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Optimize for 
security 

simplicity 
speed 

in that order!



First corollary: use Edwards

Simpler and faster than short Weierstrass 

Complete arithmetic – almost always worth it 

Easily makes up for the cofactor of 4 or 8



This talk: simple tricks
Example library APIs 

Scalar multiplication: 
Signed binary scalars 
Fixed-base precomputed combs 

Arithmetic: 
Inverse square root trick 

Algorithmic: 
Encoding to an elliptic curve with Elligator 2 
“Decaf”: use quotient groups instead of subgroups 

Time permitting:  
STROBE lite accumulator 
Twist rejection 
The 4-isogeny strategy



Library API



Special-purpose library
Support ECDH, Schnorr signatures 

• Scalar*Point (ECDH/keygen/sign)  

• Scalar*Scalar + Scalar (Schnorr sign) 

• Scalar*Point - Scalar2*Base (Sig verify) 

• Optional: Scalar*Base (fast keygen/sign) 

Operate always on serialized elements.



General-purpose library
Scalar Point

Ser/deser Maybe √
Add/sub √ √

Mul by scalar √ √
Eq test √ √

Copy/destroy √ √
Invert Maybe

Elligator Maybe

Maybe also: s1P1+s2P2 protected; 
sG protected; s1P1+s2G unprotected



General-purpose library
Scalar Point

Ser/deser Maybe √
Add/sub √ √

Mul by scalar √ √
Eq test √ √

Copy/destroy √ √
Invert Maybe

Elligator Maybe

Maybe also: s1P1+s2P2 protected; 
sG protected; s1P1+s2G unprotected

What operations might be bottlenecks?

Only as 
called from 
scalarmul

Don’t need to optimize anything else!
Cor: no need for eg affine point formats



Questions about API?



Signed binary scalars
Good for simplicity, security and speed!

[GJMRV-2011-CoZ]  
[H-2012-FastCompact]



What this trick does

Compute s,P —> sP 

Completely regular double/add algorithm 

Doesn’t skip 0 bits, doesn’t leak bits of scalar 

Take advantage of negation map P —> –P 

Within 1% performance of fastest algo available



Idea

Take advantage of negation map 

Use digits {-1,1} instead of {0,1} 

Downside: All numbers are odd! 

Not a problem if group order q is odd



Binary —> signed binary
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Signed binary ladder
Variable base scalarmul: s, P —> sP 

Recode s: 

Q = 0 
For i = n-1 down to 0: 

if si = 1: Q := 2Q + P 
else: Q := 2Q – P

s = . . . 11̄1̄1̄1̄1 . . .



Signed binary fixed window
Variable base scalarmul: s, P —> sP 

Precompute: 
Recode s: 

Q = 0 
For i = n-w down to 0: 

For j = 1 to w: Q := 2Q 
Q := Q ± table[s[i..i+w]]

(11̄1̄, 11̄1, 111̄, 111)P = (1, 3, 5, 7)P

s = . . . 11̄1̄ 1̄1̄1 . . .



Questions about 
signed binary?



Comb algorithms
Fast, secure, relatively simple fixed-base scalarmul

[LimLee-1994-ExpPrecomp] 
[HMV-2004-GuideECC] 

[HPB-2004-Combs] 
[FZZL-2006-MsbComb] 
[H-2012-FastCompact] 

and several others



What this trick does
Fixed window scalar mul computes s,P —> sP 

Comb algorithm computes s —> sG 

G known in advance 

Performance: about 3x as fast as fixed window 

State of the art: fastest fixed-base algo available, 
even with endomorphisms



Comb algorithm
Fixed-base secret scalarmul: s —> sG 

Have already precomputed multiples of G 

With fixed window table 

Eg: 

Overall 2w-1 points, n/w-1 adds, n-w doubles

(111̄ 11̄1 1̄1̄1̄) ·G
= ((111̄) ·G · 23 + (11̄1) ·G) · 23 � (111) ·G



Comb algorithm
Elements of table have space between digits 

Eg: 

Overall 2w-1 points, n/w-1 adds, n/w-1 doubles

(111̄11̄11̄1̄1̄) ·G
= 1001001̄ · 22 ·G
+ 1001̄001̄ · 2 ·G
� 1001̄001 ·G



Scaling the table size

Decreasing returns: 2w-1 points for 1/w work 

To avoid cache timing, have to scan entire table 

Can’t easily reduce #adds in regular algorithm 

each add/sub covers at most 1+log(#points) bits 

Reduce #doubles?



Multiple combs
Use more than one table to reduce the number of doubles 

Eg 2 tables, 3 bit-combs: 

Overall 2w-1t  points, n/w-1 adds, n/tw-1 doubles 

Use a simple script to find the optimal tradeoff point

(111̄11̄11̄1̄1̄ 11̄11̄11̄11̄1̄) ·G
= (1001001̄ · 29G+ 1001̄001 ·G) · 22

+ ( 1001̄001̄ · 29G� 1001̄001 ·G) · 2
+ (�1001̄001 · 29G+ 1001̄001̄ ·G)



Comb pseudocode
Given s, compute sG 

Assume we have t combs with w teeth each spaced d apart 

Recode s in signed binary 

Q = 0 
For i = d – 1 down to 0: 

Q = 2Q 
For j = 0 to t – 1: 

index =  
If index > 0: Q += comb[j][index] 
Else: Q -= comb[j][-index]

k<sX

k=0

2ksi+d(wj+k)



Questions about 
combs?



The inverse square 
root trick

Adds speed at a small cost in complexity
[BDLSY-2011-EdDSA] 
[H-2012-FastCompact]



What this trick does
Compute            twice as fast as the obvious way 

optionally also compute 1/z 
have to make sure that inputs are nonzero 

Eg. Edwards decompression:  

Simplicity: unify division and sqrt at cost of ~1%

p
x/y

x = ±

s
1� y

2

1� dy

2



Square root of a ratio
If y 6= 0

Let s =
1

p
xy

Check (sx)2y = x

Then sx =

r
x

y

NB: this works for x = 0 if inverse sqrt algorithm returns 0



Inverse from inv sqrt

Need to mind the ± 

Simple enough: 

Reduce code size by having only one routine
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Batch inverse and sqrt
If x, y, z 6= 0

Let s =
1p
xyz

2
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2
xyz

2 = 1

Then s

2
xyz =

1

z

And sxz =

r
x

y



How to compute      

Costs about as much as an inversion with FLT

1/
p
x

If p ⌘ 3 (mod 4) :

1p
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If p ⌘ 5 (mod 8) :
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or
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x
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p�5
8 ·

p
�1



Questions about 
invsqrt?



Encoding to an elliptic 
curve with Elligator 2

A simple explanation
[SvdW-2006-Construction] 

[BHKL-2013-Elligator]



What this trick does

Given an input r, produce a point (x,y) on the curve 

The map is 2:1 from the field, not quite uniform 

Apply twice and add is uniform 

Cost: one inverse/square root operation + ~20M



Encoding to EC is useful
Steganography 

Password-authenticated key exchange: 

EKE, SPEKE, Dragonfly, SPAKE2-EE 

Tight signatures [GJKW-2007-Tight] 

Short signatures [BonehBoyen-2004-Short] 

Oblivious function evaluation [JareckiLiu-2009-OFE]



Elligator 2
Requires a point of order 2, char(F) > 3 

Generically: 

Obvious solution: set x = r ; while no y, x := x + 1 
No good: variable time and not uniform 

Idea: Given r, choose (x1,x2) 
Ensure that ratio of their y2 is not square 
—> one will be on the curve and the other not

Cy

2 = x(x2 +Ax+B)



Elligator 2
We want                                                 to be nonsquare 

It suffices to set 

and also                     where u is a fixed nonsquare 

Solving:
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Computing Elligator 2

Set u as a 2nth root of unity (eg, -1 or i ) 

Square root algo gives you either 

If it’s the latter, multiply by r 

Adjust low bit of y : even if            , odd if

y

2 =
x(x2 +Ax+B)

C

=
A

C

· A
2
ur

2 �B(1 + ur

2)2

(1 + ur

2)3
·
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ur

2

1

p
ratio or

p
u · ratio

p
ratio r ·

p
u · ratio

Upshot: takes 
about 1 sqrt 

operation



Questions about 
Elligator 2?



“Decaf” cofactor 
elimination

[H-2015-Decaf]

For protocols that require prime-order groups



What this trick does

Make a group of order q from a curve of order 4q 

Cost: almost free (i.e. ~20% faster than subgroup) 

~10 lines of code



Motivation

Some protocols are easier with prime-order groups 
Can usually be adapted with care 
Most commonly: multiply by cofactor h 

Previous work: use a subgroup of 𝔾 

Effective, but subgroup check is expensive



Decaf: use a quotient group

Quotient: P1 = P2 iff P1 - P2 ∈ 𝔾[h] 

Let E be an Edwards curve with 
cofactor h = 4 

𝔾[4] is 90˚ rotations 

P1 = P2 iff x1y2 = x2y1 or x1x2 = �y1y2



Decaf: serialize

Always write to wire as 
distinguished point 

“First quadrant” 
y positive, x nonnegative 
i.e. x and y even, y ≠ 0 

Compress: just send y



Questions about 
decaf?



That’s all!
Example library APIs 

Scalar multiplication: 
Signed binary scalars 
Fixed-base precomputed combs 

Arithmetic: 
Inverse square root trick 

Algorithmic: 
Encoding to an elliptic curve with Elligator 2 
“Decaf” cofactor elimination 

STROBE lite accumulator

Questions?
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STROBE lite 
accumulator

Simple and secure but not fast or standard
[Saarinen-2013-Blinker] 

[BDPvAvK-2014-Keyak-v1] 
[H-WIP-StrobeLite]



What this trick does

Replace all your symmetric crypto with sponges 

Good for protocols and noninteractive crypto 

Somewhat slow, but very very compact (<2kB code)



The rest of the protocol
ECC for asymmetric.  What about symmetric? 

(session key, validators) = hash of handshake msgs? 

Parseable, domain separated 

Sign hash of handshake msgs? 

Encrypted handshake msgs? 

Cipher modes? Framing?



STROBE lite
One sponge construction for everything! 

Replace hash and cipher 

Variant of Markku-Juhani O. Saarinen’s BLINKER 

Choose your favorite sponge 
KeccakF[800] for STROBE lite 
< 2kB code (thumb2 C) 
<(104,128) or (32,240) bytes (memory,stack) 
OK speed: ~200cpb (encrypt 256B) on Cortex-M3



STROBE lite operations
Break down protocol into (tag, operation, data) tuples 

Absorb: inject new material into cipher, eg key 
Plaintext: absorb and also send in the clear 

Squeeze: extract pseudorandom data 

Duplex: encrypt by xoring with squeezed data 

Reverse duplex: decrypt or forget



STROBE lite duplex mode

F

F

F

F

capacity 
256-2 b

rate 
544+2 bControl 

word
Prev 
data k1

Data k2

More 
data kNext 

control

frame

ct

ct

tag, op, …



Example: encryption
SL 1.0Encryption

KEY
k

NONCE
n

ENCR
plaintext

MAC
mac

ciphertext



Example: toy protocol
SL 1.0Toy proto

Hello
yo

DH
xG

Hello
sup?

DH
yG

KEY
xyG

CERT
bleh
sigE
kG

sigCh
c

sigR
k+cz



Questions about 
STROBE lite?



Montgomery ladder 
with twist rejection

Can improve security at a small 
cost to simplicity and speed

[H-2012-FastCompact] 
with corrections



What this trick does

Reject twisted points in the Montgomery ladder 

(Optionally, but as written) reject points of small order 

Cost: ~0.1% performance, < 10 lines of code



Motivation
Curve25519’s twist is secure for ECDH 

Maybe your curve’s twist is terrible? 

Maybe your protocol doesn’t tolerate twist? 

Maybe you want to mimic an Edwards impl? 

For whatever reason, let’s reject twist points. 

And small torsion while we’re at it…



The doubling formula

Even point’s x is always square if and only if on curve! 

x2 =
(x2 � 1)2

4x(x2 +Ax+ 1)
=

✓
x

2 � 1

2y

◆2



Rejecting twist points
Assumption: clearing a cofactor divisible by 2 

Instead of finishing with 

Compute 

Check 

Finally,                       .   Extra cost: ≈+2 field multiplies 

For short Weierstrass curves: use invsqrt trick instead

X/Z = XZp�2

s :=
p

1/XZ = (XZ)(p�3)/4

s2XZ
?
= 1

X/Z = s2XX

See earlier slide for 
p ≣1 mod 4



Questions about twist 
rejection?



The 4-isogeny strategy: 
Twisted vs untwisted 

Edwards curves
Improves speed at a small cost to complexity

[AhmadiGranger-2011-IsogenyClasses] 
[H-2014-Isogenies]



What this trick does

Translate operation from untwisted Edwards curve to 
twisted 

Avoid problems with points at ∞ on twisted curves 

Gain ~10% speed improvement for modest 
complexity 

Within 2% performance of fastest algo available



Twisted vs untwisted
Twisted Edwards a = –1: 

Slightly simpler 

About 10% faster than a = 1 (save ~1M) 

When p = 1 mod 4, models are isomorphic 

When p = 3 mod 4, twisted curves are incomplete 

… for operations involving points at ∞



The 4-isogeny strategy

Twisted Edwards
�ax

2 + dy

2 = 1 + (d� a)x2
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2
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ax
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The 4-isogeny strategy
Compute most things on Edwards curve 

Complete addition formulas! 

Compute scalarmuls in twisted Edwards 

If cofactor = 4, addition laws complete on Im 𝜙 

Instead of sP, compute  

This clears the cofactor

�̄a

⇣s
4
· �a(P )

⌘



Questions about 
isogeny strategy?


