# Recovering Short Generators of Principal Ideals in Cyclotomic Rings 

Léo Ducas<br>CWI, Amsterdam, The Netherlands<br>Joint work with Ronald Cramer Chris Peikert Oded Regev<br>19th Workshop on Elliptic Curve Cryptography

## Recovering Short Generators for Cryptanalysis

A few cryptosystems (Fully Homomorphic Encryption [Smart and Vercauteren, 2010] and Multilinear Maps [Garg et al., 2013, Langlois et al., 2014]) share this KEyGEN:
sk Choose a short $g$ in some ring $R$ as a private key
pk Give a bad $\mathbb{Z}$-basis $\mathbf{B}$ of the ideal $(g)$ as a public key (e.g. HNF).

Cryptanalysis in two steps (Key Recovery Attack)

## Recovering Short Generators for Cryptanalysis

A few cryptosystems (Fully Homomorphic Encryption [Smart and Vercauteren, 2010] and Multilinear Maps [Garg et al., 2013, Langlois et al., 2014]) share this KEyGEN:
sk Choose a short $g$ in some ring $R$ as a private key
pk Give a bad $\mathbb{Z}$-basis $\mathbf{B}$ of the ideal $(g)$ as a public key (e.g. HNF).

Cryptanalysis in two steps (Key Recovery Attack)
(1) Principal Ideal Problem (PIP)

- Given a $\mathbb{Z}$-basis B of a principal ideal $\mathfrak{I}$,
- Recover some generator $h$ (i.e. $\mathfrak{I}=(h)$ )


## Recovering Short Generators for Cryptanalysis

A few cryptosystems (Fully Homomorphic Encryption [Smart and Vercauteren, 2010] and Multilinear Maps [Garg et al., 2013, Langlois et al., 2014]) share this KEyGEN:
sk Choose a short $g$ in some ring $R$ as a private key
pk Give a bad $\mathbb{Z}$-basis $\mathbf{B}$ of the ideal $(g)$ as a public key (e.g. HNF).

Cryptanalysis in two steps (Key Recovery Attack)
(1) Principal Ideal Problem (PIP)

- Given a $\mathbb{Z}$-basis B of a principal ideal $\mathfrak{I}$,
- Recover some generator $h$ (i.e. $\mathfrak{I}=(h)$ )
(2) Short Generator Problem
- Given an arbitrary generator $h \in R$ of $\mathfrak{I}$
- Recover $g$ (or some $g^{\prime}$ equivalently short)


## Cost of those two steps

(1) Principal Ideal Problem (PIP)

- sub-exponential time $\left(2^{\tilde{O}\left(n^{2 / 3}\right)}\right)$ classical algorithm [Biasse and Fieker, 2014, Biasse, 2014].
- progress toward quantum polynomial time algorithm [Eisenträger et al., 2014, Biasse and Song, 2015b, Campbell et al., 2014, Biasse and Song, 2015a].
(2) Short Generator Problem
- equivalent to the CVP in the log-unit lattice
- becomes a BDD problem in the crypto cases.
- claimed to be easy [Campbell et al., 2014] in the cyclotomic case $m=2^{k}$
- confirmed by experiments [Schank, 2015]


## This Work [Cramer et al., 2015]

We focus on step (2), and prove it can be solved in classical polynomial time for the aforementioned cryptanalytic instances, when the ring $R$ is the ring of integers of the cyclotomic number field $K=\mathbb{Q}\left(\zeta_{m}\right)$ for $m=p^{k}$.

## Overview

(1) Introduction
(2) Preliminary
(3) Geometry of Cyclotomic Units
(4) Shortness of $\log g$

## The Logarithmic Embedding

Let $K$ be a number field of degree $n, \sigma_{1} \ldots \sigma_{n}: K \mapsto \mathbb{C}$ be its embeddings, and let $R$ be its ring of integers. The logarithmic Embedding is defined as

$$
\begin{aligned}
\log : K & \rightarrow \mathbb{R}^{n} \\
x & \mapsto\left(\log \left|\sigma_{1}(x)\right|, \ldots, \log \left|\sigma_{n}(x)\right|\right)
\end{aligned}
$$

It induces

- a group morphism from $(K \backslash\{0\}, \cdot)$ to $\left(\mathbb{R}^{n},+\right)$
- a monoid morphism from $(R \backslash\{0\}, \cdot)$ to $\left(\mathbb{R}^{n},+\right)$


## The Unit Group

Let $R^{\times}$denotes the multiplicative group of units of $R$.
Let $\Lambda=\log R^{\times}$. By Dirichlet Unit Theorem

- the kernel of Log is the cyclic group $T$ of roots of unity of $R$
- $\Lambda \subset \mathbb{R}^{n}$ is an lattice of rank $r+c-1$
(where $K$ has $r$ real embeddings and $2 c$ complex embeddings)


## The Unit Group

Let $R^{\times}$denotes the multiplicative group of units of $R$.
Let $\Lambda=\log R^{\times}$. By Dirichlet Unit Theorem

- the kernel of Log is the cyclic group $T$ of roots of unity of $R$
- $\Lambda \subset \mathbb{R}^{n}$ is an lattice of rank $r+c-1$
(where $K$ has $r$ real embeddings and $2 c$ complex embeddings)


## Reduction to CVP

Elements $g, h \in R$ generate the same ideal if and only if $h=g \cdot u$ for some unit $u \in R^{\times}$. In particular

$$
\log g \in \log h+\Lambda
$$

and $g$ is the "smallest" generator iff $\log u \in \Lambda$ is a vector "closest" to $\log h$.

## Example: Embedding $\mathbb{Z}[\sqrt{2}] \hookrightarrow \mathbb{R}^{2}$



- x-axis: $a+b \sqrt{2} \mapsto a+b \sqrt{2}$
- $y$-axis: $a+b \sqrt{2} \mapsto a-b \sqrt{2}$
- component-wise multiplication
- Symmetries induced by
- mult. by -1
- conjugation $\sqrt{2} \mapsto-\sqrt{2}$

■ "Orthogonal" elements

- Units (algebraic norm 1)

■ "Isonorms" curves

## Example: Logarithmic Embedding Log $\mathbb{Z}[\sqrt{2}]$

## $(\{\bullet\},+)$ is a sub-monoid of $\mathbb{R}^{2}$



## Example: Logarithmic Embedding $\log \mathbb{Z}[\sqrt{2}]$

$\Lambda=(\{\bullet\},+) \cap \backslash$ is a lattice of $\mathbb{R}^{2}$, orthogonal to $(1,1)$


## Example: Logarithmic Embedding $\log \mathbb{Z}[\sqrt{2}]$

$\{\bullet\} \cap \backslash$ are shifted finite copies of $\Lambda$


## Example: Logarithmic Embedding $\log \mathbb{Z}[\sqrt{2}]$

Some $\{\bullet\} \cap \backslash$ may be empty (e.g. no elements of Norm 3 in $\mathbb{Z}[\sqrt{2}]$ )


## Reduction modulo $\Lambda=\log \mathbb{Z}[\sqrt{2}]^{\times}$

The reduction $\bmod \Lambda$ for various fundamental domains.



## Reduction modulo $\Lambda=\log \mathbb{Z}[\sqrt{2}]^{\times}$

The reduction $\bmod \Lambda$ for various fundamental domains.



## Reduction modulo $\Lambda=\log \mathbb{Z}[\sqrt{2}]^{\times}$

The reduction $\bmod \Lambda$ for various fundamental domains.



## Reduction modulo $\Lambda=\log \mathbb{Z}[\sqrt{2}]^{\times}$

The reduction $\bmod \Lambda$ for various fundamental domains.



## Decoding with the RoundOfF algorithm

The simplest algorithm [Babai, 1986] to reduce modulo a lattice

## $\operatorname{RoundOff}(\mathbf{B}, \mathbf{t})$, $\mathbf{B}$ a $\mathbb{Z}$-basis of $\Lambda$

$\mathbf{v}=\mathbf{B} \cdot\left\lfloor\left(\mathbf{B}^{\vee}\right)^{\top} \cdot \mathbf{t}\right\rceil$
$\mathbf{e}=\mathbf{t}-\mathbf{v}$
return $(\mathbf{t}, \mathbf{e})$ where $\mathbf{t} \in \mathbf{B}$
Used as a decoding algorithm, its correctness is characterized by the error $\mathbf{e}$ and the dual basis $\mathbf{B}^{\vee}$.

## Fact(Correctness of RoundOFF)

let $\mathbf{t}=\mathbf{v}+\mathbf{e}$ for some $\mathbf{v} \in \Lambda$. If $\left\langle\mathbf{b}_{j}^{\vee}, \mathbf{e}\right\rangle \in\left[-\frac{1}{2}, \frac{1}{2}\right)$ for all $j$, then

$$
\operatorname{RoundOFF}(\mathbf{B}, \mathbf{t})=(\mathbf{v}, \mathbf{e})
$$

## RoundOfF in pictures



## RoundOff algorithm:

## RoundOfF in pictures



$$
\begin{gathered}
X(B V) t \\
>
\end{gathered}
$$

RoundOff algorithm:
(1) use basis $\mathbf{B}$ to switch to the lattice $\mathbb{Z}^{n}\left(\times\left(\mathbf{B}^{\vee}\right)^{t}\right)$

$$
\mathbf{t}^{\prime}=\left(\mathbf{B}^{\vee}\right)^{t} \cdot \mathbf{t}
$$

## RoundOfF in pictures



## RoundOff algorithm:

(1) use basis $\mathbf{B}$ to switch to the lattice $\mathbb{Z}^{n}\left(\times\left(\mathbf{B}^{\vee}\right)^{t}\right)$
(2) Round each coordinate

$$
\mathbf{t}^{\prime}=\left(\mathbf{B}^{\vee}\right)^{t} \cdot \mathbf{t} ; \quad \mathbf{v}^{\prime}=\left\lfloor\mathbf{t}^{\prime}\right\rceil ;
$$

## RoundOff in pictures



## RoundOff algorithm:

(1) use basis $\mathbf{B}$ to switch to the lattice $\mathbb{Z}^{n}\left(\times\left(\mathbf{B}^{\vee}\right)^{t}\right)$
(2) Round each coordinate
(3) Switch back to the lattice $L(\times \mathbf{B})$

$$
\mathbf{t}^{\prime}=\left(\mathbf{B}^{\vee}\right)^{t} \cdot \mathbf{t} ; \quad \mathbf{v}^{\prime}=\left\lfloor\mathbf{t}^{\prime}\right\rceil ; \quad \mathbf{v}=\mathbf{B} \cdot \mathbf{v}^{\prime}
$$

## Recovering Short Generator: Proof Plan

Folklore strategy [Bernstein, 2014, Campbell et al., 2014] to recover a short generator $g$
(1) Construct a basis $\mathbf{B}$ of the unit-log lattice $\log R^{\times}$

- For $K=\mathbb{Q}\left(\zeta_{m}\right), m=p^{k}$, an (almost ${ }^{1}$ ) canonical basis is given by

$$
\mathbf{b}_{j}=\log \frac{1-\zeta^{j}}{1-\zeta}, \quad j \in\{2, \ldots, m / 2\}, j \text { co-prime with } m
$$

(2) Prove that the basis is "good", that is $\left\|\mathbf{b}_{j}^{V}\right\|$ are all small
(3) Prove that $\mathbf{e}=\log g$ is small enough

[^0]
## Recovering Short Generator: Proof Plan

Folklore strategy [Bernstein, 2014, Campbell et al., 2014] to recover a short generator $g$
(1) Construct a basis $\mathbf{B}$ of the unit-log lattice $\log R^{\times}$

- For $K=\mathbb{Q}\left(\zeta_{m}\right), m=p^{k}$, an (almost ${ }^{1}$ ) canonical basis is given by

$$
\mathbf{b}_{j}=\log \frac{1-\zeta^{j}}{1-\zeta}, \quad j \in\{2, \ldots, m / 2\}, j \text { co-prime with } m
$$

(2) Prove that the basis is "good", that is $\left\|\mathbf{b}_{j}^{\vee}\right\|$ are all small
(3) Prove that $\mathbf{e}=\log g$ is small enough

## Technical contributions [CDPR15]

(2) Estimate $\left\|\mathbf{b}_{j}^{\bigvee}\right\|$ precisely using analytic tools [Washington, 1997, Littlewood, 1924]
(3) Bound $\mathbf{e}$ using theory of sub-exponential random variables [Vershynin, 2012]
${ }^{1}$ it only spans a super-lattice of finite index $h^{+}$which is conjectured to be small

## Overview

(1) Introduction
(2) Preliminary
(3) Geometry of Cyclotomic Units
(4) Shortness of $\log g$

## Cyclotomic units

We fix the number field $K=\mathbb{Q}\left(\zeta_{m}\right)$ where $m=p^{k}$ for some prime $p$. Set

$$
z_{j}=1-\zeta^{j} \quad \text { and } b_{j}=z_{j} / z_{1} \text { for all } j \text { coprimes with } m
$$

The $b_{j}$ are units, and the group $C$ generated by

$$
\zeta, \quad b_{j} \quad \text { for } j=2, \ldots m / 2, j \text { coprime with } m
$$

is known as the group of cyclotomic units.

[^1]
## Cyclotomic units

We fix the number field $K=\mathbb{Q}\left(\zeta_{m}\right)$ where $m=p^{k}$ for some prime $p$. Set

$$
z_{j}=1-\zeta^{j} \quad \text { and } b_{j}=z_{j} / z_{1} \text { for all } j \text { coprimes with } m
$$

The $b_{j}$ are units, and the group $C$ generated by

$$
\zeta, \quad b_{j} \quad \text { for } j=2, \ldots m / 2, j \text { coprime with } m
$$

is known as the group of cyclotomic units.

## Simplification 1 (Weber's Class Number Problem)

We assume ${ }^{2}$ that $R^{\times}=C$. It is conjectured to be true for $m=2^{k}$.
${ }^{2}$ One just need the index $\left[R^{\times}: C\right]=h^{+}(m)$ to be small $\quad$

## Cyclotomic units

We fix the number field $K=\mathbb{Q}\left(\zeta_{m}\right)$ where $m=p^{k}$ for some prime $p$. Set

$$
z_{j}=1-\zeta^{j} \quad \text { and } b_{j}=z_{j} / z_{1} \text { for all } j \text { coprimes with } m
$$

The $b_{j}$ are units, and the group $C$ generated by

$$
\zeta, \quad b_{j} \quad \text { for } j=2, \ldots m / 2, j \text { coprime with } m
$$

is known as the group of cyclotomic units.

## Simplification 1 (Weber's Class Number Problem)

We assume ${ }^{2}$ that $R^{\times}=C$. It is conjectured to be true for $m=2^{k}$.

## Simplification 2 (for this talk)

We study the dual matrix $\mathbf{Z}^{\vee}$, where $\mathbf{z}_{j}=\log z_{j}$.
It can be proved to close to $\mathbf{B}^{\vee}$ where $\mathbf{b}_{j}=\mathbf{z}_{j}-\mathbf{z}_{1}$.
${ }^{2}$ One just need the index $\left[R^{\times}: C\right]=h^{+}(m)$ to be small $\quad$.

## The matrix $\mathbf{Z}$

The field $K$ admits exactly $\varphi(m) / 2$ pairs of conjugate complex embeddings

$$
\sigma_{i}=\overline{\sigma_{-i}}, \text { where } \sigma_{i}: \zeta \mapsto \omega^{i} \text { is defined for all } i \in \mathbb{Z}_{m}^{\times}
$$

where $\omega=\exp (2 \imath \pi / m) \in \mathbb{C}$ is a primitive root of unity.

## The matrix $\mathbf{Z}$

The field $K$ admits exactly $\varphi(m) / 2$ pairs of conjugate complex embeddings

$$
\sigma_{i}=\overline{\sigma_{-i}}, \text { where } \sigma_{i}: \zeta \mapsto \omega^{i} \text { is defined for all } i \in \mathbb{Z}_{m}^{\times}
$$

where $\omega=\exp (2 \imath \pi / m) \in \mathbb{C}$ is a primitive root of unity.


Figure: Naïve Indexing ( $i=1,3,5, \ldots$ )

## The matrix $\mathbf{Z}$

The field $K$ admits exactly $\varphi(m) / 2$ pairs of conjugate complex embeddings

$$
\sigma_{i}=\overline{\sigma_{-i}}, \text { where } \sigma_{i}: \zeta \mapsto \omega^{i} \text { is defined for all } i \in \mathbb{Z}_{m}^{\times}
$$

where $\omega=\exp (2 \imath \pi / m) \in \mathbb{C}$ is a primitive root of unity.


Figure: Multiplicative Indexing ( $i=3^{0}, 3^{1}, 3^{2}, \ldots$ )

## Dual of a Circulant Basis

Notice that $\mathbf{Z}_{i j}=\log \left|\sigma_{j}\left(1-\zeta^{i}\right)\right|=\log \left|1-\omega^{i j}\right|$ :
the matrix $\mathbf{Z}$ is $G$-circulant for the cyclic group $G=\mathbb{Z}_{m}^{\times} / \pm 1$.

## Dual of a Circulant Basis

Notice that $\mathbf{Z}_{i j}=\log \left|\sigma_{j}\left(1-\zeta^{i}\right)\right|=\log \left|1-\omega^{i j}\right|$ :
the matrix $\mathbf{Z}$ is $G$-circulant for the cyclic group $G=\mathbb{Z}_{m}^{\times} / \pm 1$.

## Fact

If M is a non-singular, $G$-circulant matrix, then

- its eigenvalues are given by $\lambda_{\chi}=\sum_{g \in G} \overline{\chi(g)} \cdot \mathbf{M}_{1, g}$ where $\chi \in \widehat{G}$ is a character $G \rightarrow \mathbb{C}$
- All the vectors of $\mathbf{M}^{\vee}$ have the same norm $\left\|\mathbf{m}_{i}^{\vee}\right\|^{2}=\sum_{\chi \in \widehat{G}}\left|\lambda_{\chi}\right|^{-2}$

Note: The characters of $G$ can be extended to even Dirichlet characters $\bmod m: \chi: \mathbb{Z} \rightarrow \mathbb{C}$, by setting $\chi(a)=0$ if $\operatorname{gcd}(a, m)>1$.

## Computing the Eigenvalues

We wish to give a lower bound on $\left|\lambda_{\chi}\right|$ where

$$
\lambda_{\chi}=\sum_{a \in G} \overline{\chi(a)} \cdot \log \left|1-\omega^{a}\right| .
$$

## Computing the Eigenvalues

We wish to give a lower bound on $\left|\lambda_{\chi}\right|$ where

$$
\lambda_{\chi}=\sum_{a \in G} \overline{\chi(a)} \cdot \log \left|1-\omega^{a}\right| .
$$

## Why not stop here ?

This formula is pretty easy to evaluate numerically: at this point we can already check RoundOff's correctness numerically up to $m=10^{6}$ or more.

## Computing the Eigenvalues

We wish to give a lower bound on $\left|\lambda_{\chi}\right|$ where

$$
\lambda_{\chi}=\sum_{a \in G} \overline{\chi(a)} \cdot \log \left|1-\omega^{a}\right| .
$$

## Why not stop here?

This formula is pretty easy to evaluate numerically: at this point we can already check RoundOff's correctness numerically up to $m=10^{6}$ or more.

## Something cute to be learned !

The equations looks not very algebraic (log ?), yet appears quite naturally... Surely mathematicians knows how to deal with this.

Indeed, computation of the volume of that basis appears in [Washington, 1997].

## Computing the Eigenvalues

We wish to give a lower bound on $\left|\lambda_{\chi}\right|$ where

$$
\lambda_{\chi}=\sum_{a \in G} \overline{\chi(a)} \cdot \log \left|1-\omega^{a}\right| .
$$

We develop using the Taylor series

$$
\log |1-x|=-\sum_{k \geq 1} x^{k} / k
$$

## Computing the Eigenvalues

We wish to give a lower bound on $\left|\lambda_{\chi}\right|$ where

$$
\lambda_{\chi}=\sum_{a \in G} \overline{\chi(a)} \cdot \log \left|1-\omega^{a}\right| .
$$

We develop using the Taylor series

$$
\log |1-x|=-\sum_{k \geq 1} x^{k} / k
$$

and obtain

$$
-\lambda_{\chi}=\sum_{a \in G} \sum_{k \geq 1} \overline{\chi(a)} \cdot \frac{\omega^{k a}}{k}
$$

## Computing the Eigenvalues (continued)

We were trying to lower bound $\left|\lambda_{\chi}\right|$ where

$$
-\lambda_{\chi}=\sum_{k \geq 1} \frac{1}{k} \cdot \sum_{a \in G} \overline{\chi(a)} \cdot \omega^{k a}
$$

## Computing the Eigenvalues (continued)

We were trying to lower bound $\left|\lambda_{\chi}\right|$ where

$$
-\lambda_{\chi}=\sum_{k \geq 1} \frac{1}{k} \cdot \sum_{a \in G} \overline{\chi(a)} \cdot \omega^{k a}
$$

## Fact (Separability of Gauss Sums)

If $\chi$ is a primitive Dirichlet character $\bmod m$ then

$$
\sum_{a \in \mathbb{Z}_{m}^{\times}} \overline{\chi(a)} \cdot \omega^{k a}=\chi(k) \cdot G(\chi) \quad \text { where }|G(\chi)|=\sqrt{m}
$$

## Computing the Eigenvalues (continued)

We were trying to lower bound $\left|\lambda_{\chi}\right|$ where

$$
-\lambda_{\chi}=\sum_{k \geq 1} \frac{1}{k} \cdot \sum_{a \in G} \overline{\chi(a)} \cdot \omega^{k a}
$$

## Fact (Separability of Gauss Sums)

If $\chi$ is a primitive Dirichlet character $\bmod m$ then

$$
\sum \overline{\chi(a)} \cdot \omega^{k a}=\chi(k) \cdot G(\chi) \quad \text { where }|G(\chi)|=\sqrt{m}
$$

For this talk, let's ignore non-primitive characters. We rewrite

$$
\left|\lambda_{\chi}\right|=\sqrt{\frac{m}{2}} \cdot\left|\sum_{k \geq 1} \frac{\chi(k)}{k}\right| .
$$

## The Analytical Hammer

We were trying to lower bound $\left|\lambda_{\chi}\right|=\sqrt{\frac{m}{2}} \cdot\left|\sum_{k \geq 1} \frac{\chi(k)}{k}\right|$. One recognizes a Dirichlet $L$-series

$$
L(s, \chi)=\sum \frac{\chi(k)}{k^{s}}
$$

## The Analytical Hammer

We were trying to lower bound $\left|\lambda_{\chi}\right|=\sqrt{\frac{m}{2}} \cdot\left|\sum_{k \geq 1} \frac{\chi(k)}{k}\right|$. One recognizes a Dirichlet $L$-series

$$
L(s, \chi)=\sum \frac{\chi(k)}{k^{s}}
$$

## Theorem ([Littlewood, 1924, Youness et al., 2013])

Under the Generalized Riemann Hypothesis, for any primitive Dirichlet character $\chi$ mod $m$ it holds that

$$
1 / \ell(m) \leq|L(1, \chi)| \leq \ell(m) \quad \text { where } \ell(m)=C \ln \ln m
$$

for some universal constant $C>0$.

## Geometric Conclusion

## Theorem (Cramer, D. , Peikert, Regev)

Let $m=p^{k}$, and $\mathbf{B}=\left(\log \left(b_{j}\right)\right)_{j \in G \backslash\{1\}}$ be the canonical basis of $\log C$. Then, all the vectors of $\mathbf{B}^{\vee}$ have the same norm and, under $G R H$, this norm is upper bounded as follows

$$
\left\|\mathbf{b}_{j}^{\vee}\right\|^{2} \leq O\left(m^{-1} \cdot \log m \cdot \log ^{2} \log m\right)
$$

## Overview

(1) Introduction
(2) Preliminary
(3) Geometry of Cyclotomic Units
(4) Shortness of $\log g$

## Proof Plan (Reminder)

(1) Construct a basis $\mathbf{B}$ of the unit-log lattice $\log R^{\times}$

- Choose the Canonical Cyclotomics Units

$$
\mathbf{b}_{j}=\log \frac{1-\zeta^{j}}{1-\zeta}
$$

(2) Prove that the basis is "good", that is $\left\|\mathbf{b}_{j}^{\vee}\right\|$ are all small

- Proved

$$
\left\|\mathbf{b}_{j}^{\vee}\right\|^{2} \leq O\left(m^{-1} \cdot \log ^{3} m\right)
$$

(3) Prove that $\mathbf{e}=\log g$ is small enough

## Scaling Invariance

Lets assume the embeddings $\left(\sigma_{i}(g)\right)$ are i.i.d. of distribution $\mathcal{D}$.

$$
\log \left(s \cdot \mathcal{D}^{n}\right) \simeq(1,1, \ldots 1) \cdot \log s+\log \mathcal{D}^{n}
$$

## Heuristic argument

Using scaling, assume that $\mathbb{E}\left[\log \mathcal{D}^{m}\right]=\mathbf{0}$.

- Let $\mathbf{e} \leftarrow \log \mathcal{D}^{m}(\mathbf{e}=\log g)$
- Each coordinate Log $\mathcal{D}$ of $\mathbf{e}$ are independents, centered, of variance $V$
- For any $\mathbf{b}$, the variance of $\langle\mathbf{b}, \mathbf{e}\rangle$ is $V \cdot\|\mathbf{b}\|$
- By Markov Inequality, for a fixed $i$ it should hold that

$$
\left|\left\langle\mathbf{b}_{i}^{\vee}, \mathbf{e}\right\rangle\right| \leq 1 / 2
$$

except with $o(1)$ probability (recall we've proved that $\left\|\mathbf{b}_{i}^{\bigvee}\right\|=o(1)$ )

## Conclusion from better tail bounds

The previous argument does not allows to conclude simultanously on all i's. We fill this gap using stronger tail bounds, form the theory of sub-exponential random variables [Vershynin, 2012]

## Theorem (Cramer, D. , Peikert, Regev)

If $g$ follows a Continuous Normal Distribution, then for $\mathbf{e}=\log g$, we have $\left|\left\langle\mathbf{b}_{i}^{\vee}, \mathbf{e}\right\rangle\right| \leq 1 / 2$ for all $i$ 's except with negligible probability.

## Corollary

If $g$ follows a Discrete Normal Distribution of parameter $\sigma \geq p o l y(m)$, then for $\mathbf{e}=\log g$, we have $\left|\left\langle\mathbf{b}_{i}^{\vee}, \mathbf{e}\right\rangle\right| \leq 1 / 2$ for all $i$ 's except with probability $1 / n^{\Theta(1)}$.

## Thanks

Figure : The Shintani Domain of $\mathbb{Z}\left[\zeta_{7}+\bar{\zeta}_{7}\right]$. Credit: Paul Gunells http://people.math.umass.edu/~gunnells/pictures/pictures.html


We thank Dan Bernstein, Jean-Franois Biasse, Sorina Ionica, Dimitar Jetchev, Paul Kirchner, René Schoof, Dan Shepherd and Harold M. Stark for many insightful conversations related to this work.

## References I

Babai, L. (1986).
On Lovász' lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1-13.
Preliminary version in STACS 1985.Bernstein, D. (2014).
A subfield-logarithm attack against ideal lattices.
http://blog.cr.yp.to/20140213-ideal.html.
Biasse, J.-F. (2014).
Subexponential time relations in the class group of large degree number fields.
Adv. Math. Commun., 8(4):407-425.


Biasse, J.-F. and Fieker, C. (2014).
Subexponential class group and unit group computation in large degree number fields. LMS Journal of Computation and Mathematics, 17:385-403.

Biasse, J.-F. and Song, F. (2015a).
A note on the quantum attacks against schemes relying on the hardness of finding a short generator of an ideal in $\mathrm{Q}\left(z_{-} 2 \hat{n}\right)$.
http://cacr.uwaterloo.ca/techreports/2015/cacr2015-12.pdf.
Technical Report.

## References II

R
Biasse, J.-F. and Song, F. (2015b).
A polynomial time quantum algorithm for computing class groups and solving the principal ideal problem in arbitrary degree number fields.
http://www.lix.polytechnique.fr/Labo/Jean-Francois.Biasse/.
In preparation.
家
Campbell, P., Groves, M., and Shepherd, D. (2014).
Soliloquy: A cautionary tale.
ETSI 2nd Quantum-Safe Crypto Workshop.
Available at http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_ and_Attacks/S07_Groves_Annex.pdf.


Cramer, R., Ducas, L., Peikert, C., and Regev, O. (2015).
Recovering short generators of principal ideals in cyclotomic rings.
Cryptology ePrint Archive, Report 2015/313.
http://eprint.iacr.org/.
Eisenträger, K., Hallgren, S., Kitaev, A., and Song, F. (2014).
A quantum algorithm for computing the unit group of an arbitrary degree number field.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 293-302. ACM.

## References III

青
Garg，S．，Gentry，C．，and Halevi，S．（2013）．
Candidate multilinear maps from ideal lattices．
In EUROCRYPT，pages 1－17．
酋
Langlois，A．，Stehlé，D．，and Steinfeld，R．（2014）．
Gghlite：More efficient multilinear maps from ideal lattices．
In Advances in Cryptology－EUROCRYPT 2014，pages 239－256．Springer．
嘓 Littlewood，J．（1924）．
On the zeros of the riemann zeta－function．
In Mathematical Proceedings of the Cambridge Philosophical Society，volume 22，pages 295－318．Cambridge Univ Press．
a
Schank，J．（2015）．
LogCVP，Pari implementation of CVP in $\log \mathbb{Z}\left[\zeta_{2^{n}}\right]^{*}$ ．
https：／／github．com／jschanck－si／logcvp．
圊
Smart，N．P．and Vercauteren，F．（2010）．
Fully homomorphic encryption with relatively small key and ciphertext sizes．
In Public Key Cryptography，pages 420－443．

## References IV

Vershynin, R. (2012).
Compressed Sensing, Theory and Applications, chapter 5, pages 210-268.
Cambridge University Press.
Available at
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf.
Washington, L. (1997).
Introduction to Cyclotomic Fields.
Graduate Texts in Mathematics. Springer New York.
Youness, L., Xiannan, L., and Kannan, S. (2013).
Conditional bounds for the least quadratic non-residue and related problems. http://arxiv.org/abs/1309.3595.


[^0]:    ${ }^{1}$ it only spans a super-lattice of finite index $h^{+}$which is conjectured to be small

[^1]:    ${ }^{2}$ One just need the index $\left[R^{\times}: C\right]=h^{+}(m)$ to be small

