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Elliptic Curve Discrete Logarithm Problem

Elliptic curve discrete logarithm problem (ECDLP):
Given P,Q ∈ E (Fq) to find an integer a, if it exists, such that
Q = aP.

Steven Galbraith The University of Auckland
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Elliptic Curve Discrete Logarithm Problem

Let E be an elliptic curve over a finite field Fq.
q = pn and p is prime.

Suppose P ∈ E (Fq) has prime order r > 2
√
q.

ECDLP:
Given P,Q ∈ E (Fq), both of order r , find a such that
Q = aP.

Multiple-ECDLP:
Given Q1, . . . ,QL ∈ E (Fq) to compute a1, . . . , aL such that
Qi = aiP for all 1 ≤ i ≤ L.

Well-known that Pollard rho solves ECDLP in
(1.25 + o(1))

√
r group operations.

One can solve multiple-ECDLP in O(
√
rL) group operations.

Steven Galbraith The University of Auckland
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Baby-step-giant-step algorithm

Steven Galbraith The University of Auckland
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Textbook Baby-step-giant-step (BSGS)

Let P have order r and Q = aP.
Let M = d

√
re. Then a = a0 + Ma1 with 0 ≤ a0, a1 < M.

Compute sorted list of “baby steps” (aP, a) for 0 ≤ a < M.
Let P ′ = MP. Compute “giant steps” Q − bP ′ for
b = 0, 1, 2, . . . until get a match.

The worst-case running time is 2
√
r group operations, and

average case is 1.5
√
r group operations.

Pollard showed the average-case running time can be reduced
to (4/3)

√
r group operations by “interleaving” the baby-steps

and giant-steps.

What more needs to be said?

Steven Galbraith The University of Auckland
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Best possible baby-step-giant-step?

What is the best possible running time for a generic algorithm
for the ECDLP?

Suppose the algorithm computes a list of k group elements
(depending on P, Q) such that any collision solves the
ECDLP.

There are
(k
2

)
≈ k2/2 possible pairs.

So the ECDLP is solved with probability roughly k2/2r .

The expected running time is therefore roughly

√
2r∑

k=1

(1−k2/(2r)) ≈
∫ √2r
0

(1−x2/2r)dx = 2
√
2r
3 ≈ 0.948

√
r .

Can we achieve this?

Steven Galbraith The University of Auckland
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Best possible baby-step-giant-step?

Chateauneuf, Ling and Stinson considered this problem in a
model where a computation uP + vQ for u, v ∈ Z is counted
as the basic operation.

Bernstein and Lange compute three lists: one of baby-steps
and two lists of giant-steps, walking in “opposite directions”.

A collision between any two lists solves the ECDLP.

After k group operations we have three lists of size k/3 and
success probability is approximately(

3

2

)
(k/3)2

r
=

k2

3r
.

Since k2/4 < k2/3 < k2/2 we expect the method to be better
than the basic two-list algorithm but not to match the “ideal”
lower bound.

Steven Galbraith The University of Auckland
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Baby-step-giant-step
(Joint work with Ping Wang and Fangguo Zhang)

Algorithm Average-case Worst-case

Textbook BSGS 1.5 2.0
Textbook BSGS for av. case 1.414 2.121
Interleaving BSGS 1.333 2.0
Bernstein-Lange grumpy giants 1.2? 2.9?

Pollard rho 1.253 ∞
BSGS with negation 1.0 1.5
Interleaving BSGS with negation 0.943 1.414
Grumpy giants with negation 0.9? ≤ 2.7?
Pollard rho using negation 0.886 ∞
Block method 0.38 0.57
Grumpy giants with blocks 0.36? ≤ 1?
Pollard rho with Montgomery trick 0.47 ∞

Steven Galbraith The University of Auckland
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Summation polynomials and the ECDLP

Igor Semaev
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Index calculus concept for ECDLP

Let P,Q ∈ E (Fqn) be an ECDLP instance.

Define a suitable factor base F ⊆ E (Fqn).

Generate random points R = aP + bQ and try to write

R = P1 + P2 + · · ·+ Pm

where P1, . . . ,Pm ∈ F .

Each successful point decomposition is called a relation.

When enough relations have been computed one can solve the
ECDLP using sparse linear algebra.

Left kernel version: Relations depend on ECDLP instance.

Right kernel version: Further DLP step required.

Steven Galbraith The University of Auckland
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Point decomposition

We wish to solve

R = P1 + P2 + · · ·+ Pm (∗)

where P1, . . . ,Pm ∈ F .

The right hand side is a rational function in the variables
xi , yi ∈ Fqn such that Pi = (xi , yi ) ∈ E (Fqn).

Hence, solving the equation (*) reduces to solving a system of
polynomial equations in 2m variables in Fqn .

It is natural to choose F to reduce the number of variables.

Gaudry and Diem used Weil restriction to provide a natural
definition for F that reduces the number of variables while
increasing the number of equations.

Steven Galbraith The University of Auckland
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Semaev’s summation polynomials

Semaev defines, for fixed elliptic curve E , polynomials
Summ+1(x1, . . . , xm+1) such that: If points
R,P1, . . . ,Pm ∈ E (Fqn) satisfy

R = P1 + P2 + · · ·+ Pm (∗)

then Summ+1(x(P1), x(P2), . . . , x(Pm), x(R)) = 0.

Converse true up to choice of signs.

Semaev explains how to compute these polynomials and
proves they are symmetric and have degree 2m−1 in each
variable.

Steven Galbraith The University of Auckland
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Factor base

Let V ⊆ Fqn be an Fq-vector space of dimension `.

Define F = {P ∈ E (Fqn) : x(P) ∈ V }.
Then #F ≈ q`.

We expect approximately #Fm/m! ≈ q`m/m! points of the
form P1 + · · ·+ Pm for Pi ∈ F .

Hence, a relation (*) exists with probability approximately
q`m/(m!qn).

Computing a relation using Semaev’s polynomials and Weil
restriction with respect to Fqn/Fq requires solving a system
with `m variables and n equations.

Steven Galbraith The University of Auckland
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Point decomposition revisited

The rational function

R = P1 + P2 + · · ·+ Pm (∗)

where Pi = (xi , yi ) ∈ E (Fqn) has 2m variables and the degree
is determined by the elliptic curve group law and the degree of
the defining equations y2i = f (xi ) of the elliptic curve.

Semaev’s approach is to minimize number of variables at the
expense of exponential degree.

Other choices of coordinates can lead to lower degree but
more variables.

Problem: Determine the optimal tradeoff of number of
variables versus degree for point decomposition algorithms?

The “splitting trick” can be viewed as a different tradeoff.

Steven Galbraith The University of Auckland
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Using symmetries

Since Summ+1(x1, . . . , xm, x(R)) is invariant under action by
symmetric group Sm, one can write it in terms of elementary
symmetric polynomials σj .

This leads to a system of equations of lower degree.

Faugère, Gaudry, Huot and Renault (J. Crypto., 2014) solved
system using Gröbner basis with respect to grevlex order (F4
or F5 algorithm) and then FGLM (Faugère, Gianni, Lazard
and Mora) change of ordering algorithm.

Three benefits:

Degree of polynomials is lower, so F4/F5 is more efficient;
Fewer solutions so FGLM algorithm faster;
Can reduce the factor base and speed-up the linear algebra.

Steven Galbraith The University of Auckland
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Using symmetries

Faugère, Gaudry, Huot and Renault also use invariants under
a larger group, coming from action of symmetric group and
points of small order.

This gives improvement to both point decomposition and
linear algebra.
(But don’t forget extra step of translating solutions back to
original coordinates.)

Faugère, Huot, Joux, Renault and Vitse (EUROCRYPT 2014)
discuss computing summation polynomials using invariant
variables.
They compute the 8-th summation polynomial.

Steven Galbraith The University of Auckland
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Larger values for n

Most work done for E (Fqn) where q is medium/large and n is
fairly small.

Then F is defined using the Fq-vector space V = Fq ⊆ Fqn ,
and Weil restriction is defined with respect to Fqn/Fq.
Important fact: x1, x2 ∈ Fq implies x1x2 ∈ Fq.
So if x1, . . . , xm ∈ V then σj(x1, . . . , xm) ∈ V .

We consider the case E (F2n) where n is prime.

Huang, Petit, Shinohara and Takagi (IWSEC 2013) study
large extension degrees.

Define factor base using F2-vector space V ⊂ F2n .
Important fact: x1, x2 ∈ V ⊂ F2n does not imply x1x2 ∈ V .

Steven Galbraith The University of Auckland
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Huang, Petit, Shinohara and Takagi

Fix polynomial basis {1, θ, θ2, . . . , θn−1} for F2n/F2.

Choose V to have basis {1, θ, . . . , θ`−1}.
Then if x1, x2 lie in V then x1x2 lies in space V (2) with basis
{1, θ, . . . , θ2(`−1)}.
Hence have σ1 ∈ V , σ2 ∈ V (2), σ3 ∈ V (3) and so on.

From some point onwards we have V (j) = F2n .

Biggest example in their paper: n = 53, m = 3, ` = 6,
computation takes around 30 seconds.

Steven Galbraith The University of Auckland
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Joint work with Shishay Gebregiyorgis

“Summation Polynomial Algorithms for Elliptic Curves in
Characteristic Two”, INDOCRYPT 2014.

New choice of invariant variables for binary Edwards models.

Factor base that “breaks symmetry” and hence significantly
increases the probability that relations exist.

Experiment with SAT solvers rather than Gröbner basis
methods for solving polynomial systems over F2.

Steven Galbraith The University of Auckland
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Binary Edwards model

Let d1, d2 ∈ F2n , d1 6= 0 and d2 6= d2
1 + d1.

Binary Edwards model of an elliptic curve is

E : d1(x + y) + d2(x2 + y2) = xy + xy(x + y) + x2y2.

Identity is (0, 0) and −(x , y) = (y , x).

T2 = (1, 1) has order 2 and if P = (x , y) ∈ E , then
P + T2 = (x + 1, y + 1).

Hence t(P) = x(P) + y(P) is invariant under P 7→ −P and
P 7→ P + T2.

We define the factor base using the (degree 4) function t:

F = {P ∈ E (F2n) : t(P) ∈ V }.

Steven Galbraith The University of Auckland
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Binary Edwards model

When d1 = d2 then T4 = (1, 0) is a point on E , and it has
order 4.

t(P + T4) = t(P) + 1.

If R = P1 + · · ·+ Pm then

R = (P1 + u1T4) + (P2 + u2T4) + · · ·+ (Pm + umT4)

where u1 + u2 + · · ·+ um ≡ 0 (mod 4).

Hence the summation polynomial is fixed under the action of
(Z/4Z)m−1 o Sm on the polynomial ring.

Note that t(P)(t(P) + 1) is invariant under addition by T4.

Hence the summation polynomial can be expressed in terms of
coordinates that are elementary symmetric polynomials in
ti (ti + 1).

Steven Galbraith The University of Auckland
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Binary Edwards model

By the same ideas as already discussed, can reduce point
decomposition to solving a system of polynomial equations
over F2.

Our choice of coordinates provides a small improvement over
previous work, but we are still limited to very small examples,
such as m = 3 or m = 4.

SAT solvers are an interesting alternative to Gröbner basis
methods and can be faster in some situations.

None of our computations are even close to beating Pollard
rho for E (F2n) where n is prime.

Steven Galbraith The University of Auckland
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Larger group actions?

Can we use larger groups than (Z/4Z)m−1 o Sm?

To do this we’d need either a totally new idea, or to have
addition by a torsion point which is “linear” with respect to
the coordinate system.

It seems unlikely that one can work with larger groups.

See Kohel’s paper at INDOCRYPT 2012.

Related question: Can one exploit large symmetry groups
when using the splitting/unrolling trick?

Steven Galbraith The University of Auckland
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Breaking symmetry

As noted, the symmetric group Sm acts on R = P1 + · · ·+ Pm

and hence acts on Summ+1(x(R), x1, . . . , xm).

Good news: We can write this polynomial in terms of
elementary symmetric variables and this lowers the degree.

Bad news: Probability of a relation has 1/m! term.

Counterintuitive: we can evaluate the symmetric variables at
combinations of non-symmetric variables.

So get benefit of lower degree polynomial equations without
the additional m! factor in the running time.

Steven Galbraith The University of Auckland
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Breaking symmetry

Precisely: Let V ⊆ F2n be a vector space of dimension `.

Instead of one set F = {P ∈ E (F2n) : x(P) ∈ V } we define m
sets Fi = {P ∈ E (F2n) : x(P) ∈ V + vi} where vi ∈ F2n are
elements of a certain form so that the sets V + vi are all
distinct.

Suppose V has basis {1, θ, . . . , θ`−1}.
Let v1 = 0, v1 = θ`, v2 = θ`+1, v3 = θ` + θ`+1 etc.

Then V + vi are distinct and yet only need a couple more
variables to represent the combination.

Hence, we have σ1 ∈ V ′ spanned by {1, θ, . . . , θ`+1}, σ2 ∈ V ′′

spanned by {1, θ, . . . , θ2(`+1)} etc.

Care needed to pull solutions in the σj back to solutions in xj .

Diem and Matsuo have also used different factor bases Fi .

Steven Galbraith The University of Auckland
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Using Frobenius?

Is there any way to speed up index calculus algorithms based
on summation polynomials by using Galois action e.g., when
E/F2 but ECDLP is in E (F2n)?

Let π : E → E be the 2-power Frobenius map.

If R = P1 + · · ·+ Pm then π(R) = π(P1) + · · ·+ π(Pm).

Alternatively,

Summ+1(x(R), x1, . . . , xm) = 0

⇔ Summ+1(π(x(R)), π(x1), . . . , π(xm)) = 0.

What is this good for?

Gorla and Massierer represent ECDLP instance using the trace
zero variety and perform index calculus using summation
polynomials directly on the trace zero variety.

Steven Galbraith The University of Auckland
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Ideas from finite field DLP

Recently there was tremendous progress on the DLP in finite
fields of small characteristic.

Key equation:

xq − x =
∏
α∈Fq

(x − α) (1)

in Fq[x ].
Two more key ideas:

The automorphisms of the projective line are given by Möbius
transformations.
So substitute (ax + b)/(cx + d) for a, b, c , d ∈ Fpd into this
equation.
Can represent Frobenius xq as a low-degree rational function
u(x)/v(x).

Can we find an elliptic curve version of this?

Steven Galbraith The University of Auckland
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Ideas from finite field DLP

One natural approach is to use the double cover E → P1

given by (x , y) 7→ x .

Key equation can be interpreted as

div(xq − x) =
∑

P∈E(Fq),x(P)∈Fq

(P) − 2q(∞).

But this is un-interesting from a group-theoretic viewpoint, as
the right hand side just represents the fact that
x(P) = x(−P) and P + (−P) =∞.

Also:
Aut(E ) very small compared with Aut(P1).
No idea how to do the individual DLP descent stage.

Other ideas?

Steven Galbraith The University of Auckland
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Other Ideas

Palash Sarkar and Shashank Singh, “A Simple Method for
Obtaining Relations Among Factor Basis Elements for Special
Hyperelliptic Curves”, eprint 2015/179.

Obtains some relations easily by intersecting lines with the
curve equation.

Section 4.2 of the paper gives an example for ECDLP over
Fp7 where the method finds triples P1,P2,P3 of points in the
factor base (x(P) ∈ Fp) such that P1 + P2 + P3 =∞.
Note that y(P1) = y(P2) = y(P3).

The paper claims only about p/12 such relations can be
found.

Steven Galbraith The University of Auckland
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Conclusion

There are still open questions about the baby-step-giant-step
algorithm.

Symmetries are useful when computing with summation
polynomials, but further progress seems limited.

SAT solvers are an interesting alternative to Gröbner basis
methods and can be faster in some situations.

ECDLP in E (F2n) for prime n > 160 seems to be completely
immune to point decomposition attacks, even just trying to
get a cube-root algorithm (case m = 4).

Steven Galbraith The University of Auckland
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Thank You

See you at Asiacrypt!

Steven Galbraith The University of Auckland
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