k
• double current result at each step
• add P if the corresponding bit of k is 1
• same principle as binary exponentiation

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 17 / 60

Double-and-add algorithm

I Available operations on E (Fq):

• point addition: (Q,R) 7→ Q + R
• point doubling: Q 7→ 2Q = Q + Q

I Idea: iterative algorithm based on the binary expansion of k

• start from the most significant bit of k
• double current result at each step
• add P if the corresponding bit of k is 1
• same principle as binary exponentiation

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 17 / 60

Double-and-add algorithm

I Available operations on E (Fq):

• point addition: (Q,R) 7→ Q + R
• point doubling: Q 7→ 2Q = Q + Q

I Idea: iterative algorithm based on the binary expansion of k

• start from the most significant bit of k
• double current result at each step
• add P if the corresponding bit of k is 1

• same principle as binary exponentiation

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 17 / 60

Double-and-add algorithm

I Available operations on E (Fq):

• point addition: (Q,R) 7→ Q + R
• point doubling: Q 7→ 2Q = Q + Q

I Idea: iterative algorithm based on the binary expansion of k

• start from the most significant bit of k
• double current result at each step
• add P if the corresponding bit of k is 1
• same principle as binary exponentiation

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 17 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431

= (110101111)2

T =

(((((P · 2 + P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

=

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431

= (110101111)2

T =

(((((P · 2 + P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

=

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((((P · 2 + P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

=

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((((P · 2 + P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= O

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((((

P

· 2 + P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((((

P · 2

+ P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= 2P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((((

P · 2 + P

) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= 3P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

((((

(P · 2 + P) · 2

2 + P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= 6P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

((((

(P · 2 + P) · 22

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= 12P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

((((

(P · 2 + P) · 22 + P

) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= 13P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((

((P · 2 + P) · 22 + P) · 2

2 + P) · 2 + P) · 2 + P) · 2 + P

= 26P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((

((P · 2 + P) · 22 + P) · 22

+ P) · 2 + P) · 2 + P) · 2 + P

= 52P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((

((P · 2 + P) · 22 + P) · 22 + P

) · 2 + P) · 2 + P) · 2 + P

= 53P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

((

(((P · 2 + P) · 22 + P) · 22 + P) · 2

+ P) · 2 + P) · 2 + P

= 106P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

((

(((P · 2 + P) · 22 + P) · 22 + P) · 2 + P

) · 2 + P) · 2 + P

= 107P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(

((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2

+ P) · 2 + P

= 214P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(

((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2 + P

) · 2 + P

= 215P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T = (((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2 + P) · 2

+ P

= 430P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T = (((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2 + P) · 2 + P = 431P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T = (((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2 + P) · 2 + P = 431P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T = (((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2 + P) · 2 + P = 431P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n doublings, and
• n/2 additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 18 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431

= (110 101 111)2 = (657)23

T =

(6P · 23 + 5P) · 23 + 7P

=

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431

= (110 101 111)2 = (657)23

T =

(6P · 23 + 5P) · 23 + 7P

=

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431

= (110 101 111)2 = (657)23

T =

(6P · 23 + 5P) · 23 + 7P

=

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2

= (657)23

T =

(6P · 23 + 5P) · 23 + 7P

=

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T =

(6P · 23 + 5P) · 23 + 7P

=

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T =

(6P · 23 + 5P) · 23 + 7P

= O

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T =

(

6P

· 23 + 5P) · 23 + 7P

= 6P

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T =

(

6P · 23

+ 5P) · 23 + 7P

= 48P

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T =

(

6P · 23 + 5P

) · 23 + 7P

= 53P

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T = (6P · 23 + 5P) · 23

+ 7P

= 424P

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T = (6P · 23 + 5P) · 23 + 7P = 431P

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T = (6P · 23 + 5P) · 23 + 7P = 431P

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T = (6P · 23 + 5P) · 23 + 7P = 431P

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T = (6P · 23 + 5P) · 23 + 7P = 431P

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T = (6P · 23 + 5P) · 23 + 7P = 431P

I Complexity:

• n doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 19 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431

= (30030001̄)2

T =

(3P · 23 + 3P) · 24 − P

=

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431

= (30030001̄)2

T =

(3P · 23 + 3P) · 24 − P

=

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431

= (30030001̄)2

T =

(3P · 23 + 3P) · 24 − P

=

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431

= (30030001̄)2

T =

(3P · 23 + 3P) · 24 − P

=

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431

= (30030001̄)2

T =

(3P · 23 + 3P) · 24 − P

=

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T =

(3P · 23 + 3P) · 24 − P

=

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T =

(3P · 23 + 3P) · 24 − P

= O

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T =

(

3P

· 23 + 3P) · 24 − P

= 3P

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T =

(

3P · 2

3 + 3P) · 24 − P

= 6P

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T =

(

3P · 22

+ 3P) · 24 − P

= 12P

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T =

(

3P · 23

+ 3P) · 24 − P

= 24P

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T =

(

3P · 23 + 3P

) · 24 − P

= 27P

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T = (3P · 23 + 3P) · 2

4 − P

= 54P

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T = (3P · 23 + 3P) · 22

− P

= 108P

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T = (3P · 23 + 3P) · 23

− P

= 216P

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T = (3P · 23 + 3P) · 24

− P

= 432P

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T = (3P · 23 + 3P) · 24 − P = 431P

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T = (3P · 23 + 3P) · 24 − P = 431P

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Non-adjacent form

I Fact: computing the opposite of a point on E (Fq) has a negligible cost

I Idea: use signed digits to represent scalar k with minimal Hamming weight

I 2w -ary non-adjacent form (w -NAF): use odd digits {−2w−1 + 1, . . . , 2w−1 − 1}
and 0 to represent k so that at most every w -th digit is non-zero

I Precompute 3P , 5P , . . . , (2w−1 − 1)P :

• 1 doubling, and
• 2w−2 − 1 additions

I Example with w = 3 (digits in {3̄, 1̄, 0, 1, 3}): k = 431 = (30030001̄)2

T = (3P · 23 + 3P) · 24 − P = 431P

I Complexity:

• n doublings, and
• n/(w + 1) additions on average

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 20 / 60

Multi-exponentiation technique

I To compute the sum of several scalar multiplications

e.g., aP + bQ, where a, b ∈ Z/`Z and P ,Q ∈ E (Fq)

I Idea:

• compute and accumulate all scalar multiplications simultaneously
• share doubling steps between multiplications

function double-scalar-mult(a,P , b,Q):
S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 21 / 60

Multi-exponentiation technique

I To compute the sum of several scalar multiplications

e.g., aP + bQ, where a, b ∈ Z/`Z and P ,Q ∈ E (Fq)

I Idea:

• compute and accumulate all scalar multiplications simultaneously
• share doubling steps between multiplications

function double-scalar-mult(a,P , b,Q):
S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 21 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21

= (10101)2
and b = 30 = (11110)2

T =

((((P + Q) · 2 + Q) · 2 + P + Q) · 2 + Q) · 2 + P

=

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21

= (10101)2

and b = 30

= (11110)2

T =

((((P + Q) · 2 + Q) · 2 + P + Q) · 2 + Q) · 2 + P

=

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T =

((((P + Q) · 2 + Q) · 2 + P + Q) · 2 + Q) · 2 + P

=

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T =

((((P + Q) · 2 + Q) · 2 + P + Q) · 2 + Q) · 2 + P

= O

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T =

((((

P + Q

) · 2 + Q) · 2 + P + Q) · 2 + Q) · 2 + P

= P + Q

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T =

(((

(P + Q) · 2

+ Q) · 2 + P + Q) · 2 + Q) · 2 + P

= 2P + 2Q

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T =

(((

(P + Q) · 2 + Q

) · 2 + P + Q) · 2 + Q) · 2 + P

= 2P + 3Q

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T =

((

((P + Q) · 2 + Q) · 2

+ P + Q) · 2 + Q) · 2 + P

= 4P + 6Q

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T =

((

((P + Q) · 2 + Q) · 2 + P + Q

) · 2 + Q) · 2 + P

= 5P + 7Q

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T =

(

(((P + Q) · 2 + Q) · 2 + P + Q) · 2

+ Q) · 2 + P

= 10P + 14Q

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T =

(

(((P + Q) · 2 + Q) · 2 + P + Q) · 2 + Q

) · 2 + P

= 10P + 15Q

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T = ((((P + Q) · 2 + Q) · 2 + P + Q) · 2 + Q) · 2

+ P

= 20P + 30Q

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T = ((((P + Q) · 2 + Q) · 2 + P + Q) · 2 + Q) · 2 + P = 21P + 30Q

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T = ((((P + Q) · 2 + Q) · 2 + P + Q) · 2 + Q) · 2 + P = 21P + 30Q

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T = ((((P + Q) · 2 + Q) · 2 + P + Q) · 2 + Q) · 2 + P = 21P + 30Q

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

Multi-exponentiation technique
function double-scalar-mult(a,P , b,Q):

S ← P + Q
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ai = 1 and bi = 1:

T ← T + S
else if ai = 1:

T ← T + P
else if bi = 1:

T ← T + Q
return T

I Example: a = 21 = (10101)2
and b = 30 = (11110)2

T = ((((P + Q) · 2 + Q) · 2 + P + Q) · 2 + Q) · 2 + P = 21P + 30Q

I Complexity:
• n doublings, and
• 3n/4 additions on average

I With signed digits:
• joint sparse form (JSF): n/2 additions
• interleaved w -NAF: 2n/(w + 1) additions

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 22 / 60

GLV curves

I Proposed by Gallant, Lambert, and Vanstone in 2000:

• take an ordinary elliptic curve with a known efficiently computable
endomorphism ψ of small norm
• the characteristic polynomial of ψ is of the form χψ(T) = T 2 − tψT + nψ
• there exists a root λ ∈ Z/`Z of χψ(T) mod ` such that

ψ(P) = λP , for any P ∈ G

⇒ λ-adic decomposition of scalar k as k ≡ k0 + λk1 (mod `) so that

kP = k0P + k1ψ(P)

⇒ compute k0P + k1ψ(P) via multi-exponentiation

I Example:

• let p ≡ 1 (mod 4) and E/Fp : y 2 = x3 + Ax
• let ξ ∈ Fp a primitive 4-th root of unity (i.e., ξ2 = −1 and ξ4 = 1)
• then ψ : (x , y) 7→ (−x , ξy) is an endomorphism of E and, since

ψ2(x , y) = (x ,−y) = −(x , y),

its characteristic polynomial is χψ(T) = T 2 + 1 and λ = ±
√
−1 mod `

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 23 / 60

GLV curves

I Proposed by Gallant, Lambert, and Vanstone in 2000:

• take an ordinary elliptic curve with a known efficiently computable
endomorphism ψ of small norm

• the characteristic polynomial of ψ is of the form χψ(T) = T 2 − tψT + nψ
• there exists a root λ ∈ Z/`Z of χψ(T) mod ` such that

ψ(P) = λP , for any P ∈ G

⇒ λ-adic decomposition of scalar k as k ≡ k0 + λk1 (mod `) so that

kP = k0P + k1ψ(P)

⇒ compute k0P + k1ψ(P) via multi-exponentiation

I Example:

• let p ≡ 1 (mod 4) and E/Fp : y 2 = x3 + Ax
• let ξ ∈ Fp a primitive 4-th root of unity (i.e., ξ2 = −1 and ξ4 = 1)
• then ψ : (x , y) 7→ (−x , ξy) is an endomorphism of E and, since

ψ2(x , y) = (x ,−y) = −(x , y),

its characteristic polynomial is χψ(T) = T 2 + 1 and λ = ±
√
−1 mod `

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 23 / 60

GLV curves

I Proposed by Gallant, Lambert, and Vanstone in 2000:

• take an ordinary elliptic curve with a known efficiently computable
endomorphism ψ of small norm
• the characteristic polynomial of ψ is of the form χψ(T) = T 2 − tψT + nψ

• there exists a root λ ∈ Z/`Z of χψ(T) mod ` such that

ψ(P) = λP , for any P ∈ G

⇒ λ-adic decomposition of scalar k as k ≡ k0 + λk1 (mod `) so that

kP = k0P + k1ψ(P)

⇒ compute k0P + k1ψ(P) via multi-exponentiation

I Example:

• let p ≡ 1 (mod 4) and E/Fp : y 2 = x3 + Ax
• let ξ ∈ Fp a primitive 4-th root of unity (i.e., ξ2 = −1 and ξ4 = 1)
• then ψ : (x , y) 7→ (−x , ξy) is an endomorphism of E and, since

ψ2(x , y) = (x ,−y) = −(x , y),

its characteristic polynomial is χψ(T) = T 2 + 1 and λ = ±
√
−1 mod `

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 23 / 60

GLV curves

I Proposed by Gallant, Lambert, and Vanstone in 2000:

• take an ordinary elliptic curve with a known efficiently computable
endomorphism ψ of small norm
• the characteristic polynomial of ψ is of the form χψ(T) = T 2 − tψT + nψ
• there exists a root λ ∈ Z/`Z of χψ(T) mod ` such that

ψ(P) = λP , for any P ∈ G

⇒ λ-adic decomposition of scalar k as k ≡ k0 + λk1 (mod `) so that

kP = k0P + k1ψ(P)

⇒ compute k0P + k1ψ(P) via multi-exponentiation

I Example:

• let p ≡ 1 (mod 4) and E/Fp : y 2 = x3 + Ax
• let ξ ∈ Fp a primitive 4-th root of unity (i.e., ξ2 = −1 and ξ4 = 1)
• then ψ : (x , y) 7→ (−x , ξy) is an endomorphism of E and, since

ψ2(x , y) = (x ,−y) = −(x , y),

its characteristic polynomial is χψ(T) = T 2 + 1 and λ = ±
√
−1 mod `

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 23 / 60

GLV curves

I Proposed by Gallant, Lambert, and Vanstone in 2000:

• take an ordinary elliptic curve with a known efficiently computable
endomorphism ψ of small norm
• the characteristic polynomial of ψ is of the form χψ(T) = T 2 − tψT + nψ
• there exists a root λ ∈ Z/`Z of χψ(T) mod ` such that

ψ(P) = λP , for any P ∈ G

⇒ λ-adic decomposition of scalar k as k ≡ k0 + λk1 (mod `) so that

kP = k0P + k1ψ(P)

⇒ compute k0P + k1ψ(P) via multi-exponentiation

I Example:

• let p ≡ 1 (mod 4) and E/Fp : y 2 = x3 + Ax
• let ξ ∈ Fp a primitive 4-th root of unity (i.e., ξ2 = −1 and ξ4 = 1)
• then ψ : (x , y) 7→ (−x , ξy) is an endomorphism of E and, since

ψ2(x , y) = (x ,−y) = −(x , y),

its characteristic polynomial is χψ(T) = T 2 + 1 and λ = ±
√
−1 mod `

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 23 / 60

GLV curves

I Proposed by Gallant, Lambert, and Vanstone in 2000:

• take an ordinary elliptic curve with a known efficiently computable
endomorphism ψ of small norm
• the characteristic polynomial of ψ is of the form χψ(T) = T 2 − tψT + nψ
• there exists a root λ ∈ Z/`Z of χψ(T) mod ` such that

ψ(P) = λP , for any P ∈ G

⇒ λ-adic decomposition of scalar k as k ≡ k0 + λk1 (mod `) so that

kP = k0P + k1ψ(P)

⇒ compute k0P + k1ψ(P) via multi-exponentiation

I Example:

• let p ≡ 1 (mod 4) and E/Fp : y 2 = x3 + Ax
• let ξ ∈ Fp a primitive 4-th root of unity (i.e., ξ2 = −1 and ξ4 = 1)
• then ψ : (x , y) 7→ (−x , ξy) is an endomorphism of E and, since

ψ2(x , y) = (x ,−y) = −(x , y),

its characteristic polynomial is χψ(T) = T 2 + 1 and λ = ±
√
−1 mod `

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 23 / 60

GLV curves

I Proposed by Gallant, Lambert, and Vanstone in 2000:

• take an ordinary elliptic curve with a known efficiently computable
endomorphism ψ of small norm
• the characteristic polynomial of ψ is of the form χψ(T) = T 2 − tψT + nψ
• there exists a root λ ∈ Z/`Z of χψ(T) mod ` such that

ψ(P) = λP , for any P ∈ G

⇒ λ-adic decomposition of scalar k as k ≡ k0 + λk1 (mod `) so that

kP = k0P + k1ψ(P)

⇒ compute k0P + k1ψ(P) via multi-exponentiation

I Example:

• let p ≡ 1 (mod 4) and E/Fp : y 2 = x3 + Ax

• let ξ ∈ Fp a primitive 4-th root of unity (i.e., ξ2 = −1 and ξ4 = 1)
• then ψ : (x , y) 7→ (−x , ξy) is an endomorphism of E and, since

ψ2(x , y) = (x ,−y) = −(x , y),

its characteristic polynomial is χψ(T) = T 2 + 1 and λ = ±
√
−1 mod `

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 23 / 60

GLV curves

I Proposed by Gallant, Lambert, and Vanstone in 2000:

• take an ordinary elliptic curve with a known efficiently computable
endomorphism ψ of small norm
• the characteristic polynomial of ψ is of the form χψ(T) = T 2 − tψT + nψ
• there exists a root λ ∈ Z/`Z of χψ(T) mod ` such that

ψ(P) = λP , for any P ∈ G

⇒ λ-adic decomposition of scalar k as k ≡ k0 + λk1 (mod `) so that

kP = k0P + k1ψ(P)

⇒ compute k0P + k1ψ(P) via multi-exponentiation

I Example:

• let p ≡ 1 (mod 4) and E/Fp : y 2 = x3 + Ax
• let ξ ∈ Fp a primitive 4-th root of unity (i.e., ξ2 = −1 and ξ4 = 1)

• then ψ : (x , y) 7→ (−x , ξy) is an endomorphism of E and, since

ψ2(x , y) = (x ,−y) = −(x , y),

its characteristic polynomial is χψ(T) = T 2 + 1 and λ = ±
√
−1 mod `

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 23 / 60

GLV curves

I Proposed by Gallant, Lambert, and Vanstone in 2000:

• take an ordinary elliptic curve with a known efficiently computable
endomorphism ψ of small norm
• the characteristic polynomial of ψ is of the form χψ(T) = T 2 − tψT + nψ
• there exists a root λ ∈ Z/`Z of χψ(T) mod ` such that

ψ(P) = λP , for any P ∈ G

⇒ λ-adic decomposition of scalar k as k ≡ k0 + λk1 (mod `) so that

kP = k0P + k1ψ(P)

⇒ compute k0P + k1ψ(P) via multi-exponentiation

I Example:

• let p ≡ 1 (mod 4) and E/Fp : y 2 = x3 + Ax
• let ξ ∈ Fp a primitive 4-th root of unity (i.e., ξ2 = −1 and ξ4 = 1)
• then ψ : (x , y) 7→ (−x , ξy) is an endomorphism of E and, since

ψ2(x , y) = (x ,−y) = −(x , y),

its characteristic polynomial is χψ(T) = T 2 + 1 and λ = ±
√
−1 mod `

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 23 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ
• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)
• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449
• let ξ = 442 and check that ξ2 ≡ −1 (mod p)
• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382
• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ

• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)
• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449
• let ξ = 442 and check that ξ2 ≡ −1 (mod p)
• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382
• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ
• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)

• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449
• let ξ = 442 and check that ξ2 ≡ −1 (mod p)
• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382
• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ
• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)
• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449
• let ξ = 442 and check that ξ2 ≡ −1 (mod p)
• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382
• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ
• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)
• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449
• let ξ = 442 and check that ξ2 ≡ −1 (mod p)
• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382
• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ
• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)
• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449
• let ξ = 442 and check that ξ2 ≡ −1 (mod p)
• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382
• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ
• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)
• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449
• let ξ = 442 and check that ξ2 ≡ −1 (mod p)
• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382
• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ
• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)
• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449
• let ξ = 442 and check that ξ2 ≡ −1 (mod p)
• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382
• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ
• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)
• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449

• let ξ = 442 and check that ξ2 ≡ −1 (mod p)
• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382
• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ
• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)
• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449
• let ξ = 442 and check that ξ2 ≡ −1 (mod p)

• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382
• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ
• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)
• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449
• let ξ = 442 and check that ξ2 ≡ −1 (mod p)
• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382

• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ
• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)
• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449
• let ξ = 442 and check that ξ2 ≡ −1 (mod p)
• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382
• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

GLV curves

I Computation of k0 and k1:

• pairs (a, b) ∈ Z2 such that a + bλ ≡ 0 (mod `) form a 2-dimensional lattice Λ
• Λ is generated by (`, 0) and (−λ, 1) → precompute short basis (EEA)
• given k , find lattice point (k̃0, k̃1) ∈ Λ closest to (k , 0)

k ≡ k − (k̃0 + k̃1λ) (mod `)

≡ (k − k̃0) + (−k̃1)λ (mod `)

• take k0 = (k − k̃0) mod ` and k1 = −k̃1 mod `

⇒ k0 and k1 of size ≈ n/2 bits

I Previous example with p = 953 and E/Fp : y 2 = x3 + 5x :

• as #E (Fp) = 2 · 449, we take ` = 449
• let ξ = 442 and check that ξ2 ≡ −1 (mod p)
• ψ : (x , y) 7→ (−x , ξy): we have ψ(P) = λP for all P ∈ G, with λ = 382
• scalar k = 431 can be rewritten as k ≡ 2 + 7λ (mod `), whence

kP = 2P + 7ψ(P)

I Popular constructions exploiting endomorphism ring:

• GLS curves (Galbraith, Lin, and Scott, 2008): large class of GLV-compatible
curves
• Koblitz curves: binary curves, with Frobenius map ψ : (x , y) 7→ (x2, y 2)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 24 / 60

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1

• careful timing analysis will reveal Hamming weight of secret k
• power analysis will leak bits of k

P
ow

er

Time

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1

⇒ vulnerable to fault attacks

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 25 / 60

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1

• careful timing analysis will reveal Hamming weight of secret k
• power analysis will leak bits of k

P
ow

er

Time

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1

⇒ vulnerable to fault attacks

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 25 / 60

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1
• careful timing analysis will reveal Hamming weight of secret k

• power analysis will leak bits of k

P
ow

er

Time

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1

⇒ vulnerable to fault attacks

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 25 / 60

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1
• careful timing analysis will reveal Hamming weight of secret k
• power analysis will leak bits of k

P
ow

er

Time

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1
⇒ vulnerable to fault attacks

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 25 / 60

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1
• careful timing analysis will reveal Hamming weight of secret k
• power analysis will leak bits of k

P
ow

er

Time

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1
⇒ vulnerable to fault attacks

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 25 / 60

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
else:

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1
• careful timing analysis will reveal Hamming weight of secret k
• power analysis will leak bits of k

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1
⇒ vulnerable to fault attacks

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 25 / 60

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
else:

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1
• careful timing analysis will reveal Hamming weight of secret k
• power analysis will leak bits of k

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?
• the result of the point addition is used if and only if ki = 1

⇒ vulnerable to fault attacks

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 25 / 60

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
else:

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1
• careful timing analysis will reveal Hamming weight of secret k
• power analysis will leak bits of k

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?
• the result of the point addition is used if and only if ki = 1
⇒ vulnerable to fault attacks

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 25 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:

• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:

• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step

• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step

• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 =

P · 2

2

+ 5P + 10P

= O
T1 =

(

P

· 2 + P + 2P) · 2

2

= P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 =

P · 2

2

+ 5P + 10P

= O
T1 =

(

P

· 2 + P + 2P) · 2

2

= P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P

· 2

2

+ 5P + 10P

= P

T1 =

(

P

· 2 + P + 2P) · 2

2

= P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P

· 2

2

+ 5P + 10P

= P

T1 =

(

P · 2

+ P + 2P) · 2

2

= 2P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P

· 2

2

+ 5P + 10P

= P

T1 =

(

P · 2

+ P + 2P) · 2

2

= 2P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P

· 2

2

+ 5P + 10P

= P

T1 =

(

P · 2 + P

+ 2P) · 2

2

= 3P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 2

2 + 5P + 10P

= 2P

T1 =

(

P · 2 + P

+ 2P) · 2

2

= 3P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 2

2 + 5P + 10P

= 2P

T1 =

(

P · 2 + P

+ 2P) · 2

2

= 3P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 2

2 + 5P + 10P

= 2P

T1 =

(

P · 2 + P + 2P

) · 2

2

= 5P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22

+ 5P + 10P

= 4P

T1 =

(

P · 2 + P + 2P

) · 2

2

= 5P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22

+ 5P + 10P

= 4P

T1 =

(

P · 2 + P + 2P

) · 2

2

= 5P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22 + 5P

+ 10P

= 9P

T1 =

(

P · 2 + P + 2P

) · 2

2

= 5P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22 + 5P

+ 10P

= 9P

T1 = (P · 2 + P + 2P) · 2

2

= 10P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22 + 5P

+ 10P

= 9P

T1 = (P · 2 + P + 2P) · 2

2

= 10P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22 + 5P + 10P = 19P

T1 = (P · 2 + P + 2P) · 2

2

= 10P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22 + 5P + 10P = 19P

T1 = (P · 2 + P + 2P) · 22 = 20P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22 + 5P + 10P = 19P

T1 = (P · 2 + P + 2P) · 22 = 20P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 26 / 60

More security issues

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I The conditional branches depend on the value of secret bit ki

⇒ might be vulnerable to branch prediction attacks

I Compute indices for T0 and T1 from ki?

• memory accesses to T0 or T1 depend on secret bit ki

⇒ might be vulnerable to cache attacks

I Use bit masking to avoid secret-dependent memory access patterns

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 27 / 60

More security issues

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I The conditional branches depend on the value of secret bit ki

⇒ might be vulnerable to branch prediction attacks

I Compute indices for T0 and T1 from ki?

• memory accesses to T0 or T1 depend on secret bit ki

⇒ might be vulnerable to cache attacks

I Use bit masking to avoid secret-dependent memory access patterns

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 27 / 60

More security issues

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I The conditional branches depend on the value of secret bit ki
⇒ might be vulnerable to branch prediction attacks

I Compute indices for T0 and T1 from ki?

• memory accesses to T0 or T1 depend on secret bit ki

⇒ might be vulnerable to cache attacks

I Use bit masking to avoid secret-dependent memory access patterns

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 27 / 60

More security issues

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

T1−ki ← T0 + T1

Tki ← 2Tki

return T0

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I The conditional branches depend on the value of secret bit ki
⇒ might be vulnerable to branch prediction attacks

I Compute indices for T0 and T1 from ki?

• memory accesses to T0 or T1 depend on secret bit ki

⇒ might be vulnerable to cache attacks

I Use bit masking to avoid secret-dependent memory access patterns

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 27 / 60

More security issues

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

T1−ki ← T0 + T1

Tki ← 2Tki

return T0

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I The conditional branches depend on the value of secret bit ki
⇒ might be vulnerable to branch prediction attacks

I Compute indices for T0 and T1 from ki?

• memory accesses to T0 or T1 depend on secret bit ki

⇒ might be vulnerable to cache attacks

I Use bit masking to avoid secret-dependent memory access patterns

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 27 / 60

More security issues

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

T1−ki ← T0 + T1

Tki ← 2Tki

return T0

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I The conditional branches depend on the value of secret bit ki
⇒ might be vulnerable to branch prediction attacks

I Compute indices for T0 and T1 from ki?

• memory accesses to T0 or T1 depend on secret bit ki

⇒ might be vulnerable to cache attacks

I Use bit masking to avoid secret-dependent memory access patterns

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 27 / 60

More security issues

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

M ← (ki . . . ki)2
R ← T0 + T1

S ← 2((M&T0) | (M&T1))
T0 ← (M&S) | (M&R)
T1 ← (M&R) | (M&S)

return T0

return T0

I The conditional branches depend on the value of secret bit ki
⇒ might be vulnerable to branch prediction attacks

I Compute indices for T0 and T1 from ki?

• memory accesses to T0 or T1 depend on secret bit ki

⇒ might be vulnerable to cache attacks

I Use bit masking to avoid secret-dependent memory access patterns

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 27 / 60

Outline

I. Scalar multiplication

II. Elliptic curve arithmetic

III. Finite field arithmetic

IV. Software considerations

V. Notions of hardware design

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 28 / 60

Addition and doubling

EO

EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 29 / 60

Addition and doubling

EO

EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 29 / 60

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 29 / 60

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 29 / 60

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O

EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 29 / 60

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O

EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O

EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 29 / 60

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O

EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 29 / 60

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 29 / 60

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 29 / 60

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O

EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 29 / 60

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O

EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 29 / 60

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =


yQ − yP
xQ − xP

if P 6= Q, or

−(∂f /∂x) (xP , yP)

(∂f /∂y) (xP , yP)
=

3x2P + a

2yP
if P = Q

I Cost (number of inversions, multiplications and squares in Fq):

• addition: 1I + 2M + 1S
• doubling: 1I + 2M + 2S

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 30 / 60

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =


yQ − yP
xQ − xP

if P 6= Q, or

−(∂f /∂x) (xP , yP)

(∂f /∂y) (xP , yP)
=

3x2P + a

2yP
if P = Q

I Cost (number of inversions, multiplications and squares in Fq):

• addition: 1I + 2M + 1S
• doubling: 1I + 2M + 2S

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 30 / 60

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =


yQ − yP
xQ − xP

if P 6= Q, or

−(∂f /∂x) (xP , yP)

(∂f /∂y) (xP , yP)
=

3x2P + a

2yP
if P = Q

I Cost (number of inversions, multiplications and squares in Fq):

• addition: 1I + 2M + 1S
• doubling: 1I + 2M + 2S

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 30 / 60

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =


yQ − yP
xQ − xP

if P 6= Q, or

−(∂f /∂x) (xP , yP)

(∂f /∂y) (xP , yP)
=

3x2P + a

2yP
if P = Q

I Cost (number of inversions, multiplications and squares in Fq):

• addition: 1I + 2M + 1S
• doubling: 1I + 2M + 2S

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 30 / 60

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =


yQ − yP
xQ − xP

if P 6= Q, or

−(∂f /∂x) (xP , yP)

(∂f /∂y) (xP , yP)
=

3x2P + a

2yP
if P = Q

I Cost (number of inversions, multiplications and squares in Fq):

• addition: 1I + 2M + 1S
• doubling: 1I + 2M + 2S

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 30 / 60

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =


yQ − yP
xQ − xP

if P 6= Q, or

−(∂f /∂x) (xP , yP)

(∂f /∂y) (xP , yP)
=

3x2P + a

2yP
if P = Q

I Cost (number of inversions, multiplications and squares in Fq):

• addition: 1I + 2M + 1S

• doubling: 1I + 2M + 2S

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 30 / 60

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =


yQ − yP
xQ − xP

if P 6= Q, or

−(∂f /∂x) (xP , yP)

(∂f /∂y) (xP , yP)
=

3x2P + a

2yP
if P = Q

I Cost (number of inversions, multiplications and squares in Fq):

• addition: 1I + 2M + 1S
• doubling: 1I + 2M + 2S

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 30 / 60

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 31 / 60

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 31 / 60

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator

• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 31 / 60

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 31 / 60

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 31 / 60

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 31 / 60

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 31 / 60

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 31 / 60

http://hyperelliptic.org/EFD/

Montgomery curves

I Proposed by Montgomery in 1987, Montgomery curves are of the form

C/Fq : By 2 = x3 + Ax2 + x , with parameters A,B ∈ Fq and char(Fq) 6= 2

• all Montgomery curves are elliptic curves
• not all elliptic curves can be rewritten in Montgomery form

I Addition and doubling formulae

• let P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq)\{O}, with P 6= ±Q
• then, writing R = P + Q = (xR , yR) and S = P − Q = (xS , yS), we have

xRxS(xP − xQ)2 = (xPxQ − 1)2

• the x-coord. of R = P + Q depends only on the x-coord. of P , Q, and P − Q
⇒ x-only differential addition
• similarly, when P = Q and R = 2P = (xR , yR), we have

4xPxR(x2P + AxP + 1) = (x2P − 1)2

⇒ x-only doubling

I We can drop the y -coordinate altogether in the scalar multiplication

• use projective coordinates: points (X : Z) with x = X/Z
• cheap differential addition (4M + 2S) and doubling (2M + 2S)
• compatible with the Montgomery ladder (since T1 − T0 = P)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 32 / 60

Montgomery curves

I Proposed by Montgomery in 1987, Montgomery curves are of the form

C/Fq : By 2 = x3 + Ax2 + x , with parameters A,B ∈ Fq and char(Fq) 6= 2

• all Montgomery curves are elliptic curves
• not all elliptic curves can be rewritten in Montgomery form

I Addition and doubling formulae

• let P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq)\{O}, with P 6= ±Q
• then, writing R = P + Q = (xR , yR) and S = P − Q = (xS , yS), we have

xRxS(xP − xQ)2 = (xPxQ − 1)2

• the x-coord. of R = P + Q depends only on the x-coord. of P , Q, and P − Q
⇒ x-only differential addition
• similarly, when P = Q and R = 2P = (xR , yR), we have

4xPxR(x2P + AxP + 1) = (x2P − 1)2

⇒ x-only doubling

I We can drop the y -coordinate altogether in the scalar multiplication

• use projective coordinates: points (X : Z) with x = X/Z
• cheap differential addition (4M + 2S) and doubling (2M + 2S)
• compatible with the Montgomery ladder (since T1 − T0 = P)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 32 / 60

Montgomery curves

I Proposed by Montgomery in 1987, Montgomery curves are of the form

C/Fq : By 2 = x3 + Ax2 + x , with parameters A,B ∈ Fq and char(Fq) 6= 2

• all Montgomery curves are elliptic curves
• not all elliptic curves can be rewritten in Montgomery form

I Addition and doubling formulae

• let P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq)\{O}, with P 6= ±Q
• then, writing R = P + Q = (xR , yR) and S = P − Q = (xS , yS), we have

xRxS(xP − xQ)2 = (xPxQ − 1)2

• the x-coord. of R = P + Q depends only on the x-coord. of P , Q, and P − Q
⇒ x-only differential addition
• similarly, when P = Q and R = 2P = (xR , yR), we have

4xPxR(x2P + AxP + 1) = (x2P − 1)2

⇒ x-only doubling

I We can drop the y -coordinate altogether in the scalar multiplication

• use projective coordinates: points (X : Z) with x = X/Z
• cheap differential addition (4M + 2S) and doubling (2M + 2S)
• compatible with the Montgomery ladder (since T1 − T0 = P)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 32 / 60

Montgomery curves

I Proposed by Montgomery in 1987, Montgomery curves are of the form

C/Fq : By 2 = x3 + Ax2 + x , with parameters A,B ∈ Fq and char(Fq) 6= 2

• all Montgomery curves are elliptic curves
• not all elliptic curves can be rewritten in Montgomery form

I Addition and doubling formulae

• let P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq)\{O}, with P 6= ±Q

• then, writing R = P + Q = (xR , yR) and S = P − Q = (xS , yS), we have

xRxS(xP − xQ)2 = (xPxQ − 1)2

• the x-coord. of R = P + Q depends only on the x-coord. of P , Q, and P − Q
⇒ x-only differential addition
• similarly, when P = Q and R = 2P = (xR , yR), we have

4xPxR(x2P + AxP + 1) = (x2P − 1)2

⇒ x-only doubling

I We can drop the y -coordinate altogether in the scalar multiplication

• use projective coordinates: points (X : Z) with x = X/Z
• cheap differential addition (4M + 2S) and doubling (2M + 2S)
• compatible with the Montgomery ladder (since T1 − T0 = P)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 32 / 60

Montgomery curves

I Proposed by Montgomery in 1987, Montgomery curves are of the form

C/Fq : By 2 = x3 + Ax2 + x , with parameters A,B ∈ Fq and char(Fq) 6= 2

• all Montgomery curves are elliptic curves
• not all elliptic curves can be rewritten in Montgomery form

I Addition and doubling formulae

• let P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq)\{O}, with P 6= ±Q
• then, writing R = P + Q = (xR , yR) and S = P − Q = (xS , yS), we have

xRxS(xP − xQ)2 = (xPxQ − 1)2

• the x-coord. of R = P + Q depends only on the x-coord. of P , Q, and P − Q
⇒ x-only differential addition
• similarly, when P = Q and R = 2P = (xR , yR), we have

4xPxR(x2P + AxP + 1) = (x2P − 1)2

⇒ x-only doubling

I We can drop the y -coordinate altogether in the scalar multiplication

• use projective coordinates: points (X : Z) with x = X/Z
• cheap differential addition (4M + 2S) and doubling (2M + 2S)
• compatible with the Montgomery ladder (since T1 − T0 = P)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 32 / 60

Montgomery curves

I Proposed by Montgomery in 1987, Montgomery curves are of the form

C/Fq : By 2 = x3 + Ax2 + x , with parameters A,B ∈ Fq and char(Fq) 6= 2

• all Montgomery curves are elliptic curves
• not all elliptic curves can be rewritten in Montgomery form

I Addition and doubling formulae

• let P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq)\{O}, with P 6= ±Q
• then, writing R = P + Q = (xR , yR) and S = P − Q = (xS , yS), we have

xRxS(xP − xQ)2 = (xPxQ − 1)2

• the x-coord. of R = P + Q depends only on the x-coord. of P , Q, and P − Q
⇒ x-only differential addition

• similarly, when P = Q and R = 2P = (xR , yR), we have

4xPxR(x2P + AxP + 1) = (x2P − 1)2

⇒ x-only doubling

I We can drop the y -coordinate altogether in the scalar multiplication

• use projective coordinates: points (X : Z) with x = X/Z
• cheap differential addition (4M + 2S) and doubling (2M + 2S)
• compatible with the Montgomery ladder (since T1 − T0 = P)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 32 / 60

Montgomery curves

I Proposed by Montgomery in 1987, Montgomery curves are of the form

C/Fq : By 2 = x3 + Ax2 + x , with parameters A,B ∈ Fq and char(Fq) 6= 2

• all Montgomery curves are elliptic curves
• not all elliptic curves can be rewritten in Montgomery form

I Addition and doubling formulae

• let P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq)\{O}, with P 6= ±Q
• then, writing R = P + Q = (xR , yR) and S = P − Q = (xS , yS), we have

xRxS(xP − xQ)2 = (xPxQ − 1)2

• the x-coord. of R = P + Q depends only on the x-coord. of P , Q, and P − Q
⇒ x-only differential addition
• similarly, when P = Q and R = 2P = (xR , yR), we have

4xPxR(x2P + AxP + 1) = (x2P − 1)2

⇒ x-only doubling

I We can drop the y -coordinate altogether in the scalar multiplication

• use projective coordinates: points (X : Z) with x = X/Z
• cheap differential addition (4M + 2S) and doubling (2M + 2S)
• compatible with the Montgomery ladder (since T1 − T0 = P)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 32 / 60

Montgomery curves

I Proposed by Montgomery in 1987, Montgomery curves are of the form

C/Fq : By 2 = x3 + Ax2 + x , with parameters A,B ∈ Fq and char(Fq) 6= 2

• all Montgomery curves are elliptic curves
• not all elliptic curves can be rewritten in Montgomery form

I Addition and doubling formulae

• let P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq)\{O}, with P 6= ±Q
• then, writing R = P + Q = (xR , yR) and S = P − Q = (xS , yS), we have

xRxS(xP − xQ)2 = (xPxQ − 1)2

• the x-coord. of R = P + Q depends only on the x-coord. of P , Q, and P − Q
⇒ x-only differential addition
• similarly, when P = Q and R = 2P = (xR , yR), we have

4xPxR(x2P + AxP + 1) = (x2P − 1)2

⇒ x-only doubling

I We can drop the y -coordinate altogether in the scalar multiplication

• use projective coordinates: points (X : Z) with x = X/Z
• cheap differential addition (4M + 2S) and doubling (2M + 2S)
• compatible with the Montgomery ladder (since T1 − T0 = P)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 32 / 60

Montgomery curves

I Proposed by Montgomery in 1987, Montgomery curves are of the form

C/Fq : By 2 = x3 + Ax2 + x , with parameters A,B ∈ Fq and char(Fq) 6= 2

• all Montgomery curves are elliptic curves
• not all elliptic curves can be rewritten in Montgomery form

I Addition and doubling formulae

• let P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq)\{O}, with P 6= ±Q
• then, writing R = P + Q = (xR , yR) and S = P − Q = (xS , yS), we have

xRxS(xP − xQ)2 = (xPxQ − 1)2

• the x-coord. of R = P + Q depends only on the x-coord. of P , Q, and P − Q
⇒ x-only differential addition
• similarly, when P = Q and R = 2P = (xR , yR), we have

4xPxR(x2P + AxP + 1) = (x2P − 1)2

⇒ x-only doubling

I We can drop the y -coordinate altogether in the scalar multiplication

• use projective coordinates: points (X : Z) with x = X/Z
• cheap differential addition (4M + 2S) and doubling (2M + 2S)
• compatible with the Montgomery ladder (since T1 − T0 = P)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 32 / 60

Montgomery curves

I Proposed by Montgomery in 1987, Montgomery curves are of the form

C/Fq : By 2 = x3 + Ax2 + x , with parameters A,B ∈ Fq and char(Fq) 6= 2

• all Montgomery curves are elliptic curves
• not all elliptic curves can be rewritten in Montgomery form

I Addition and doubling formulae

• let P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq)\{O}, with P 6= ±Q
• then, writing R = P + Q = (xR , yR) and S = P − Q = (xS , yS), we have

xRxS(xP − xQ)2 = (xPxQ − 1)2

• the x-coord. of R = P + Q depends only on the x-coord. of P , Q, and P − Q
⇒ x-only differential addition
• similarly, when P = Q and R = 2P = (xR , yR), we have

4xPxR(x2P + AxP + 1) = (x2P − 1)2

⇒ x-only doubling

I We can drop the y -coordinate altogether in the scalar multiplication

• use projective coordinates: points (X : Z) with x = X/Z

• cheap differential addition (4M + 2S) and doubling (2M + 2S)
• compatible with the Montgomery ladder (since T1 − T0 = P)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 32 / 60

Montgomery curves

I Proposed by Montgomery in 1987, Montgomery curves are of the form

C/Fq : By 2 = x3 + Ax2 + x , with parameters A,B ∈ Fq and char(Fq) 6= 2

• all Montgomery curves are elliptic curves
• not all elliptic curves can be rewritten in Montgomery form

I Addition and doubling formulae

• let P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq)\{O}, with P 6= ±Q
• then, writing R = P + Q = (xR , yR) and S = P − Q = (xS , yS), we have

xRxS(xP − xQ)2 = (xPxQ − 1)2

• the x-coord. of R = P + Q depends only on the x-coord. of P , Q, and P − Q
⇒ x-only differential addition
• similarly, when P = Q and R = 2P = (xR , yR), we have

4xPxR(x2P + AxP + 1) = (x2P − 1)2

⇒ x-only doubling

I We can drop the y -coordinate altogether in the scalar multiplication

• use projective coordinates: points (X : Z) with x = X/Z
• cheap differential addition (4M + 2S) and doubling (2M + 2S)

• compatible with the Montgomery ladder (since T1 − T0 = P)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 32 / 60

Montgomery curves

I Proposed by Montgomery in 1987, Montgomery curves are of the form

C/Fq : By 2 = x3 + Ax2 + x , with parameters A,B ∈ Fq and char(Fq) 6= 2

• all Montgomery curves are elliptic curves
• not all elliptic curves can be rewritten in Montgomery form

I Addition and doubling formulae

• let P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq)\{O}, with P 6= ±Q
• then, writing R = P + Q = (xR , yR) and S = P − Q = (xS , yS), we have

xRxS(xP − xQ)2 = (xPxQ − 1)2

• the x-coord. of R = P + Q depends only on the x-coord. of P , Q, and P − Q
⇒ x-only differential addition
• similarly, when P = Q and R = 2P = (xR , yR), we have

4xPxR(x2P + AxP + 1) = (x2P − 1)2

⇒ x-only doubling

I We can drop the y -coordinate altogether in the scalar multiplication

• use projective coordinates: points (X : Z) with x = X/Z
• cheap differential addition (4M + 2S) and doubling (2M + 2S)
• compatible with the Montgomery ladder (since T1 − T0 = P)

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 32 / 60

Edwards curves

I Proposed by Edwards in 2007, Edwards curves are of the form

C/Fq : x2 + y 2 = 1 + dx2y 2, with parameter d ∈ Fq and char(Fq) 6= 2

• all Edwards curves are elliptic curves
• not all elliptic curves can be rewritten in Edwards form

C

O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 33 / 60

Edwards curves

I Proposed by Edwards in 2007, Edwards curves are of the form

C/Fq : x2 + y 2 = 1 + dx2y 2, with parameter d ∈ Fq and char(Fq) 6= 2

• all Edwards curves are elliptic curves
• not all elliptic curves can be rewritten in Edwards form

C

O

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 33 / 60

Edwards curves

C/Fq : x2 + y 2 = 1 + dx2y 2

I Addition and doubling formulae (assuming d is not a square in Fq)

• neutral element: O = (0, 1)
• opposite: for all P = (xP , yP) ∈ C (Fq), −P = (−xP , yP)
• addition: for all P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq), then

P + Q =

(
xPyQ + xQyP

1 + dxPxQyPyQ
,

yPyQ − xPxQ
1− dxPxQyPyQ

)
• doubling: same as addition

I Strongly unified and complete addition law:
• works for both addition and doubling
• no exceptional case

⇒ resilient against timing or power analysis attacks

I Inverted coordinates: points (X : Y : Z) with (x , y) = (Z/X ,Z/Y)
• addition: 9M + 1S
• doubling: 3M + 4S

I Generalization by Bernstein et al. (2008): twisted Edwards curves

C/Fq : ax2 + y 2 = 1 + dx2y 2, with parameter a, d ∈ Fq and char(Fq) 6= 2

• birationally equivalent to Montgomery curves

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 34 / 60

Edwards curves

C/Fq : x2 + y 2 = 1 + dx2y 2

I Addition and doubling formulae (assuming d is not a square in Fq)
• neutral element: O = (0, 1)

• opposite: for all P = (xP , yP) ∈ C (Fq), −P = (−xP , yP)
• addition: for all P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq), then

P + Q =

(
xPyQ + xQyP

1 + dxPxQyPyQ
,

yPyQ − xPxQ
1− dxPxQyPyQ

)
• doubling: same as addition

I Strongly unified and complete addition law:
• works for both addition and doubling
• no exceptional case

⇒ resilient against timing or power analysis attacks

I Inverted coordinates: points (X : Y : Z) with (x , y) = (Z/X ,Z/Y)
• addition: 9M + 1S
• doubling: 3M + 4S

I Generalization by Bernstein et al. (2008): twisted Edwards curves

C/Fq : ax2 + y 2 = 1 + dx2y 2, with parameter a, d ∈ Fq and char(Fq) 6= 2

• birationally equivalent to Montgomery curves

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 34 / 60

Edwards curves

C/Fq : x2 + y 2 = 1 + dx2y 2

I Addition and doubling formulae (assuming d is not a square in Fq)
• neutral element: O = (0, 1)
• opposite: for all P = (xP , yP) ∈ C (Fq), −P = (−xP , yP)

• addition: for all P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq), then

P + Q =

(
xPyQ + xQyP

1 + dxPxQyPyQ
,

yPyQ − xPxQ
1− dxPxQyPyQ

)
• doubling: same as addition

I Strongly unified and complete addition law:
• works for both addition and doubling
• no exceptional case

⇒ resilient against timing or power analysis attacks

I Inverted coordinates: points (X : Y : Z) with (x , y) = (Z/X ,Z/Y)
• addition: 9M + 1S
• doubling: 3M + 4S

I Generalization by Bernstein et al. (2008): twisted Edwards curves

C/Fq : ax2 + y 2 = 1 + dx2y 2, with parameter a, d ∈ Fq and char(Fq) 6= 2

• birationally equivalent to Montgomery curves

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 34 / 60

Edwards curves

C/Fq : x2 + y 2 = 1 + dx2y 2

I Addition and doubling formulae (assuming d is not a square in Fq)
• neutral element: O = (0, 1)
• opposite: for all P = (xP , yP) ∈ C (Fq), −P = (−xP , yP)
• addition: for all P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq), then

P + Q =

(
xPyQ + xQyP

1 + dxPxQyPyQ
,

yPyQ − xPxQ
1− dxPxQyPyQ

)

• doubling: same as addition

I Strongly unified and complete addition law:
• works for both addition and doubling
• no exceptional case

⇒ resilient against timing or power analysis attacks

I Inverted coordinates: points (X : Y : Z) with (x , y) = (Z/X ,Z/Y)
• addition: 9M + 1S
• doubling: 3M + 4S

I Generalization by Bernstein et al. (2008): twisted Edwards curves

C/Fq : ax2 + y 2 = 1 + dx2y 2, with parameter a, d ∈ Fq and char(Fq) 6= 2

• birationally equivalent to Montgomery curves

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 34 / 60

Edwards curves

C/Fq : x2 + y 2 = 1 + dx2y 2

I Addition and doubling formulae (assuming d is not a square in Fq)
• neutral element: O = (0, 1)
• opposite: for all P = (xP , yP) ∈ C (Fq), −P = (−xP , yP)
• addition: for all P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq), then

P + Q =

(
xPyQ + xQyP

1 + dxPxQyPyQ
,

yPyQ − xPxQ
1− dxPxQyPyQ

)
• doubling: same as addition

I Strongly unified and complete addition law:
• works for both addition and doubling
• no exceptional case

⇒ resilient against timing or power analysis attacks

I Inverted coordinates: points (X : Y : Z) with (x , y) = (Z/X ,Z/Y)
• addition: 9M + 1S
• doubling: 3M + 4S

I Generalization by Bernstein et al. (2008): twisted Edwards curves

C/Fq : ax2 + y 2 = 1 + dx2y 2, with parameter a, d ∈ Fq and char(Fq) 6= 2

• birationally equivalent to Montgomery curves

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 34 / 60

Edwards curves

C/Fq : x2 + y 2 = 1 + dx2y 2

I Addition and doubling formulae (assuming d is not a square in Fq)
• neutral element: O = (0, 1)
• opposite: for all P = (xP , yP) ∈ C (Fq), −P = (−xP , yP)
• addition: for all P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq), then

P + Q =

(
xPyQ + xQyP

1 + dxPxQyPyQ
,

yPyQ − xPxQ
1− dxPxQyPyQ

)
• doubling: same as addition

I Strongly unified and complete addition law:
• works for both addition and doubling
• no exceptional case

⇒ resilient against timing or power analysis attacks

I Inverted coordinates: points (X : Y : Z) with (x , y) = (Z/X ,Z/Y)
• addition: 9M + 1S
• doubling: 3M + 4S

I Generalization by Bernstein et al. (2008): twisted Edwards curves

C/Fq : ax2 + y 2 = 1 + dx2y 2, with parameter a, d ∈ Fq and char(Fq) 6= 2

• birationally equivalent to Montgomery curves

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 34 / 60

Edwards curves

C/Fq : x2 + y 2 = 1 + dx2y 2

I Addition and doubling formulae (assuming d is not a square in Fq)
• neutral element: O = (0, 1)
• opposite: for all P = (xP , yP) ∈ C (Fq), −P = (−xP , yP)
• addition: for all P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq), then

P + Q =

(
xPyQ + xQyP

1 + dxPxQyPyQ
,

yPyQ − xPxQ
1− dxPxQyPyQ

)
• doubling: same as addition

I Strongly unified and complete addition law:
• works for both addition and doubling
• no exceptional case
⇒ resilient against timing or power analysis attacks

I Inverted coordinates: points (X : Y : Z) with (x , y) = (Z/X ,Z/Y)
• addition: 9M + 1S
• doubling: 3M + 4S

I Generalization by Bernstein et al. (2008): twisted Edwards curves

C/Fq : ax2 + y 2 = 1 + dx2y 2, with parameter a, d ∈ Fq and char(Fq) 6= 2

• birationally equivalent to Montgomery curves

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 34 / 60

Edwards curves

C/Fq : x2 + y 2 = 1 + dx2y 2

I Addition and doubling formulae (assuming d is not a square in Fq)
• neutral element: O = (0, 1)
• opposite: for all P = (xP , yP) ∈ C (Fq), −P = (−xP , yP)
• addition: for all P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq), then

P + Q =

(
xPyQ + xQyP

1 + dxPxQyPyQ
,

yPyQ − xPxQ
1− dxPxQyPyQ

)
• doubling: same as addition

I Strongly unified and complete addition law:
• works for both addition and doubling
• no exceptional case
⇒ resilient against timing or power analysis attacks

I Inverted coordinates: points (X : Y : Z) with (x , y) = (Z/X ,Z/Y)
• addition: 9M + 1S
• doubling: 3M + 4S

I Generalization by Bernstein et al. (2008): twisted Edwards curves

C/Fq : ax2 + y 2 = 1 + dx2y 2, with parameter a, d ∈ Fq and char(Fq) 6= 2

• birationally equivalent to Montgomery curves

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 34 / 60

Edwards curves

C/Fq : x2 + y 2 = 1 + dx2y 2

I Addition and doubling formulae (assuming d is not a square in Fq)
• neutral element: O = (0, 1)
• opposite: for all P = (xP , yP) ∈ C (Fq), −P = (−xP , yP)
• addition: for all P = (xP , yP) and Q = (xQ , yQ) ∈ C (Fq), then

P + Q =

(
xPyQ + xQyP

1 + dxPxQyPyQ
,

yPyQ − xPxQ
1− dxPxQyPyQ

)
• doubling: same as addition

I Strongly unified and complete addition law:
• works for both addition and doubling
• no exceptional case
⇒ resilient against timing or power analysis attacks

I Inverted coordinates: points (X : Y : Z) with (x , y) = (Z/X ,Z/Y)
• addition: 9M + 1S
• doubling: 3M + 4S

I Generalization by Bernstein et al. (2008): twisted Edwards curves

C/Fq : ax2 + y 2 = 1 + dx2y 2, with parameter a, d ∈ Fq and char(Fq) 6= 2

• birationally equivalent to Montgomery curves

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 34 / 60

Outline

I. Scalar multiplication

II. Elliptic curve arithmetic

III. Finite field arithmetic

IV. Software considerations

V. Notions of hardware design

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 35 / 60

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with n = |p| between 250 and 500 bits
• binary field F2n, with prime m between 250 and 500

... still secure? [See M. Kosters’ talk]

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 36 / 60

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with n = |p| between 250 and 500 bits
• binary field F2n, with prime m between 250 and 500

... still secure? [See M. Kosters’ talk]

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 36 / 60

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with n = |p| between 250 and 500 bits
• binary field F2n, with prime m between 250 and 500

... still secure? [See M. Kosters’ talk]

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 36 / 60

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with n = |p| between 250 and 500 bits
• binary field F2n, with prime m between 250 and 500

... still secure? [See M. Kosters’ talk]

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 36 / 60

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with n = |p| between 250 and 500 bits
• binary field F2n, with prime m between 250 and 500

... still secure? [See M. Kosters’ talk]

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 36 / 60

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with n = |p| between 250 and 500 bits
• binary field F2n, with prime m between 250 and 500

... still secure? [See M. Kosters’ talk]

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 36 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2

a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P

• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2

a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2

a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition

• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

c

cc

r0

r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

c

cc

r0

r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

c

c

c

r0r1

r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

cc

c

r0r1r2

r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)

• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

P≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)

• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)

• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3

≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3

≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 37 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications
• final product fits into 2k words
• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications

• final product fits into 2k words
• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications

• final product fits into 2k words
• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications

• final product fits into 2k words
• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications

• final product fits into 2k words
• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications

• final product fits into 2k words
• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications

• final product fits into 2k words
• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications

• final product fits into 2k words
• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications

• final product fits into 2k words
• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications

• final product fits into 2k words
• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3

+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications

• final product fits into 2k words
• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3

+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications
• final product fits into 2k words

• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications
• final product fits into 2k words
• need to reduce product modulo P (see later)

• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication

I Multiplication of A and B ∈ Fp:

• schoolbook method: k2 w -by-w -bit multiplications
• final product fits into 2k words
• need to reduce product modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 38 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning

: straightforward, regular loop control

• product scanning

: fewer memory accesses and carry propagations

• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2c

a2b0

a1b1

a0b2

+

+

r3c

a3b0

a2b1

a1b2

a0b3

+

+

r4c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning

: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations

• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2c

a2b0

a1b1

a0b2

+

+

r3c

a3b0

a2b1

a1b2

a0b3

+

+

r4c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning

: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations

• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2c

a2b0

a1b1

a0b2

+

+

r3c

a3b0

a2b1

a1b2

a0b3

+

+

r4c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning

: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations

• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2c

a2b0

a1b1

a0b2

+

+

r3c

a3b0

a2b1

a1b2

a0b3

+

+

r4c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning

: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations

• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6

r7

a0b0

r0r1

a1b0

a0b1

+

+

r2c

a2b0

a1b1

a0b2

+

+

r3c

a3b0

a2b1

a1b2

a0b3

+

+

r4c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning

: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations

• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2c

a2b0

a1b1

a0b2

+

+

r3c

a3b0

a2b1

a1b2

a0b3

+

+

r4c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning: straightforward, regular loop control

• product scanning

: fewer memory accesses and carry propagations

• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2c

a2b0

a1b1

a0b2

+

+

r3c

a3b0

a2b1

a1b2

a0b3

+

+

r4c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations
• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2c

a2b0

a1b1

a0b2

+

+

r3c

a3b0

a2b1

a1b2

a0b3

+

+

r4c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations
• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2c

a2b0

a1b1

a0b2

+

+

r3c

a3b0

a2b1

a1b2

a0b3

+

+

r4c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations
• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2c

a2b0

a1b1

a0b2

+

+

r3c

a3b0

a2b1

a1b2

a0b3

+

+

r4c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations
• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2

c

a2b0

a1b1

a0b2

+

+

r3c

a3b0

a2b1

a1b2

a0b3

+

+

r4c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations
• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2

c

a2b0

a1b1

a0b2

+

+

r3

c

a3b0

a2b1

a1b2

a0b3

+

+

r4c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations
• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2

c

a2b0

a1b1

a0b2

+

+

r3

c

a3b0

a2b1

a1b2

a0b3

+

+

r4

c

a3b1

a2b2

a1b3+

r5c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations
• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2

c

a2b0

a1b1

a0b2

+

+

r3

c

a3b0

a2b1

a1b2

a0b3

+

+

r4

c

a3b1

a2b2

a1b3+

r5

c

a3b2

a2b3

r6c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning: straightforward, regular loop control
• product scanning

: fewer memory accesses and carry propagations
• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2

c

a2b0

a1b1

a0b2

+

+

r3

c

a3b0

a2b1

a1b2

a0b3

+

+

r4

c

a3b1

a2b2

a1b3+

r5

c

a3b2

a2b3

r6

c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning: straightforward, regular loop control
• product scanning: fewer memory accesses and carry propagations

• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2

c

a2b0

a1b1

a0b2

+

+

r3

c

a3b0

a2b1

a1b2

a0b3

+

+

r4

c

a3b1

a2b2

a1b3+

r5

c

a3b2

a2b3

r6

c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning: straightforward, regular loop control
• product scanning: fewer memory accesses and carry propagations
• many variants, such as left-to-right

• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2

c

a2b0

a1b1

a0b2

+

+

r3

c

a3b0

a2b1

a1b2

a0b3

+

+

r4

c

a3b1

a2b2

a1b3+

r5

c

a3b2

a2b3

r6

c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP multiplication: operand vs. product scanning

I In which order should we compute the subproducts aibj?

• operand scanning: straightforward, regular loop control
• product scanning: fewer memory accesses and carry propagations
• many variants, such as left-to-right
• subquadratic algorithms (e.g., Karatsuba) when k is large

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

r0r1r2r3r4

+

+

r5

+

+

r6r7

a0b0

r0r1

a1b0

a0b1

+

+

r2

c

a2b0

a1b1

a0b2

+

+

r3

c

a3b0

a2b1

a1b2

a0b3

+

+

r4

c

a3b1

a2b2

a1b3+

r5

c

a3b2

a2b3

r6

c

a3b3

r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 39 / 60

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× w -word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

ALAH

nn

AHc · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 40 / 60

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× w -word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

ALAH

nn

AHc · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 40 / 60

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)

• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× w -word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

ALAH

nn

AHc · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 40 / 60

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× w -word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

ALAH

nn

AHc · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 40 / 60

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× w -word multiplication)

• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 40 / 60

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× w -word multiplication)

• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH

+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 40 / 60

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× w -word multiplication)
• rinse & repeat (one 1× 1-word multiplication)

• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 40 / 60

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× w -word multiplication)
• rinse & repeat (one 1× 1-word multiplication)

• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH+

A′L

A′H
≤ w

c · A′H

+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 40 / 60

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× w -word multiplication)
• rinse & repeat (one 1× 1-word multiplication)

• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH+

A′L

A′H
≤ w

c · A′H+

A′′

≤ 1

P−

A mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 40 / 60

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× w -word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH+

A′L

A′H
≤ w

c · A′H+

A′′

≤ 1

P−

A mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 40 / 60

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× w -word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH+

A′L

A′H
≤ w

c · A′H+

A′′

≤ 1

P−

A mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 40 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7 a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!

• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7 a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7 a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7 a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)

• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7 a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc

• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc

• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc

• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

a3a4a5a6a7

×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)

• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)

• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)

• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)

• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)

• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ← A− Ã

• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã← (Q̃ · P) mod 2(k+1)w (one k × k-word short multiplication)
• compute remainder R ← A− Ã

• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× k-word multiplication)
• compute Ã← (Q̃ · P) mod 2(k+1)w (one k × k-word short multiplication)
• compute remainder R ← A− Ã
• at most two extra subtractions

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 41 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP

• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)

• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)

• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)

• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)

• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)

• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7

0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3

r4r5r6r7 0000

r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3

r4r5r6r7 0000

r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000

r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000

r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P

• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication

• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7 0000 r4r5r6r7

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 42 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P

• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)

• precompute short sequence of squarings and multiplications for fast
exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P

• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)

• precompute short sequence of squarings and multiplications for fast
exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation

• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)

• precompute short sequence of squarings and multiplications for fast
exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)

• precompute short sequence of squarings and multiplications for fast
exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)

• precompute short sequence of squarings and multiplications for fast
exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)

• precompute short sequence of squarings and multiplications for fast
exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A

• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A

A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11

A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S

A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:
• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 = U mod P
• can be adapted to Montgomery representation
• fast, but running time depends on A
⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:
• we know that AP−1 = 1 (mod P), whence AP−2 = A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 43 / 60

The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B
• given

−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If P ≤ M , we can represent elements of FP in RNS

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 44 / 60

The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B
• given

−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If P ≤ M , we can represent elements of FP in RNS

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 44 / 60

The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B
• given

−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If P ≤ M , we can represent elements of FP in RNS

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 44 / 60

The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B

• given
−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If P ≤ M , we can represent elements of FP in RNS

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 44 / 60

The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B
• given

−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If P ≤ M , we can represent elements of FP in RNS

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 44 / 60

The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B
• given

−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If P ≤ M , we can represent elements of FP in RNS

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 44 / 60

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

I Limitations:

• operations are computed in Z/MZ: beware of overflows!
• no simple way to compute divisons, modular reductions or comparisons

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 45 / 60

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

I Limitations:

• operations are computed in Z/MZ: beware of overflows!
• no simple way to compute divisons, modular reductions or comparisons

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 45 / 60

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

I Limitations:

• operations are computed in Z/MZ: beware of overflows!
• no simple way to compute divisons, modular reductions or comparisons

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 45 / 60

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

I Limitations:

• operations are computed in Z/MZ: beware of overflows!
• no simple way to compute divisons, modular reductions or comparisons

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 45 / 60

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

I Limitations:

• operations are computed in Z/MZ: beware of overflows!
• no simple way to compute divisons, modular reductions or comparisons

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 45 / 60

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

I Limitations:

• operations are computed in Z/MZ: beware of overflows!
• no simple way to compute divisons, modular reductions or comparisons

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 45 / 60

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

I Limitations:

• operations are computed in Z/MZ: beware of overflows!
• no simple way to compute divisons, modular reductions or comparisons

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 45 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS

⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋

≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

=

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋

≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

=

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋

≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

=

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋

≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

=

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋

≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

=

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋
=

⌊
k∑

i=1

|ai ·M−1i |mi

mi

⌋

≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

=

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋
=

⌊
k∑

i=1

|ai ·M−1i |mi

mi

⌋

≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

=

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋
≈

⌊
k∑

i=1

|ai ·M−1i |mi

2w

⌋

≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

=

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋
≈

⌊
k∑

i=1

|ai ·M−1i |mi

2w

⌋

≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

=

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋
≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t



≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

=

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋
≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε



= q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

=

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋
≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

=

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋
≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P

A =

((
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋
≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P =

(

(
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋
≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P =

(

(
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P

(mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction
I Not a positional number system: no equivalent of pseudo-Mersenne primes in RNS
⇒ Need to approximate CRT reconstruction and reduce it modulo P

I From the CRT:

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

=

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− qM

with 0 ≤ q < k , whose actual value depends on A

I Compute q̃, approximation of q:

q =

⌊
k∑

i=1

|ai ·M−1i |mi
·Mi

M

⌋
≈


k∑

i=1

⌊
|ai ·M−1i |mi

2w−t

⌋
2t

+ ε

 = q̃

• approximate mi = 2w − ci by 2w

• use only the t most significant bits of |ai ·M−1i |mi
to compute q̃

• add fixed corrective term (
∑

i ci + k(2w−t − 1)) /2w < ε < 1

I If 0 ≤ A < (1− ε)M , then q̃ = q and

A mod P ≡

(

(
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P (mod P)

(
k∑

i=1

|ai ·M−1i |mi
·Mi

)
− q̃M

)
mod P

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 46 / 60

RNS modular reduction

A mod P ≡

(
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P (mod P)

function reduce-mod-P(
−→
A):

(∀i) zi ←
∣∣ai · |M−1i |mi

∣∣
mi

(∀i) z̃i ← bzi/2w−tc
q̃ ← b

∑
i z̃i/2t + εc

(∀i) ri ← 0

for j ← 1 to k:

(∀i) ri ←
∣∣∣ri + zj · ||Mj |P |mi

∣∣∣
mi

(∀i) ri ←
∣∣ri − ||q̃M |P |mi

∣∣
mi

I Precomputations:

• for all i ∈ {1, . . . , k}, |M−1i |mi
(k words)

• for all j ∈ {1, . . . , k},
−−−→
|Mj |P (k2 words)

• for all q̃ ∈ {1, . . . , k − 1},
−−−→
|q̃M |P (k2 words)

I Cost:

k mults + k2 mults → quadratic complexity

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 47 / 60

RNS modular reduction

A mod P ≡

(
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P (mod P)

function reduce-mod-P(
−→
A):

(∀i) zi ←
∣∣ai · |M−1i |mi

∣∣
mi

(∀i) z̃i ← bzi/2w−tc
q̃ ← b

∑
i z̃i/2t + εc

(∀i) ri ← 0

for j ← 1 to k:

(∀i) ri ←
∣∣∣ri + zj · ||Mj |P |mi

∣∣∣
mi

(∀i) ri ←
∣∣ri − ||q̃M |P |mi

∣∣
mi

I Precomputations:

• for all i ∈ {1, . . . , k}, |M−1i |mi
(k words)

• for all j ∈ {1, . . . , k},
−−−→
|Mj |P (k2 words)

• for all q̃ ∈ {1, . . . , k − 1},
−−−→
|q̃M |P (k2 words)

I Cost:

k mults + k2 mults → quadratic complexity

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 47 / 60

RNS modular reduction

A mod P ≡

(
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P (mod P)

function reduce-mod-P(
−→
A):

(∀i) zi ←
∣∣ai · |M−1i |mi

∣∣
mi

(∀i) z̃i ← bzi/2w−tc
q̃ ← b

∑
i z̃i/2t + εc

(∀i) ri ← 0

for j ← 1 to k:

(∀i) ri ←
∣∣∣ri + zj · ||Mj |P |mi

∣∣∣
mi

(∀i) ri ←
∣∣ri − ||q̃M |P |mi

∣∣
mi

I Precomputations:

• for all i ∈ {1, . . . , k}, |M−1i |mi
(k words)

• for all j ∈ {1, . . . , k},
−−−→
|Mj |P (k2 words)

• for all q̃ ∈ {1, . . . , k − 1},
−−−→
|q̃M |P (k2 words)

I Cost:

k mults + k2 mults → quadratic complexity

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 47 / 60

RNS modular reduction

A mod P ≡

(
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P (mod P)

function reduce-mod-P(
−→
A):

(∀i) zi ←
∣∣ai · |M−1i |mi

∣∣
mi

(∀i) z̃i ← bzi/2w−tc
q̃ ← b

∑
i z̃i/2t + εc

(∀i) ri ← 0

for j ← 1 to k:

(∀i) ri ←
∣∣∣ri + zj · ||Mj |P |mi

∣∣∣
mi

(∀i) ri ←
∣∣ri − ||q̃M |P |mi

∣∣
mi

I Precomputations:

• for all i ∈ {1, . . . , k}, |M−1i |mi
(k words)

• for all j ∈ {1, . . . , k},
−−−→
|Mj |P (k2 words)

• for all q̃ ∈ {1, . . . , k − 1},
−−−→
|q̃M |P (k2 words)

I Cost:

k mults + k2 mults → quadratic complexity

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 47 / 60

RNS modular reduction

A mod P ≡

(
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P (mod P)

function reduce-mod-P(
−→
A):

(∀i) zi ←
∣∣ai · |M−1i |mi

∣∣
mi

(∀i) z̃i ← bzi/2w−tc
q̃ ← b

∑
i z̃i/2t + εc

(∀i) ri ← 0

for j ← 1 to k:

(∀i) ri ←
∣∣∣ri + zj · ||Mj |P |mi

∣∣∣
mi

(∀i) ri ←
∣∣ri − ||q̃M |P |mi

∣∣
mi

I Precomputations:

• for all i ∈ {1, . . . , k}, |M−1i |mi
(k words)

• for all j ∈ {1, . . . , k},
−−−→
|Mj |P (k2 words)

• for all q̃ ∈ {1, . . . , k − 1},
−−−→
|q̃M |P (k2 words)

I Cost:

k mults + k2 mults → quadratic complexity

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 47 / 60

RNS modular reduction

A mod P ≡

(
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P (mod P)

function reduce-mod-P(
−→
A):

(∀i) zi ←
∣∣ai · |M−1i |mi

∣∣
mi

(∀i) z̃i ← bzi/2w−tc
q̃ ← b

∑
i z̃i/2t + εc

(∀i) ri ← 0

for j ← 1 to k:

(∀i) ri ←
∣∣∣ri + zj · ||Mj |P |mi

∣∣∣
mi

(∀i) ri ←
∣∣ri − ||q̃M |P |mi

∣∣
mi

I Precomputations:

• for all i ∈ {1, . . . , k}, |M−1i |mi
(k words)

• for all j ∈ {1, . . . , k},
−−−→
|Mj |P (k2 words)

• for all q̃ ∈ {1, . . . , k − 1},
−−−→
|q̃M |P (k2 words)

I Cost:

k mults + k2 mults → quadratic complexity

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 47 / 60

RNS modular reduction

A mod P ≡

(
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P (mod P)

function reduce-mod-P(
−→
A):

(∀i) zi ←
∣∣ai · |M−1i |mi

∣∣
mi

(∀i) z̃i ← bzi/2w−tc
q̃ ← b

∑
i z̃i/2t + εc

(∀i) ri ← 0

for j ← 1 to k:

(∀i) ri ←
∣∣∣ri + zj · ||Mj |P |mi

∣∣∣
mi

(∀i) ri ←
∣∣ri − ||q̃M |P |mi

∣∣
mi

I Precomputations:

• for all i ∈ {1, . . . , k}, |M−1i |mi
(k words)

• for all j ∈ {1, . . . , k},
−−−→
|Mj |P (k2 words)

• for all q̃ ∈ {1, . . . , k − 1},
−−−→
|q̃M |P (k2 words)

I Cost: k mults

+ k2 mults → quadratic complexity

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 47 / 60

RNS modular reduction

A mod P ≡

(
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P (mod P)

function reduce-mod-P(
−→
A):

(∀i) zi ←
∣∣ai · |M−1i |mi

∣∣
mi

(∀i) z̃i ← bzi/2w−tc
q̃ ← b

∑
i z̃i/2t + εc

(∀i) ri ← 0

for j ← 1 to k:

(∀i) ri ←
∣∣∣ri + zj · ||Mj |P |mi

∣∣∣
mi

(∀i) ri ←
∣∣ri − ||q̃M |P |mi

∣∣
mi

I Precomputations:

• for all i ∈ {1, . . . , k}, |M−1i |mi
(k words)

• for all j ∈ {1, . . . , k},
−−−→
|Mj |P (k2 words)

• for all q̃ ∈ {1, . . . , k − 1},
−−−→
|q̃M |P (k2 words)

I Cost: k mults + k2 mults

→ quadratic complexity

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 47 / 60

RNS modular reduction

A mod P ≡

(
k∑

i=1

|ai ·M−1i |mi
· |Mi |P

)
− |q̃M |P (mod P)

function reduce-mod-P(
−→
A):

(∀i) zi ←
∣∣ai · |M−1i |mi

∣∣
mi

(∀i) z̃i ← bzi/2w−tc
q̃ ← b

∑
i z̃i/2t + εc

(∀i) ri ← 0

for j ← 1 to k:

(∀i) ri ←
∣∣∣ri + zj · ||Mj |P |mi

∣∣∣
mi

(∀i) ri ←
∣∣ri − ||q̃M |P |mi

∣∣
mi

I Precomputations:

• for all i ∈ {1, . . . , k}, |M−1i |mi
(k words)

• for all j ∈ {1, . . . , k},
−−−→
|Mj |P (k2 words)

• for all q̃ ∈ {1, . . . , k − 1},
−−−→
|q̃M |P (k2 words)

I Cost: k mults + k2 mults → quadratic complexity

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 47 / 60

RNS Montgomery reduction

I Requires two RNS bases Bα = (mα,1, . . . ,mα,k) and Bβ = (mβ,1, . . . ,mβ,k) such
that P < Mα, P < Mβ, and gcd(Mα,Mβ) = 1

I RNS base extension algorithm (BE) [Kawamura et al., 2000]

• given
−→
Xα in base Bα, BE(

−→
Xα,Bα,Bβ) computes

−→
Xβ, the repr. of X in base Bβ

• similarly, BE(
−→
Xβ,Bβ,Bα) computes

−→
Xα in base Bα

• similar to RNS modular reduction → O(k2) complexity

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 48 / 60

RNS Montgomery reduction

I Requires two RNS bases Bα = (mα,1, . . . ,mα,k) and Bβ = (mβ,1, . . . ,mβ,k) such
that P < Mα, P < Mβ, and gcd(Mα,Mβ) = 1

I RNS base extension algorithm (BE) [Kawamura et al., 2000]

• given
−→
Xα in base Bα, BE(

−→
Xα,Bα,Bβ) computes

−→
Xβ, the repr. of X in base Bβ

• similarly, BE(
−→
Xβ,Bβ,Bα) computes

−→
Xα in base Bα

• similar to RNS modular reduction → O(k2) complexity

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 48 / 60

RNS Montgomery reduction

I Requires two RNS bases Bα = (mα,1, . . . ,mα,k) and Bβ = (mβ,1, . . . ,mβ,k) such
that P < Mα, P < Mβ, and gcd(Mα,Mβ) = 1

I RNS base extension algorithm (BE) [Kawamura et al., 2000]

• given
−→
Xα in base Bα, BE(

−→
Xα,Bα,Bβ) computes

−→
Xβ, the repr. of X in base Bβ

• similarly, BE(
−→
Xβ,Bβ,Bα) computes

−→
Xα in base Bα

• similar to RNS modular reduction → O(k2) complexity

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 48 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ

aα,4aα,3aα,2aα,1−→
Aα

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα

kβ,1 kβ,2 kβ,3 kβ,4
−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×

pβ,4pβ,3pβ,2pβ,1
−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα)

tβ,4tβ,3tβ,2tβ,1
−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×

pβ,4pβ,3pβ,2pβ,1
−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα)

tβ,4tβ,3tβ,2tβ,1
−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×

pβ,4pβ,3pβ,2pβ,1
−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα)

tβ,4tβ,3tβ,2tβ,1
−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβ

rα,1rα,2rα,3rα,4−→
Rα

BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×

pβ,4pβ,3pβ,2pβ,1
−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα)

tβ,4tβ,3tβ,2tβ,1
−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×

pβ,4pβ,3pβ,2pβ,1
−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα)

tβ,4tβ,3tβ,2tβ,1
−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×

pβ,4pβ,3pβ,2pβ,1
−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα)

tβ,4tβ,3tβ,2tβ,1
−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See recent results on this topic by Bigou and Tisserand

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 49 / 60

Outline

I. Scalar multiplication

II. Elliptic curve arithmetic

III. Finite field arithmetic

IV. Software considerations

V. Notions of hardware design

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 50 / 60

Software considerations

I In fact, pretty much has already been said...

I Know your favorite CPU’s instruction set by heart!

• what’s PCLMULQDQ? how many 32-bit words can fit in a NEON register?
• sometimes, floating-point arithmetic is faster than integer arithmetic
• download http://www.agner.org/optimize/instruction_tables.pdf to

find all instruction latencies and thoughputs for Intel and AMD CPUs

I Beware of fancy CPU features!

• avoid secret-dependent memory access patterns (cache attacks)
• avoid secret-dependent conditional branches (timing, branch predictor attacks)

I Have a look at existing libraries (from OpenSSL to MPFQ):

• plenty of great ideas in there!
• you might even find bugs and vulnerabilities

I Read, code, hack, experiment!

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 51 / 60

http://www.agner.org/optimize/instruction_tables.pdf

Software considerations

I In fact, pretty much has already been said...

I Know your favorite CPU’s instruction set by heart!

• what’s PCLMULQDQ? how many 32-bit words can fit in a NEON register?
• sometimes, floating-point arithmetic is faster than integer arithmetic
• download http://www.agner.org/optimize/instruction_tables.pdf to

find all instruction latencies and thoughputs for Intel and AMD CPUs

I Beware of fancy CPU features!

• avoid secret-dependent memory access patterns (cache attacks)
• avoid secret-dependent conditional branches (timing, branch predictor attacks)

I Have a look at existing libraries (from OpenSSL to MPFQ):

• plenty of great ideas in there!
• you might even find bugs and vulnerabilities

I Read, code, hack, experiment!

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 51 / 60

http://www.agner.org/optimize/instruction_tables.pdf

Software considerations

I In fact, pretty much has already been said...

I Know your favorite CPU’s instruction set by heart!

• what’s PCLMULQDQ? how many 32-bit words can fit in a NEON register?

• sometimes, floating-point arithmetic is faster than integer arithmetic
• download http://www.agner.org/optimize/instruction_tables.pdf to

find all instruction latencies and thoughputs for Intel and AMD CPUs

I Beware of fancy CPU features!

• avoid secret-dependent memory access patterns (cache attacks)
• avoid secret-dependent conditional branches (timing, branch predictor attacks)

I Have a look at existing libraries (from OpenSSL to MPFQ):

• plenty of great ideas in there!
• you might even find bugs and vulnerabilities

I Read, code, hack, experiment!

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 51 / 60

http://www.agner.org/optimize/instruction_tables.pdf

Software considerations

I In fact, pretty much has already been said...

I Know your favorite CPU’s instruction set by heart!

• what’s PCLMULQDQ? how many 32-bit words can fit in a NEON register?
• sometimes, floating-point arithmetic is faster than integer arithmetic

• download http://www.agner.org/optimize/instruction_tables.pdf to
find all instruction latencies and thoughputs for Intel and AMD CPUs

I Beware of fancy CPU features!

• avoid secret-dependent memory access patterns (cache attacks)
• avoid secret-dependent conditional branches (timing, branch predictor attacks)

I Have a look at existing libraries (from OpenSSL to MPFQ):

• plenty of great ideas in there!
• you might even find bugs and vulnerabilities

I Read, code, hack, experiment!

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 51 / 60

http://www.agner.org/optimize/instruction_tables.pdf

Software considerations

I In fact, pretty much has already been said...

I Know your favorite CPU’s instruction set by heart!

• what’s PCLMULQDQ? how many 32-bit words can fit in a NEON register?
• sometimes, floating-point arithmetic is faster than integer arithmetic
• download http://www.agner.org/optimize/instruction_tables.pdf to

find all instruction latencies and thoughputs for Intel and AMD CPUs

I Beware of fancy CPU features!

• avoid secret-dependent memory access patterns (cache attacks)
• avoid secret-dependent conditional branches (timing, branch predictor attacks)

I Have a look at existing libraries (from OpenSSL to MPFQ):

• plenty of great ideas in there!
• you might even find bugs and vulnerabilities

I Read, code, hack, experiment!

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 51 / 60

http://www.agner.org/optimize/instruction_tables.pdf

Software considerations

I In fact, pretty much has already been said...

I Know your favorite CPU’s instruction set by heart!

• what’s PCLMULQDQ? how many 32-bit words can fit in a NEON register?
• sometimes, floating-point arithmetic is faster than integer arithmetic
• download http://www.agner.org/optimize/instruction_tables.pdf to

find all instruction latencies and thoughputs for Intel and AMD CPUs

I Beware of fancy CPU features!

• avoid secret-dependent memory access patterns (cache attacks)
• avoid secret-dependent conditional branches (timing, branch predictor attacks)

I Have a look at existing libraries (from OpenSSL to MPFQ):

• plenty of great ideas in there!
• you might even find bugs and vulnerabilities

I Read, code, hack, experiment!

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 51 / 60

http://www.agner.org/optimize/instruction_tables.pdf

Software considerations

I In fact, pretty much has already been said...

I Know your favorite CPU’s instruction set by heart!

• what’s PCLMULQDQ? how many 32-bit words can fit in a NEON register?
• sometimes, floating-point arithmetic is faster than integer arithmetic
• download http://www.agner.org/optimize/instruction_tables.pdf to

find all instruction latencies and thoughputs for Intel and AMD CPUs

I Beware of fancy CPU features!

• avoid secret-dependent memory access patterns (cache attacks)
• avoid secret-dependent conditional branches (timing, branch predictor attacks)

I Have a look at existing libraries (from OpenSSL to MPFQ):

• plenty of great ideas in there!
• you might even find bugs and vulnerabilities

I Read, code, hack, experiment!

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 51 / 60

http://www.agner.org/optimize/instruction_tables.pdf

Software considerations

I In fact, pretty much has already been said...

I Know your favorite CPU’s instruction set by heart!

• what’s PCLMULQDQ? how many 32-bit words can fit in a NEON register?
• sometimes, floating-point arithmetic is faster than integer arithmetic
• download http://www.agner.org/optimize/instruction_tables.pdf to

find all instruction latencies and thoughputs for Intel and AMD CPUs

I Beware of fancy CPU features!

• avoid secret-dependent memory access patterns (cache attacks)
• avoid secret-dependent conditional branches (timing, branch predictor attacks)

I Have a look at existing libraries (from OpenSSL to MPFQ):

• plenty of great ideas in there!
• you might even find bugs and vulnerabilities

I Read, code, hack, experiment!

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 51 / 60

http://www.agner.org/optimize/instruction_tables.pdf

Outline

I. Scalar multiplication

II. Elliptic curve arithmetic

III. Finite field arithmetic

IV. Software considerations

V. Notions of hardware design

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 52 / 60

Describing hardware circuits

I We surely do NOT want to

• program millions of logic cells / transistors by hand
• connect their inputs and outputs by hand

I Design circuits using a hardware description language (HDL)

• VHDL, Verilog, etc.
• usually independent from the target technology

I HDL paradigm completely different from software programming languages

• used to describe concurrent systems: unable to express sequentiality
• structural and hierarchical description of the circuit

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 53 / 60

Describing hardware circuits

I We surely do NOT want to

• program millions of logic cells / transistors by hand
• connect their inputs and outputs by hand

I Design circuits using a hardware description language (HDL)

• VHDL, Verilog, etc.
• usually independent from the target technology

I HDL paradigm completely different from software programming languages

• used to describe concurrent systems: unable to express sequentiality
• structural and hierarchical description of the circuit

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 53 / 60

Describing hardware circuits

I We surely do NOT want to

• program millions of logic cells / transistors by hand
• connect their inputs and outputs by hand

I Design circuits using a hardware description language (HDL)

• VHDL, Verilog, etc.
• usually independent from the target technology

I HDL paradigm completely different from software programming languages

• used to describe concurrent systems: unable to express sequentiality
• structural and hierarchical description of the circuit

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 53 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13

s <= x xor y;

14

co <= x and y;

15 end architecture;

x + y = s + 2co

x y

sco

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13

s <= x xor y;

14

co <= x and y;

15 end architecture;

x + y = s + 2co

x y

sco

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13

s <= x xor y;

14

co <= x and y;

15 end architecture;

x + y = s + 2co

x y

sco

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13

s <= x xor y;

14

co <= x and y;

15 end architecture;

x + y = s + 2co

x

y

sco

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13

s <= x xor y;

14

co <= x and y;

15 end architecture;

x + y = s + 2co

x y

sco

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13

s <= x xor y;

14

co <= x and y;

15 end architecture;

x + y = s + 2co

x y

s

co

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13

s <= x xor y;

14

co <= x and y;

15 end architecture;

x + y = s + 2co

x y

sco

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13

s <= x xor y;

14

co <= x and y;

15 end architecture;

x + y = s + 2co

x y

sco

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13 s <= x xor y;

14

co <= x and y;

15 end architecture;

x + y = s + 2co

x y

sco

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13 s <= x xor y;

14

co <= x and y;

15 end architecture;

x + y = s + 2co

x y

sco

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13 s <= x xor y;

14 co <= x and y;

15 end architecture;

x + y = s + 2co

x y

sco

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13 s <= x xor y;

14 co <= x and y;

15 end architecture;

x + y = s + 2co

x y

sco

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A half-adder in VHDL

1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity ha is

5 port (x : in std logic;

6 y : in std logic;

7 s : out std logic;

8 co : out std logic);

9 end entity;

10

11 architecture arch of ha is

12 begin

13 s <= x xor y;

14 co <= x and y;

15 end architecture;

x + y = s + 2co

x y

sco

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 54 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13

component ha is

14

port (x : in std logic; y : in std logic;

15

s : out std logic; co : out std logic);

16

end component;

17

signal s 0 : std logic;

18

signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21

ha 0 : ha port map (x => x, y => y,

22

s => s 0, co => co 0);

23

ha 1 : ha port map (x => s 0, y => ci,

24

s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13

component ha is

14

port (x : in std logic; y : in std logic;

15

s : out std logic; co : out std logic);

16

end component;

17

signal s 0 : std logic;

18

signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21

ha 0 : ha port map (x => x, y => y,

22

s => s 0, co => co 0);

23

ha 1 : ha port map (x => s 0, y => ci,

24

s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13

component ha is

14

port (x : in std logic; y : in std logic;

15

s : out std logic; co : out std logic);

16

end component;

17

signal s 0 : std logic;

18

signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21

ha 0 : ha port map (x => x, y => y,

22

s => s 0, co => co 0);

23

ha 1 : ha port map (x => s 0, y => ci,

24

s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13

component ha is

14

port (x : in std logic; y : in std logic;

15

s : out std logic; co : out std logic);

16

end component;

17

signal s 0 : std logic;

18

signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21

ha 0 : ha port map (x => x, y => y,

22

s => s 0, co => co 0);

23

ha 1 : ha port map (x => s 0, y => ci,

24

s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13

component ha is

14

port (x : in std logic; y : in std logic;

15

s : out std logic; co : out std logic);

16

end component;

17

signal s 0 : std logic;

18

signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23

ha 1 : ha port map (x => s 0, y => ci,

24

s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17

signal s 0 : std logic;

18

signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23

ha 1 : ha port map (x => s 0, y => ci,

24

s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17

signal s 0 : std logic;

18

signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23

ha 1 : ha port map (x => s 0, y => ci,

24

s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17

signal s 0 : std logic;

18

signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23

ha 1 : ha port map (x => s 0, y => ci,

24

s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17 signal s 0 : std logic;

18

signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23

ha 1 : ha port map (x => s 0, y => ci,

24

s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0

co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17 signal s 0 : std logic;

18 signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23

ha 1 : ha port map (x => s 0, y => ci,

24

s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17 signal s 0 : std logic;

18 signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23 ha 1 : ha port map (x => s 0, y => ci,

24 s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17 signal s 0 : std logic;

18 signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23 ha 1 : ha port map (x => s 0, y => ci,

24 s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17 signal s 0 : std logic;

18 signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23 ha 1 : ha port map (x => s 0, y => ci,

24 s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17 signal s 0 : std logic;

18 signal co 0 : std logic;

19

signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23 ha 1 : ha port map (x => s 0, y => ci,

24 s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17 signal s 0 : std logic;

18 signal co 0 : std logic;

19 signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23 ha 1 : ha port map (x => s 0, y => ci,

24 s => s, co => co 1);

25

co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17 signal s 0 : std logic;

18 signal co 0 : std logic;

19 signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23 ha 1 : ha port map (x => s 0, y => ci,

24 s => s, co => co 1);

25 co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17 signal s 0 : std logic;

18 signal co 0 : std logic;

19 signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23 ha 1 : ha port map (x => s 0, y => ci,

24 s => s, co => co 1);

25 co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

A full-adder in VHDL
1 library ieee;

2 use ieee.std logic 1164.all;

3

4 entity fa is

5 port (x : in std logic;

6 y : in std logic;

7 ci : in std logic;

8 s : out std logic;

9 co : out std logic);

10 end entity;

11

12 architecture arch of fa is

13 component ha is

14 port (x : in std logic; y : in std logic;

15 s : out std logic; co : out std logic);

16 end component;

17 signal s 0 : std logic;

18 signal co 0 : std logic;

19 signal co 1 : std logic;

20 begin

21 ha 0 : ha port map (x => x, y => y,

22 s => s 0, co => co 0);

23 ha 1 : ha port map (x => s 0, y => ci,

24 s => s, co => co 1);

25 co <= co 0 or co 1;

26 end architecture;

x + y + ci = s + 2co

co s

y cix

x y

sco

ha 0
ha

s 0co 0

ha 1

sco

x y

ha

co 1

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 55 / 60

Design process

I Verification and debugging

• software simulator
• feed the circuit with test vectors
• extensive use of waveforms for debugging

I Synthesis

• converts the circuit description (HDL) into a netlist
• extraction of logic primitives (multiplexers, shifters, registers, adders, ...)
• logic minimization effort
• independent from the target technology

I Implementation

• mapping: builds a netlist of technology-dependent logic cells / transistors
• place and route: place each logic cell on the chip and route wires between them

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 56 / 60

Design process

I Verification and debugging

• software simulator
• feed the circuit with test vectors
• extensive use of waveforms for debugging

I Synthesis

• converts the circuit description (HDL) into a netlist
• extraction of logic primitives (multiplexers, shifters, registers, adders, ...)
• logic minimization effort
• independent from the target technology

I Implementation

• mapping: builds a netlist of technology-dependent logic cells / transistors
• place and route: place each logic cell on the chip and route wires between them

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 56 / 60

Design process

I Verification and debugging

• software simulator
• feed the circuit with test vectors
• extensive use of waveforms for debugging

I Synthesis

• converts the circuit description (HDL) into a netlist
• extraction of logic primitives (multiplexers, shifters, registers, adders, ...)
• logic minimization effort
• independent from the target technology

I Implementation

• mapping: builds a netlist of technology-dependent logic cells / transistors
• place and route: place each logic cell on the chip and route wires between them

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 56 / 60

Arithmetic over F2m

I Polynomial representation: F2m
∼= F2[x]/(F (x))

• elements of F2m as polynomials modulo F (x):

A = am−1x
m−1 + · · ·+ a1x + a0, with ai ∈ F2

• 1 bit per coefficient

I Addition: coefficient-wise addition over Fp

I Squaring: 2-nd power Frobenius

• linear operation: each coefficient of the result is a linear combination of the
input coefficients
• for instance, over F2409 = F2[x]/(x409 + x87 + 1)

A2 = . . . + (a86 + a247 + a408)x172 + . . . + (a213 + a374)x17 + . . .

I Inversion: no need for a full blown extended Euclidean algorithm

• use Fermat’s little theorem: A−1 = A2m−2 =
(
A2m−1−1

)2
• computing A2m−1−1 only requires multiplications and Frobeniuses

[Itoh and Tsujii, 1988]
• no extra hardware for inversion

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 57 / 60

Arithmetic over F2m

I Polynomial representation: F2m
∼= F2[x]/(F (x))

• elements of F2m as polynomials modulo F (x):

A = am−1x
m−1 + · · ·+ a1x + a0, with ai ∈ F2

• 1 bit per coefficient

I Addition: coefficient-wise addition over Fp

I Squaring: 2-nd power Frobenius

• linear operation: each coefficient of the result is a linear combination of the
input coefficients
• for instance, over F2409 = F2[x]/(x409 + x87 + 1)

A2 = . . . + (a86 + a247 + a408)x172 + . . . + (a213 + a374)x17 + . . .

I Inversion: no need for a full blown extended Euclidean algorithm

• use Fermat’s little theorem: A−1 = A2m−2 =
(
A2m−1−1

)2
• computing A2m−1−1 only requires multiplications and Frobeniuses

[Itoh and Tsujii, 1988]
• no extra hardware for inversion

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 57 / 60

Arithmetic over F2m

I Polynomial representation: F2m
∼= F2[x]/(F (x))

• elements of F2m as polynomials modulo F (x):

A = am−1x
m−1 + · · ·+ a1x + a0, with ai ∈ F2

• 1 bit per coefficient

I Addition: coefficient-wise addition over Fp

I Squaring: 2-nd power Frobenius

• linear operation: each coefficient of the result is a linear combination of the
input coefficients
• for instance, over F2409 = F2[x]/(x409 + x87 + 1)

A2 = . . . + (a86 + a247 + a408)x172 + . . . + (a213 + a374)x17 + . . .

I Inversion: no need for a full blown extended Euclidean algorithm

• use Fermat’s little theorem: A−1 = A2m−2 =
(
A2m−1−1

)2
• computing A2m−1−1 only requires multiplications and Frobeniuses

[Itoh and Tsujii, 1988]
• no extra hardware for inversion

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 57 / 60

Arithmetic over F2m

I Polynomial representation: F2m
∼= F2[x]/(F (x))

• elements of F2m as polynomials modulo F (x):

A = am−1x
m−1 + · · ·+ a1x + a0, with ai ∈ F2

• 1 bit per coefficient

I Addition: coefficient-wise addition over Fp

I Squaring: 2-nd power Frobenius

• linear operation: each coefficient of the result is a linear combination of the
input coefficients
• for instance, over F2409 = F2[x]/(x409 + x87 + 1)

A2 = . . . + (a86 + a247 + a408)x172 + . . . + (a213 + a374)x17 + . . .

I Inversion: no need for a full blown extended Euclidean algorithm

• use Fermat’s little theorem: A−1 = A2m−2 =
(
A2m−1−1

)2
• computing A2m−1−1 only requires multiplications and Frobeniuses

[Itoh and Tsujii, 1988]
• no extra hardware for inversion

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 57 / 60

Arithmetic over F2m

I Polynomial representation: F2m
∼= F2[x]/(F (x))

• elements of F2m as polynomials modulo F (x):

A = am−1x
m−1 + · · ·+ a1x + a0, with ai ∈ F2

• 1 bit per coefficient

I Addition: coefficient-wise addition over Fp

I Squaring: 2-nd power Frobenius

• linear operation: each coefficient of the result is a linear combination of the
input coefficients
• for instance, over F2409 = F2[x]/(x409 + x87 + 1)

A2 = . . . + (a86 + a247 + a408)x172 + . . . + (a213 + a374)x17 + . . .

I Inversion: no need for a full blown extended Euclidean algorithm

• use Fermat’s little theorem: A−1 = A2m−2 =
(
A2m−1−1

)2
• computing A2m−1−1 only requires multiplications and Frobeniuses

[Itoh and Tsujii, 1988]
• no extra hardware for inversion

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 57 / 60

Arithmetic over F2m

I Polynomial representation: F2m
∼= F2[x]/(F (x))

• elements of F2m as polynomials modulo F (x):

A = am−1x
m−1 + · · ·+ a1x + a0, with ai ∈ F2

• 1 bit per coefficient

I Addition: coefficient-wise addition over Fp

I Squaring: 2-nd power Frobenius

• linear operation: each coefficient of the result is a linear combination of the
input coefficients
• for instance, over F2409 = F2[x]/(x409 + x87 + 1)

A2 = . . . + (a86 + a247 + a408)x172 + . . . + (a213 + a374)x17 + . . .

I Inversion: no need for a full blown extended Euclidean algorithm

• use Fermat’s little theorem: A−1 = A2m−2 =
(
A2m−1−1

)2
• computing A2m−1−1 only requires multiplications and Frobeniuses

[Itoh and Tsujii, 1988]
• no extra hardware for inversion

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 57 / 60

Arithmetic over F2m

I Polynomial representation: F2m
∼= F2[x]/(F (x))

• elements of F2m as polynomials modulo F (x):

A = am−1x
m−1 + · · ·+ a1x + a0, with ai ∈ F2

• 1 bit per coefficient

I Addition: coefficient-wise addition over Fp

I Squaring: 2-nd power Frobenius

• linear operation: each coefficient of the result is a linear combination of the
input coefficients
• for instance, over F2409 = F2[x]/(x409 + x87 + 1)

A2 = . . . + (a86 + a247 + a408)x172 + . . . + (a213 + a374)x17 + . . .

I Inversion: no need for a full blown extended Euclidean algorithm

• use Fermat’s little theorem: A−1 = A2m−2 =
(
A2m−1−1

)2
• computing A2m−1−1 only requires multiplications and Frobeniuses

[Itoh and Tsujii, 1988]
• no extra hardware for inversion

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 57 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
·

· x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x

) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x

) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·

· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)

• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

I Low-area design: parallel–serial multiplier

• iterative algorithm of quadratic complexity
• d coefficients of the second operand processed at each iteration

(most-significant coefficients first)
• dm/de clock cycles for computing the product
• area grows with d : area–time trade-off

B

A
xm−1 1xx2· · ·

bm−3

bm−1

bm−2

A

A

A

·
·
· · x2

· x
) mod F

) mod F

(

(

R (partial sum)

mod F)· x2A

mod F)· xA

A

(bm−1 ·
(bm−2 ·
bm−3 ·

bm−5

bm−4

bm−6

A

A

A

·
·

·
· x
· x2
· x3

) mod F

) mod F

) mod F

(

(

(

R (partial sum)

mod F)· x3

mod F)· x2A

mod F)· xA

A

R(

(bm−4 ·
(bm−5 ·
bm−6 ·

· · ·

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 58 / 60

Multiplication over F2m

• feedback loop for accumulation of the result
• coefficient-wise partial product with F2 multipliers (AND gates)
• free shifts!
• a few F2 adders for reduction modulo F
• coefficient-wise addition (XOR gates in F2)

A B

r

mod Fmod F

� 1 � 2 � 3

mod F

� 1 � 2 � 3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 59 / 60

Multiplication over F2m

• feedback loop for accumulation of the result

• coefficient-wise partial product with F2 multipliers (AND gates)
• free shifts!
• a few F2 adders for reduction modulo F
• coefficient-wise addition (XOR gates in F2)

A B

r

mod Fmod F

� 1 � 2 � 3

mod F

� 1 � 2 � 3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 59 / 60

Multiplication over F2m

• feedback loop for accumulation of the result
• coefficient-wise partial product with F2 multipliers (AND gates)

• free shifts!
• a few F2 adders for reduction modulo F
• coefficient-wise addition (XOR gates in F2)

A B

r

mod Fmod F

� 1 � 2 � 3

mod F

� 1 � 2 � 3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 59 / 60

Multiplication over F2m

• feedback loop for accumulation of the result
• coefficient-wise partial product with F2 multipliers (AND gates)
• free shifts!

• a few F2 adders for reduction modulo F
• coefficient-wise addition (XOR gates in F2)

A B

r

mod Fmod F

� 1 � 2 � 3

mod F

� 1 � 2 � 3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 59 / 60

Multiplication over F2m

• feedback loop for accumulation of the result
• coefficient-wise partial product with F2 multipliers (AND gates)
• free shifts!
• a few F2 adders for reduction modulo F

• coefficient-wise addition (XOR gates in F2)

A B

r

mod Fmod F

� 1 � 2 � 3

mod F

� 1 � 2 � 3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 59 / 60

Multiplication over F2m

• feedback loop for accumulation of the result
• coefficient-wise partial product with F2 multipliers (AND gates)
• free shifts!
• a few F2 adders for reduction modulo F
• coefficient-wise addition (XOR gates in F2)

A B

r

mod Fmod F

� 1 � 2 � 3

mod F

� 1 � 2 � 3

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 59 / 60

Arithmetic coprocessor for ECC over F2m

Register
file

Parallel–serial
multiplier

d coeffs / cycle

dm/de cycles / product

Unified operator

Frobenius (·)2
addition

feedback loop

double Frobenius (·)4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 60 / 60

Arithmetic coprocessor for ECC over F2m

Register
file

Parallel–serial
multiplier

d coeffs / cycle

dm/de cycles / product

Unified operator

Frobenius (·)2
addition

feedback loop

double Frobenius (·)4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 60 / 60

Arithmetic coprocessor for ECC over F2m

Register
file

Parallel–serial
multiplier

d coeffs / cycle

dm/de cycles / product

Unified operator

Frobenius (·)2
addition

feedback loop

double Frobenius (·)4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 60 / 60

Arithmetic coprocessor for ECC over F2m

Register
file

Parallel–serial
multiplier

d coeffs / cycle

dm/de cycles / product

Unified operator

Frobenius (·)2
addition

feedback loop

double Frobenius (·)4

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 60 / 60

Arithmetic coprocessor for ECC over F2m

0 11 0

0 1

A A

$0

$1

$2

$3

DPRAM

$62
BB

10

c7–c12

c13

c6

10c14

c15

0 1

0 1

c0–c5

0 1

0 1

0 1
(mod F)

×x
(mod F)
×x2

(mod F)
×x3

(mod F)
×x13

(mod F)
×x14

$63

x2

x2

c16
c17

c18

c19

c20
c21

c22

c23
c24

c25

c26

c27 c28

c29

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 60 / 60

Thank you for your attention

Questions?

Jérémie Detrey — Software and Hardware Implementation of Elliptic Curve Cryptography 60 / 60

	Scalar multiplication
	Elliptic curve arithmetic
	Finite field arithmetic
	Software considerations
	Notions of hardware design

