
Some simple ECC tricks
Mike Hamburg

Rambus Cryptography Research

Optimize for
security

simplicity
speed

in that order!

First corollary: use Edwards

Simpler and faster than short Weierstrass

Complete arithmetic – almost always worth it

Easily makes up for the cofactor of 4 or 8

This talk: simple tricks
Example library APIs

Scalar multiplication:
Signed binary scalars
Fixed-base precomputed combs

Arithmetic:
Inverse square root trick

Algorithmic:
Encoding to an elliptic curve with Elligator 2
“Decaf”: use quotient groups instead of subgroups

Time permitting:
STROBE lite accumulator
Twist rejection
The 4-isogeny strategy

Library API

Special-purpose library
Support ECDH, Schnorr signatures

• Scalar*Point (ECDH/keygen/sign)

• Scalar*Scalar + Scalar (Schnorr sign)

• Scalar*Point - Scalar2*Base (Sig verify)

• Optional: Scalar*Base (fast keygen/sign)

Operate always on serialized elements.

General-purpose library
Scalar Point

Ser/deser Maybe √
Add/sub √ √

Mul by scalar √ √
Eq test √ √

Copy/destroy √ √
Invert Maybe

Elligator Maybe

Maybe also: s1P1+s2P2 protected;
sG protected; s1P1+s2G unprotected

General-purpose library
Scalar Point

Ser/deser Maybe √
Add/sub √ √

Mul by scalar √ √
Eq test √ √

Copy/destroy √ √
Invert Maybe

Elligator Maybe

Maybe also: s1P1+s2P2 protected;
sG protected; s1P1+s2G unprotected

What operations might be bottlenecks?

Only as
called from
scalarmul

Don’t need to optimize anything else!
Cor: no need for eg affine point formats

Questions about API?

Signed binary scalars
Good for simplicity, security and speed!

[GJMRV-2011-CoZ]
[H-2012-FastCompact]

What this trick does

Compute s,P —> sP

Completely regular double/add algorithm

Doesn’t skip 0 bits, doesn’t leak bits of scalar

Take advantage of negation map P —> –P

Within 1% performance of fastest algo available

Idea

Take advantage of negation map

Use digits {-1,1} instead of {0,1}

Downside: All numbers are odd!

Not a problem if group order q is odd

Binary —> signed binary
x = 100110

sbin(x) = 1

¯

1

¯

111

¯

1

want x s.t. sbin(x) = some scalar s

sbin(x)� 2x =

¯

1

¯

1

¯

1

¯

1

¯

1

¯

1

= �(2

n � 1)

) x =

s+ 2

n � 1

2

Signed binary ladder
Variable base scalarmul: s, P —> sP

Recode s:

Q = 0
For i = n-1 down to 0:

if si = 1: Q := 2Q + P
else: Q := 2Q – P

s = . . . 11̄1̄1̄1̄1 . . .

Signed binary fixed window
Variable base scalarmul: s, P —> sP

Precompute:
Recode s:

Q = 0
For i = n-w down to 0:

For j = 1 to w: Q := 2Q
Q := Q ± table[s[i..i+w]]

(11̄1̄, 11̄1, 111̄, 111)P = (1, 3, 5, 7)P

s = . . . 11̄1̄ 1̄1̄1 . . .

Questions about
signed binary?

Comb algorithms
Fast, secure, relatively simple fixed-base scalarmul

[LimLee-1994-ExpPrecomp]
[HMV-2004-GuideECC]

[HPB-2004-Combs]
[FZZL-2006-MsbComb]
[H-2012-FastCompact]

and several others

What this trick does
Fixed window scalar mul computes s,P —> sP

Comb algorithm computes s —> sG

G known in advance

Performance: about 3x as fast as fixed window

State of the art: fastest fixed-base algo available,
even with endomorphisms

Comb algorithm
Fixed-base secret scalarmul: s —> sG

Have already precomputed multiples of G

With fixed window table

Eg:

Overall 2w-1 points, n/w-1 adds, n-w doubles

(111̄ 11̄1 1̄1̄1̄) ·G
= ((111̄) ·G · 23 + (11̄1) ·G) · 23 � (111) ·G

Comb algorithm
Elements of table have space between digits

Eg:

Overall 2w-1 points, n/w-1 adds, n/w-1 doubles

(111̄11̄11̄1̄1̄) ·G
= 1001001̄ · 22 ·G
+ 1001̄001̄ · 2 ·G
� 1001̄001 ·G

Scaling the table size

Decreasing returns: 2w-1 points for 1/w work

To avoid cache timing, have to scan entire table

Can’t easily reduce #adds in regular algorithm

each add/sub covers at most 1+log(#points) bits

Reduce #doubles?

Multiple combs
Use more than one table to reduce the number of doubles

Eg 2 tables, 3 bit-combs:

Overall 2w-1t points, n/w-1 adds, n/tw-1 doubles

Use a simple script to find the optimal tradeoff point

(111̄11̄11̄1̄1̄ 11̄11̄11̄11̄1̄) ·G
= (1001001̄ · 29G+ 1001̄001 ·G) · 22

+ (1001̄001̄ · 29G� 1001̄001 ·G) · 2
+ (�1001̄001 · 29G+ 1001̄001̄ ·G)

Comb pseudocode
Given s, compute sG

Assume we have t combs with w teeth each spaced d apart

Recode s in signed binary

Q = 0
For i = d – 1 down to 0:

Q = 2Q
For j = 0 to t – 1:

index =
If index > 0: Q += comb[j][index]
Else: Q -= comb[j][-index]

k<sX

k=0

2ksi+d(wj+k)

Questions about
combs?

The inverse square
root trick

Adds speed at a small cost in complexity
[BDLSY-2011-EdDSA]
[H-2012-FastCompact]

What this trick does
Compute twice as fast as the obvious way

optionally also compute 1/z
have to make sure that inputs are nonzero

Eg. Edwards decompression:

Simplicity: unify division and sqrt at cost of ~1%

p
x/y

x = ±

s
1� y

2

1� dy

2

Square root of a ratio
If y 6= 0

Let s =
1

p
xy

Check (sx)2y = x

Then sx =

r
x

y

NB: this works for x = 0 if inverse sqrt algorithm returns 0

Inverse from inv sqrt

Need to mind the ±

Simple enough:

Reduce code size by having only one routine

1

x

= x ·
✓

1

±
p
x

2

◆2

Batch inverse and sqrt
If x, y, z 6= 0

Let s =
1p
xyz

2

Check s

2
xyz

2 = 1

Then s

2
xyz =

1

z

And sxz =

r
x

y

How to compute

Costs about as much as an inversion with FLT

1/
p
x

If p ⌘ 3 (mod 4) :

1p
x

= x

p�3
4

If p ⌘ 5 (mod 8) :

1p
x

= x

p�5
8

or

1p
x

= x

p�5
8 ·

p
�1

Questions about
invsqrt?

Encoding to an elliptic
curve with Elligator 2

A simple explanation
[SvdW-2006-Construction]

[BHKL-2013-Elligator]

What this trick does

Given an input r, produce a point (x,y) on the curve

The map is 2:1 from the field, not quite uniform

Apply twice and add is uniform

Cost: one inverse/square root operation + ~20M

Encoding to EC is useful
Steganography

Password-authenticated key exchange:

EKE, SPEKE, Dragonfly, SPAKE2-EE

Tight signatures [GJKW-2007-Tight]

Short signatures [BonehBoyen-2004-Short]

Oblivious function evaluation [JareckiLiu-2009-OFE]

Elligator 2
Requires a point of order 2, char(F) > 3

Generically:

Obvious solution: set x = r ; while no y, x := x + 1
No good: variable time and not uniform

Idea: Given r, choose (x1,x2)
Ensure that ratio of their y2 is not square
—> one will be on the curve and the other not

Cy

2 = x(x2 +Ax+B)

Elligator 2
We want to be nonsquare

It suffices to set

and also where u is a fixed nonsquare

Solving:

y

2
1

y

2
2

=
x1

x2
· x

2
1 +Ax1 +B

x

2
2 +Ax2 +B

x1

x2
= ur

2

x1 =
�Aur

2

1 + ur

2
, x2 =

�A

1 + ur

2

x

2
1 +Ax1 +B = x

2
2 +Ax2 +B

, x1 + x2 = �A

Computing Elligator 2

Set u as a 2nth root of unity (eg, -1 or i)

Square root algo gives you either

If it’s the latter, multiply by r

Adjust low bit of y : even if , odd if

y

2 =
x(x2 +Ax+B)

C

=
A

C

· A
2
ur

2 �B(1 + ur

2)2

(1 + ur

2)3
·
⇢

ur

2

1

p
ratio or

p
u · ratio

p
ratio r ·

p
u · ratio

Upshot: takes
about 1 sqrt

operation

Questions about
Elligator 2?

“Decaf” cofactor
elimination

[H-2015-Decaf]

For protocols that require prime-order groups

What this trick does

Make a group of order q from a curve of order 4q

Cost: almost free (i.e. ~20% faster than subgroup)

~10 lines of code

Motivation

Some protocols are easier with prime-order groups
Can usually be adapted with care
Most commonly: multiply by cofactor h

Previous work: use a subgroup of 𝔾

Effective, but subgroup check is expensive

Decaf: use a quotient group

Quotient: P1 = P2 iff P1 - P2 ∈ 𝔾[h]

Let E be an Edwards curve with
cofactor h = 4

𝔾[4] is 90˚ rotations

P1 = P2 iff x1y2 = x2y1 or x1x2 = �y1y2

Decaf: serialize

Always write to wire as
distinguished point

“First quadrant”
y positive, x nonnegative
i.e. x and y even, y ≠ 0

Compress: just send y

Questions about
decaf?

That’s all!
Example library APIs

Scalar multiplication:
Signed binary scalars
Fixed-base precomputed combs

Arithmetic:
Inverse square root trick

Algorithmic:
Encoding to an elliptic curve with Elligator 2
“Decaf” cofactor elimination

STROBE lite accumulator

Questions?

References
[AhmadiGranger-2011-IsogenyClasses] Ahmadi and Granger, On isogeny
classes of Edwards curves over finite fields

http://eprint.iacr.org/2011/135

[BDPvAvK-2014-Keyak-v1] Bertoni et al., CAESAR submission: Keyak v1
http://competitions.cr.yp.to/round1/keyakv1.pdf

[BDLSY-2011-EdDSA] Bernstein et al., High-speed high-security signatures.
http://ed25519.cr.yp.to/ed25519-20110926.pdf, JCE 2012

[BHKL-2013-Elligator] Bernstein et al., Elligator: Elliptic-curve points
indistinguishable from uniform random strings.

ACM-CCS 2013

http://eprint.iacr.org/2011/135
http://ed25519.cr.yp.to/ed25519-20110926.pdf

References
[BonehBoyen-2004-Short] Boneh and Boyen, Short signatures without random
oracles.

EUROCRYPT 2004

[FZZL-2006-MsbComb] Feng, Zhu, Zhao, Li, Signed MSB-set comb method for
elliptic curve point multiplication.

Information Security Practice and Experience 2006

[GJKW-2007-Tight] Goh et al., Efficient Signature Schemes with Tight
Reductions to the Diffie-Hellman Problems

Journal of Cryptology, 2007

[GJMRV-2011-CoZ] Goundar, Joye, Miyagi, Rivain, Venelli, Scalar Multiplication
on Weierstraß Elliptic Curves from Co-Z Arithmetic

Journal of Cryptographic Engineering, 2011

References

[H-2014-Isogenies] Hamburg, Twisting Edwards curves with isogenies
https://eprint.iacr.org/2014/027

[H-2015-Decaf] Hamburg, Decaf: Eliminating cofactors through point
compression

https://eprint.iacr.org/2015/673, CRYPTO 2015

[H-WIP-StrobeLite] Hamburg, STROBE lite sponge framework,
https://github.com/bitwiseshiftleft/strobelite

[H-2012-FastCompact] Hamburg, Fast and compact elliptic-curve cryptography.
http://eprint.iacr.org/2012/309

https://eprint.iacr.org/2014/027
https://eprint.iacr.org/2015/673
https://github.com/bitwiseshiftleft/strobelite
http://eprint.iacr.org/2012/309

References
[HMV-2004-GuideECC] Hankerson, Vanstone, Menezes, Guide to Elliptic Curve
Cryptography.

Springer-Verlag, 2004

[HPB-2004-Combs] Hedabou, Pinel, Bénéteau, A comb method to render ECC
resistant against Side Channel Attacks.

https://eprint.iacr.org/2004/342

[JareckiLiu-2009-OFE] Jarecki and Liu, Efficient oblivious pseudorandom
function with applications to adaptive ot and secure computation of set
intersection.

TCC 2009

[LimLee-1994-ExpPrecomp] Lim and Lee, More flexible exponentiation with
precomputation.

CRYPTO 1994

https://eprint.iacr.org/2004/342

References

[Saarinen-2013-Blinker] Saarinen, Beyond Modes: Building a Secure Record
Protocol from a Cryptographic Sponge Permutation.

CT-RSA 2014; https://eprint.iacr.org/2013/772

[SvdW-2006-Construction] Shallue and van de Woestijne, Construction of
rational points on elliptic curves over finite fields.

ANTS 2006

https://eprint.iacr.org/2013/772

STROBE lite
accumulator

Simple and secure but not fast or standard
[Saarinen-2013-Blinker]

[BDPvAvK-2014-Keyak-v1]
[H-WIP-StrobeLite]

What this trick does

Replace all your symmetric crypto with sponges

Good for protocols and noninteractive crypto

Somewhat slow, but very very compact (<2kB code)

The rest of the protocol
ECC for asymmetric. What about symmetric?

(session key, validators) = hash of handshake msgs?

Parseable, domain separated

Sign hash of handshake msgs?

Encrypted handshake msgs?

Cipher modes? Framing?

STROBE lite
One sponge construction for everything!

Replace hash and cipher

Variant of Markku-Juhani O. Saarinen’s BLINKER

Choose your favorite sponge
KeccakF[800] for STROBE lite
< 2kB code (thumb2 C)
<(104,128) or (32,240) bytes (memory,stack)
OK speed: ~200cpb (encrypt 256B) on Cortex-M3

STROBE lite operations
Break down protocol into (tag, operation, data) tuples

Absorb: inject new material into cipher, eg key
Plaintext: absorb and also send in the clear

Squeeze: extract pseudorandom data

Duplex: encrypt by xoring with squeezed data

Reverse duplex: decrypt or forget

STROBE lite duplex mode

F

F

F

F

capacity
256-2 b

rate
544+2 bControl

word
Prev
data k1

Data k2

More
data kNext

control

frame

ct

ct

tag, op, …

Example: encryption
SL 1.0Encryption

KEY
k

NONCE
n

ENCR
plaintext

MAC
mac

ciphertext

Example: toy protocol
SL 1.0Toy proto

Hello
yo

DH
xG

Hello
sup?

DH
yG

KEY
xyG

CERT
bleh
sigE
kG

sigCh
c

sigR
k+cz

Questions about
STROBE lite?

Montgomery ladder
with twist rejection

Can improve security at a small
cost to simplicity and speed

[H-2012-FastCompact]
with corrections

What this trick does

Reject twisted points in the Montgomery ladder

(Optionally, but as written) reject points of small order

Cost: ~0.1% performance, < 10 lines of code

Motivation
Curve25519’s twist is secure for ECDH

Maybe your curve’s twist is terrible?

Maybe your protocol doesn’t tolerate twist?

Maybe you want to mimic an Edwards impl?

For whatever reason, let’s reject twist points.

And small torsion while we’re at it…

The doubling formula

Even point’s x is always square if and only if on curve!

x2 =
(x2 � 1)2

4x(x2 +Ax+ 1)
=

✓
x

2 � 1

2y

◆2

Rejecting twist points
Assumption: clearing a cofactor divisible by 2

Instead of finishing with

Compute

Check

Finally, . Extra cost: ≈+2 field multiplies

For short Weierstrass curves: use invsqrt trick instead

X/Z = XZp�2

s :=
p

1/XZ = (XZ)(p�3)/4

s2XZ
?
= 1

X/Z = s2XX

See earlier slide for
p ≣1 mod 4

Questions about twist
rejection?

The 4-isogeny strategy:
Twisted vs untwisted

Edwards curves
Improves speed at a small cost to complexity

[AhmadiGranger-2011-IsogenyClasses]
[H-2014-Isogenies]

What this trick does

Translate operation from untwisted Edwards curve to
twisted

Avoid problems with points at ∞ on twisted curves

Gain ~10% speed improvement for modest
complexity

Within 2% performance of fastest algo available

Twisted vs untwisted
Twisted Edwards a = –1:

Slightly simpler

About 10% faster than a = 1 (save ~1M)

When p = 1 mod 4, models are isomorphic

When p = 3 mod 4, twisted curves are incomplete

… for operations involving points at ∞

The 4-isogeny strategy

Twisted Edwards
�ax

2 + dy

2 = 1 + (d� a)x2
y

2

(4)

Edwards
ax

2 + y

2 = 1 + dx

2
y

2

�a(x, y) =

✓
2xy

y

2 � ax

2
,

y

2 + ax

2

2� y

2 � ax

2

◆

The 4-isogeny strategy
Compute most things on Edwards curve

Complete addition formulas!

Compute scalarmuls in twisted Edwards

If cofactor = 4, addition laws complete on Im 𝜙

Instead of sP, compute

This clears the cofactor

�̄a

⇣s
4
· �a(P)

⌘

Questions about
isogeny strategy?

