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Recovering Short Generators for Cryptanalysis

A few cryptosystems (Fully Homomorphic
Encryption [Smart and Vercauteren, 2010] and Multilinear
Maps [Garg et al., 2013, Langlois et al., 2014]) share this KeyGen:

sk Choose a short g in some ring R as a private key

pk Give a bad Z-basis B of the ideal (g) as a public key (e.g. HNF).

Cryptanalysis in two steps (Key Recovery Attack)

1 Principal Ideal Problem (PIP)
I Given a Z-basis B of a principal ideal I,
I Recover some generator h (i.e. I = (h))

2 Short Generator Problem
I Given an arbitrary generator h ∈ R of I
I Recover g (or some g ′ equivalently short)
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Cost of those two steps

1 Principal Ideal Problem (PIP)
I sub-exponential time (2Õ(n2/3)) classical

algorithm [Biasse and Fieker, 2014, Biasse, 2014].
I progress toward quantum polynomial time algorithm

[Eisenträger et al., 2014, Biasse and Song, 2015b,
Campbell et al., 2014, Biasse and Song, 2015a].

2 Short Generator Problem
I equivalent to the CVP in the log-unit lattice
I becomes a BDD problem in the crypto cases.
I claimed to be easy [Campbell et al., 2014] in the cyclotomic case

m = 2k

I confirmed by experiments [Schank, 2015]

This Work [Cramer et al., 2015]

We focus on step 2 , and prove it can be solved in classical polynomial
time for the aforementioned cryptanalytic instances, when the ring R is the
ring of integers of the cyclotomic number field K = Q(ζm) for m = pk .
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Overview

1 Introduction

2 Preliminary

3 Geometry of Cyclotomic Units

4 Shortness of Log g
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The Logarithmic Embedding

Let K be a number field of degree n, σ1 . . . σn : K 7→ C be its embeddings,
and let R be its ring of integers. The logarithmic Embedding is defined as

Log : K → Rn

x 7→ (log |σ1(x)|, . . . , log |σn(x)|)

It induces

I a group morphism from (K \ {0}, ·) to (Rn,+)

I a monoid morphism from (R \ {0}, ·) to (Rn,+)
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The Unit Group

Let R× denotes the multiplicative group of units of R.
Let Λ = LogR×. By Dirichlet Unit Theorem

I the kernel of Log is the cyclic group T of roots of unity of R
I Λ ⊂ Rn is an lattice of rank r + c − 1

(where K has r real embeddings and 2c complex embeddings)

Reduction to CVP

Elements g , h ∈ R generate the same ideal if and only if h = g · u for some
unit u ∈ R×. In particular

Log g ∈ Log h + Λ.

and g is the “smallest” generator iff Log u ∈ Λ is a vector “closest” to
Log h.
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Example: Embedding Z[
√

2] ↪→ R2

1

1

−1

0

1

2

√
2

1 +
√

2

I x-axis: a + b
√

2 7→ a + b
√

2

I y -axis: a + b
√

2 7→ a− b
√

2

I component-wise multiplication

I Symmetries induced by
I mult. by −1
I conjugation

√
2 7→ −

√
2

� “Orthogonal” elements

� Units (algebraic norm 1)

� “Isonorms” curves
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Example: Logarithmic Embedding LogZ[
√

2]

({•},+) is a sub-monoid of R2

1

1
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Example: Logarithmic Embedding LogZ[
√

2]

Λ =({•},+) ∩ � is a lattice of R2, orthogonal to (1, 1)

1

1
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Example: Logarithmic Embedding LogZ[
√

2]

{•} ∩ � are shifted finite copies of Λ

1

1

Léo Ducas (CWI, Amsterdam) Recovering Short Generators ECC, September 2015 8 / 30



Example: Logarithmic Embedding LogZ[
√

2]

Some {•} ∩ � may be empty (e.g. no elements of Norm 3 in Z[
√

2])

1

1
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Reduction modulo Λ = LogZ[
√

2]×

The reduction modΛ for various fundamental domains.

1

1
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Decoding with the RoundOff algorithm

The simplest algorithm [Babai, 1986] to reduce modulo a lattice

RoundOff(B, t), B a Z-basis of Λ

v = B · b(B∨)> · te
e = t− v
return (t, e) where t ∈ B

Used as a decoding algorithm, its correctness is characterized by the error e
and the dual basis B∨.

Fact(Correctness of RoundOff)

let t = v + e for some v ∈ Λ. If 〈b∨j , e〉 ∈ [−1
2 ,

1
2 ) for all j , then

RoundOff(B, t) = (v, e).
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× (B∨)t

−→

←−
× B

t′

v′

RoundOff algorithm:

1 use basis B to switch to the lattice Zn (×(B∨)t)

2 Round each coordinate

3 Switch back to the lattice L (×B)

t′ = (B∨)t · t; v′ = bt′e; v = B · v′
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Recovering Short Generator: Proof Plan

Folklore strategy [Bernstein, 2014, Campbell et al., 2014] to recover a
short generator g

1 Construct a basis B of the unit-log lattice LogR×

I For K = Q(ζm), m = pk , an (almost1) canonical basis is given by

bj = Log
1− ζ j

1− ζ
, j ∈ {2, . . . ,m/2}, j co-prime with m

2 Prove that the basis is “good”, that is ‖b∨j ‖ are all small

3 Prove that e = Log g is small enough

Technical contributions [CDPR15]

2 Estimate ‖b∨j ‖ precisely using analytic tools
[Washington, 1997, Littlewood, 1924]

3 Bound e using theory of sub-exponential random variables
[Vershynin, 2012]

1it only spans a super-lattice of finite index h+ which is conjectured to be small
Léo Ducas (CWI, Amsterdam) Recovering Short Generators ECC, September 2015 12 / 30



Recovering Short Generator: Proof Plan

Folklore strategy [Bernstein, 2014, Campbell et al., 2014] to recover a
short generator g

1 Construct a basis B of the unit-log lattice LogR×

I For K = Q(ζm), m = pk , an (almost1) canonical basis is given by

bj = Log
1− ζ j

1− ζ
, j ∈ {2, . . . ,m/2}, j co-prime with m

2 Prove that the basis is “good”, that is ‖b∨j ‖ are all small

3 Prove that e = Log g is small enough

Technical contributions [CDPR15]

2 Estimate ‖b∨j ‖ precisely using analytic tools
[Washington, 1997, Littlewood, 1924]

3 Bound e using theory of sub-exponential random variables
[Vershynin, 2012]

1it only spans a super-lattice of finite index h+ which is conjectured to be small
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Cyclotomic units

We fix the number field K = Q(ζm) where m = pk for some prime p. Set

zj = 1− ζ j and bj = zj/z1 for all j coprimes with m.

The bj are units, and the group C generated by

ζ, bj for j = 2, . . .m/2, j coprime with m

is known as the group of cyclotomic units.

Simplification 1 (Weber’s Class Number Problem)

We assume2 that R× = C . It is conjectured to be true for m = 2k .

Simplification 2 (for this talk)

We study the dual matrix Z∨, where zj = Log zj .
It can be proved to close to B∨ where bj = zj − z1.

2One just need the index [R× : C ] = h+(m) to be small.
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The matrix Z

The field K admits exactly ϕ(m)/2 pairs of conjugate complex embeddings

σi = σ−i , where σi : ζ 7→ ωi is defined for all i ∈ Z×m.
where ω = exp(2ıπ/m) ∈ C is a primitive root of unity.

Figure : Näıve Indexing (i = 1, 3, 5, . . . )
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The matrix Z

The field K admits exactly ϕ(m)/2 pairs of conjugate complex embeddings

σi = σ−i , where σi : ζ 7→ ωi is defined for all i ∈ Z×m.
where ω = exp(2ıπ/m) ∈ C is a primitive root of unity.

Figure : Multiplicative Indexing (i = 30, 31, 32, . . . )
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Dual of a Circulant Basis

Notice that Zij = log |σj(1− ζ i )| = log |1− ωij |:
the matrix Z is G -circulant for the cyclic group G = Z×m/± 1.

Fact

If M is a non-singular, G-circulant matrix, then

I its eigenvalues are given by λχ =
∑

g∈G χ(g) ·M1,g

where χ ∈ Ĝ is a character G → C
I All the vectors of M∨ have the same norm ‖m∨i ‖2 =

∑
χ∈Ĝ |λχ|

−2

Note: The characters of G can be extended to even Dirichlet characters
mod m: χ : Z→ C, by setting χ(a) = 0 if gcd(a,m) > 1.
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Computing the Eigenvalues

We wish to give a lower bound on |λχ| where

λχ =
∑
a∈G

χ(a) · log |1− ωa|.

We develop using the Taylor series

log |1− x | = −
∑
k≥1

xk/k

and obtain

−λχ =
∑
a∈G

∑
k≥1

χ(a) · ω
ka

k
.
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Léo Ducas (CWI, Amsterdam) Recovering Short Generators ECC, September 2015 17 / 30



Computing the Eigenvalues

We wish to give a lower bound on |λχ| where

λχ =
∑
a∈G

χ(a) · log |1− ωa|.

We develop using the Taylor series

log |1− x | = −
∑
k≥1

xk/k

and obtain

−λχ =
∑
a∈G

∑
k≥1

χ(a) · ω
ka

k
.
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Computing the Eigenvalues (continued)

We were trying to lower bound |λχ| where

−λχ =
∑
k≥1

1

k
·
∑
a∈G

χ(a) · ωka.

Fact (Separability of Gauss Sums)

If χ is a primitive Dirichlet character modm then∑
a∈Z×

m

χ(a) · ωka = χ(k) · G (χ) where |G (χ)| =
√
m.

For this talk, let’s ignore non-primitive characters. We rewrite

∣∣λχ∣∣ =

√
m

2
·

∣∣∣∣∣∑
k≥1

χ(k)

k

∣∣∣∣∣.
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The Analytical Hammer

We were trying to lower bound
∣∣λχ∣∣ =

√
m
2 ·
∣∣∑

k≥1
χ(k)
k

∣∣.
One recognizes a Dirichlet L-series

L(s, χ) =
∑ χ(k)

ks
.

Theorem ([Littlewood, 1924, Youness et al., 2013])

Under the Generalized Riemann Hypothesis, for any primitive Dirichlet
character χ mod m it holds that

1/`(m) ≤ |L(1, χ)| ≤ `(m) where `(m) = C ln lnm

for some universal constant C > 0.
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Geometric Conclusion

Theorem (Cramer, D. , Peikert, Regev)

Let m = pk , and B =
(
Log(bj))j∈G\{1} be the canonical basis of LogC.

Then, all the vectors of B∨ have the same norm and, under GRH, this norm
is upper bounded as follows∥∥b∨j

∥∥2 ≤ O
(
m−1 · logm · log2 logm

)
.
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Overview

1 Introduction

2 Preliminary

3 Geometry of Cyclotomic Units

4 Shortness of Log g
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Proof Plan (Reminder)

1 Construct a basis B of the unit-log lattice LogR×

I Choose the Canonical Cyclotomics Units

bj = Log
1− ζ j

1− ζ
2 Prove that the basis is “good”, that is ‖b∨j ‖ are all small

I Proved ∥∥b∨j
∥∥2 ≤ O

(
m−1 · log3 m

)

3 Prove that e = Log g is small enough

Léo Ducas (CWI, Amsterdam) Recovering Short Generators ECC, September 2015 22 / 30



Scaling Invariance

Lets assume the embeddings (σi (g)) are i.i.d. of distribution D.

Log (s · Dn) ' (1, 1, . . . 1) · log s + LogDn
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Heuristic argument

Using scaling, assume that E[LogDm] = 0.

I Let e← LogDm (e = Log g)

I Each coordinate LogD of e are independents, centered, of variance V

I For any b, the variance of 〈b, e〉 is V · ‖b‖
I By Markov Inequality, for a fixed i it should hold that

|〈b∨i , e〉| ≤ 1/2

except with o(1) probability (recall we’ve proved that ‖b∨i ‖ = o(1))

Léo Ducas (CWI, Amsterdam) Recovering Short Generators ECC, September 2015 24 / 30



Conclusion from better tail bounds

The previous argument does not allows to conclude simultanously on all i ’s.
We fill this gap using stronger tail bounds, form the theory of
sub-exponential random variables [Vershynin, 2012]

Theorem (Cramer, D. , Peikert, Regev)

If g follows a Continuous Normal Distribution, then for e = Log g , we have
|〈b∨i , e〉| ≤ 1/2 for all i ’s except with negligible probability.

Corollary

If g follows a Discrete Normal Distribution of parameter σ ≥ poly(m), then
for e = Log g , we have |〈b∨i , e〉| ≤ 1/2 for all i ’s except with probability
1/nΘ(1).
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Thanks

Figure : The Shintani Domain of Z[ζ7 + ζ̄7]. Credit: Paul Gunells
http://people.math.umass.edu/~gunnells/pictures/pictures.html

We thank Dan Bernstein, Jean-Franois Biasse, Sorina Ionica, Dimitar Jetchev, Paul

Kirchner, René Schoof, Dan Shepherd and Harold M. Stark for many insightful

conversations related to this work.
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