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Articles

Most content of this talk comes from:

• Notes on summation polynomials (Michiel Kosters, Sze Ling
Yeo);

• Last fall degree, HFE, and Weil descent attacks on ECDLP
(Ming-Deh A. Huang, Michiel Kosters, Sze Ling Yeo);

• On the last fall degree of zero-dimensional Weil descent
systems (Ming-Deh A. Huang, Michiel Kosters, Yun Yang, Sze
Ling Yeo).
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ECDLP

Let k be a finite field. Consider an elliptic curve over k defined by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

The set

E(k) = {(x, y) ∈ k2 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} t {∞}

has a natural addition law + which makes E(k) into a finite abelian
group with identity element ∞.

The group E(k) is used in elliptic curve cryptography (for example
elliptic curve Diffie-Hellman) – ECC 2015 is devoted to this
completely! One of the main assumptions is that it is hard to solve
the following problem.

Elliptic curve discrete logarithm problem (ECDLP): Let P ∈ E(k)
and Q ∈ 〈P 〉. Find an integer c with Q = cP .
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Methods for solving ECDLP

Set N = |〈P 〉|.

Different methods:

• Generic algorithms: exhaustive search (O(N)), baby-step
giant-step (O(

√
N)), Pollard’s rho (O(

√
N)), . . . ;

• Special cases: supersingular curves using pairings (MOV 1993,
reduce to discrete logarithm finite field), anomalous curves
using p-adic methods (Semaev 1998, . . . , poly in log(N));

• Weil descent: index calculus using Weil descent for k = Fqn

and summation polynomials (Semaev 2004, Gaudry 2008,
Diem 2010, 2012, . . . ).

In this talk, we will focus on the last approach.
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2: Weil descent attacks
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Main questions

Can the above method involving Weil descent be used to solve
ECDLP in sub-exponential time when k = Fqn

• where qn goes to infinity, q not necessarily fixed?
• with fixed q, where n goes to infinity?
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Answer to the first question

Heuristically using Gröbner basis (Gaudry 2008): the case k = Fqn

where q →∞ and n fixed can be done in time Õ((qn)2/n−2/n
2

).

Theorem (Diem 2012).
Let (qi)i∈Z≥0

, (ni)i∈Z≥0
be sequences such that qi →∞, ni →∞

and ni/ log(qi)
2 → 0 as i→∞. Then one can solve ECDLP over

Fq
ni
i

in expected time (qni
i )o(1).

The result of Diem uses an algorithm of Rojas in the area of toric
varieties to solve the ‘decomposition of points’. The hardest part of
the paper is to show that the decompositions behave as they are
expected to behave.
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2

).

Theorem (Diem 2012).
Let (qi)i∈Z≥0

, (ni)i∈Z≥0
be sequences such that qi →∞, ni →∞

and ni/ log(qi)
2 → 0 as i→∞. Then one can solve ECDLP over

Fq
ni
i

in expected time (qni
i )o(1).

The result of Diem uses an algorithm of Rojas in the area of toric
varieties to solve the ‘decomposition of points’. The hardest part of
the paper is to show that the decompositions behave as they are
expected to behave.

Sub-exponential algorithms for ECDLP?



Answer to the second question

Case Fqn where q is fixed and n→∞.

Petit–Quisquater 2012, Semaev 2015, Karabina 2015:
sub-exponential algorithms under certain heuristical assumptions.
Results based on some computational evidence.

K.–Yeo 2015: raise doubt to correctness of heuristics, by
computation and theory.

Current status: complexity of such an approach is still unknown.
More research is needed.
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Solving ECDLP (simplified index calculus)

Given E/k elliptic curve, P ∈ E(k) and Q ∈ 〈P 〉.

Main steps for solving ECDLP (index calculus). First fix m ∈ Z≥2.

1. Factor base: Construct a factor base B ⊆ E(k);
2. Relation search (repeat about |B| times): pick a, b ∈ Z random

and write aP + bQ = b1 + . . .+ bm with bi ∈ B;
3. Linear algebra: Use linear algebra on relations from 2 to find c

with Q = cP .

We must pick m, B. For example, the larger B, the harder the
linear algebra and the more relations we need, but it might be
easier to find relations.

One chooses these parameters based on the complexity of the
relation search. Hence it is important to study this step.
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Factor base

From now on: k = Fqn .

Let V ⊆ k be an Fq-subspace of dimension n′. Set

B = {P ′ ∈ E(k) : x(P ′) ∈ V }.
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Summation polynomials 1

Theorem (Semaev 2004).
Given r ∈ Z≥2, there exists Sr ∈ k[X1, . . . , Xr] with the following
property. For b1, . . . , br ∈ k one has Sr(b1, . . . , br) = 0 if and only if
there exist P1, . . . , Pr ∈ E(k) with x(Pi) = bi such that
P1 + . . .+ Pr =∞.
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Summation polynomials 2

Set

b2 =a21 + 4a2,

b4 =a1a3 + 2a4,

b6 =a23 + 4a6,

b8 =a21a6 − a1a3a4 + a2a
2
3 + 4a2a6 − a24.

Then one can put

S3 = (X2
1X

2
2 +X2

1X
2
3 +X2

2X
2
3 )− 2(X2

1X2X3 +X1X
2
2X3 +X1X2X

2
3 )

− b2(X1X2X3)− b4(X1X2 +X1X3 +X2X3)− b6(X1 +X2 +X3)− b8,
and for r ≥ 4 one sets

Sr = ResX (Sr−1(X1, . . . , Xr−2, X), S3(Xr−1, Xr, X)) .

Sub-exponential algorithms for ECDLP?



Relation search

Suppose we want to decompose aP + bQ = b1 + . . .+ bm.

Set f =
∏

v∈V (X − v) ∈ k[X].

Consider the following system in k[X1, . . . , Xm]:

F = {Sm+1(X1, . . . , Xm, x(aP + bQ)), f(X1), . . . , f(Xm)}.

Solving this system allows one to obtain relations: if the system
has a solution, then one can try all corresponding points and
obtain a possible decomposition (often one finds decompositions
over bigger fields).

Problems when using generic Gröbner basis algorithm:

1. f(Xi) has high degree;
2. Sm+1 has high degree and is hard to compute.
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Weil descent

We have F ⊂ k[X1, . . . , Xm]. Using Weil descent we can
construct a system

F ′ ⊆ Fq[Xij : i = 1, . . . ,m, j = 1, . . . , n] = S.

such that solutions of F ′ over Fq correspond to solutions of F over
k.

After Weil descent, the f(Xi) become linear polynomials.

Construction of Weil descent of one polynomial
g ∈ k[X1, . . . , Xm]:

• Fix basis α1, . . . , αn of k/Fq and substitute Xi =
∑n

j=1 αjXij

• Write

g(X1, . . . , Xm) =

n∑
i=1

[g]iαi

where [g]i ∈ S (and we reduce modulo Xq
ij −Xij).

The set {[g]1, . . . , [g]n} is the Weil descent of {g}.
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Example of Weil descent

Consider S = S3(X,Y, x(P )) for some specific curve F24 . One
specific Weil descent looks like:

[S]1 =X2X4 +X2 +X3 + 1,

[S]2 =X2X4 +X1 +X3 + 1,

[S]3 =X2X3 +X1X4 +X2X4 +X1 +X2 +X3 +X4 + 1,

[S]4 =X1X3 +X2X3 +X1X4 +X1 +X2 +X3 +X4.
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Splitting trick

2015 (Semaev, Karabina, Huang–Petit–Shinohara–Takagi, Yeo):
Instead of considering the system F which involves Sm+1, one can
introduce a system with more variables which only involve (many)
S3 polynomials and the f(Xi) - one essentially removes the Res in
making Sr.

Idea: P1 + P2 + P3 + P4 =∞ is almost the same as:

P1 + P2 +Q1 =∞
−Q1 + P3 + P4 =∞.

So instead of {S4(X1, X2, X3, X4)} one can consider
{S3(X1, X2, Y1), S3(Y1, X3, X4)}, where Y1 is unrestricted (no
subspace constraints). One can easily generalize this for r > 4.
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Weil descent and splitting trick

If one combines Weil descent and the splitting trick, one obtains a
system F ′′ of low degree, but with a lot of variables.

One can easily write down this system and give it to a computer to
solve the system!
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3: First fall degree assumption
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A very very brief introduction to Gröbner basis

Let G = {g1, . . . , gt} ⊂ k[X1, . . . , Xs] = R and let I be the ideal
generated by G. Put a monomial order ≤ on R.

A Gröbner basis for G with respect to ≤ is a finite subset of I such
that the leading term ideal generated by this set is the same as the
one of I.

Facts:

• a Gröbner basis can be computed using Buchberger’s
algorithm (or F4, F5);

• Gröbner bases have many practical applications (solving
polynomial systems, ideal membership, . . . );

The complexity of solving a system using Gröbner basis algorithms
depends on the so-called degree of regularity of the system
(maximal degree seen in computation using the degrevlex order).
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First fall degree assumption

From now on: k = F2n .

Definition.
Let G = {g1, . . . , gt} ⊂ k[X1, . . . , Xs] = R. The first fall degree dff
of G is the smallest d such that there exist h1, . . . , ht ∈ R with
maxi(deg(higi)) = d and 0 ≤ deg(

∑
i higi) < d.

Conjecture (Petit–Quisquater 2012, Semaev 2015,
Karabina 2015,. . . ).
The degree of regularity of F ′ (respectively F ′′) is ‘close’ to the first
fall degree of F ′ (respectively F ′′).

This conjecture leads to sub-exponential algorithms for ECDLP
since the first fall degree can be bounded!
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Problems with first fall degree conjecture 0

• The notion of first fall degree does not behave very well under
certain operations and the definition feels a bit artificial.

• It is unclear in which generality the first fall degree conjecture
should hold and it unclear what close would really mean. Why
only for F2n?

• Artificial problem: Gröbner basis algorithms in Magma are not
open source, and it is hard to read off the first fall degree!
Hence, not enough experiments have been done.
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Problems with first fall degree conjecture 1

Let l be a finite field. Set (a1, a2, a3, a4, a6) = (0, 0, 0, 0, 0) (this
gives a singular curve).
For the corresponding summation polynomial one has: for
x1, . . . , xr ∈ l∗ one has Sr(1/x21, . . . , 1/x

2
r) = 0 iff there is a solution

to ±x1 ± . . .± xr = 0.
Assume char(l) 6= 2. The latter is equivalent to checking if there is
a subset of {x1, . . . , xr} summing to x1+...+xr

2 .

Theorem.
Fix a prime p ≥ 3. Given a subset S of G = (Z/pZ)n and t ∈ G, it
is NP-complete to determine if there is a subset of S summing to t.

It is NP-complete to check if Sr(1/x21, . . . , 1/x
2
r) is 0 or not, and

one can do this if one can solve systems similar to F ′ and F ′′. For
the system F ′′ with certain first fall degree conjectures, this would
lead to P = NP.

Sub-exponential algorithms for ECDLP?
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Problems with first fall degree conjecture 2

Consider the system F ′ (or F ′′) when m = 2: this is the Weil
descent of S3(X1, X2, x) together with subspace constraints
(n′ = n/2).
Previously:

n First fall degree Degree of regularity Random
12 ≤ 4 3 4
16 ≤ 4 3 5
18 ≤ 4 4 5
20 ≤ 4 4 5
24 ≤ 4 4 6
30 ≤ 4 4 –
40 ≤ 4 conjecture : 4 –
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Problems with first fall degree conjecture 2

Consider the system F ′ (or F ′′) when m = 2: this is the Weil
descent of S3(X1, X2, x) together with subspace constraints
(n′ = n/2).
Now:

n First fall degree Degree of regularity Random
12 2 3 4
16 2 3 5
18 2 4 5
20 2 4 5
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40 2 ≥ 5 –

The gap between the degree of regularity and the first fall degree
seems to increase: doubt on sub-exponential estimates.
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Example of fall degree

Consider S = S3(X,Y, x(P )) for some specific curve F24 . Under
some basis one has:

[S]1 =X2X4 +X2 +X3 + 1,

[S]2 =X2X4 +X1 +X3 + 1,

[S]3 =X2X3 +X1X4 +X2X4 +X1 +X2 +X3 +X4 + 1,

[S]4 =X1X3 +X2X3 +X1X4 +X1 +X2 +X3 +X4.

One has:

[S]1 + [S]2 = X1 +X2.

First fall degree is 2.
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Explaining first fall degree 1
Lenstra and K. discovered the following in 2013 using CFT:

Theorem.
Let E/k be an elliptic curve given by
Y 2 + a1XY + a3Y = X3 + a2X

2 + a4X + a6. Assume that E is
ordinary (a1 6= 0). Then we have a surjective group morphism

E(k) → F2

∞ 7→ 0

P 7→ Trk/F2

(
x(P ) + a2

a21

)
with kernel 2E(k).

It is a morphism: if P1 + P2 + P3 =∞, then we get
x1 + x2 + x3 = λ2 + a1λ+ a2 and this gives

x1 + a2
a21

+
x2 + a2
a21

+
x3 + a2
a21

=

(
λ

a1

)2

+
λ

a1
.
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Explaining first fall degree 2

Corollary.
Assume that E is ordinary. Let P ∈ E(k) \ E(k)[2] and set
T = S3(X1, X2, x(P )) ∈ k[X1, X2]. Set b = a1(a1x(P ) + a3) ∈ k∗.
Let α1, . . . , αn be a basis of k over F2. Then one has∑

j

Trk/F2

(αj

b2

)
[T ]j =Trk/F2

(
x(P ) + a2

a21

)

+

n∑
j=1

Trk/F2

(
αj

a21

)
· (X1j +X2j) .

The [T ]j have usually degree 2, whereas the right hand side is
usually of degree 1: degree fall.

Question: it is easy to see that there is a polynomial expression in
the [T ]j giving the right hand side, but why is it linear?
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Big question

How does the degree of regularity grow as a function of the various
parameters for the systems F ′ and F ′′? It seems to grow slower
than random similar systems. If slow enough, this approach gives
good algorithms for ECDLP.

Currently, we do not understand the situation. Estimating the
complexity of a Gröbner basis algorithm in general is very hard. It
also seems to be too hard to do experiments at the moment. New
ideas are needed!

Sub-exponential algorithms for ECDLP?



Big question

How does the degree of regularity grow as a function of the various
parameters for the systems F ′ and F ′′? It seems to grow slower
than random similar systems. If slow enough, this approach gives
good algorithms for ECDLP.

Currently, we do not understand the situation. Estimating the
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4: Attempt to study complexity
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Where does the first fall degree conjecture come from?

There is a polynomial system coming from the cryptographic
protocol HFE which looks very similar. In that case, the first fall
degree conjecture seems to hold.

Questions:
• What is the difference between the ECDLP and the HFE

systems?
• Can we prove (=no heuristics) results regarding complexity of

solving the HFE system?
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HFE system

Set k = Fqn . Let f ∈ k[X]. Let F ′ be a Weil descent system of {f}
in Fq[X1, . . . , Xn]. Perturb F ′ using transformations to obtain a
system G.

Hidden field equations (HFE, Patarin 1996): easy to find zeros of
f in k, but hard to find zeros of G in Fq without knowing
transformations.

Experiments (Faugère 2002, . . . ): degree of regularity of G depends
on q, deg(f), but not on n and is quite low, and hence one can
solve the system relatively easily. Furthermore, looks like degree of
regularity is close to first fall degree.

Proofs: “Our conclusions rely on no heuristic assumptions beyond
the standard assumption that the Gröbner basis algorithms
terminate at or shortly after the degree of regularity.”
(Ding–Hodges 2011, . . . ); proof? (Petit 2013).
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Last fall degree 1

Let k be a field. Let F ⊂ R = k[X1, . . . , Xm] be a finite set
generating an ideal I.

Definition.
For i ∈ Z≥0, we let Vi be the smallest k-vector space such that

1. {f ∈ F : deg(f) ≤ i} ⊆ Vi;
2. if g ∈ Vi and if h ∈ R with deg(hg) ≤ i, then hg ∈ Vi.

We set V∞ = I. Note: V0 ⊆ V1 ⊆ V2 ⊆ . . . ⊆ V∞ = I and Vi ⊆ R≤i.

Definition.
The minimal d ∈ Z≥0 t {∞} such that for all h ∈ I we have
h ∈ Vmax(d,deg(h)), is called the last fall degree of F , and is
denoted by dF .
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Last fall degree 2

An equivalent definition: dF is the largest integer d such that

Vd ∩R≤d−1 6= Vd−1

This is very similar to a more natural notion of the first fall degree:
the first fall degree should be the smallest integer d with

Vd ∩R≤d−1 6= Vd−1.
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Last fall degree 3

Properties of the last fall degree:

• dF ∈ Z≥0.
• dF does not depend on any monomial order, behaves well

under linear change of variables and of linear change of
polynomials.

• “dF is at most the degree of regularity” (if Vd contains a
Gröbner basis for some order, then one has dF ≤ d).

• If the system F has e solutions over the algebraic closure and
is radical, then one can solve the system by computing
Vmax(dF ,e) and monovariate factoring algorithms (use
projection polynomials; looks a lot like mutant XL).

The third and the fourth point explain why it is sometimes faster
to solve a system than to find a Gröbner basis when the number of
solutions is small (XL vs Gröbner).
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Solving HFE

Let k = Fqn and let f ∈ k[X] nonzero with HFE system G.

Theorem.
Assume that f has ≤ e different solutions in k. Set

d = max(b2(q − 1)
(
logq (deg(f)) + 1

)
c, q, e).

One can deterministically find all solutions to G in time polynomial
in (n+ d)d.

Note that d does not depend on n.

Idea of proof: upper bound last fall degree using some sparse GCD
algorithm.
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ECDLP versus HFE

Differences:

• HFE system is 0-dimensional (=finitely many solutions) and
one can generalize our results to multivariate 0-dimensional
systems F . We can relate last fall degree after Weil descent
with the last fall degree before Weil descent for 0-dimensional
systems.

• ECDLP system (without subspace constraints) is not
0-dimensional.
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Conclusion

We raise doubt to the first fall degree assumption for systems
which are not zero-dimensional.
In particular, we doubt the recent subexponential time
complexity estimates for solving ECDLP using summation
polynomials and Gröbner basis algorithms over F2n with n prime.
More research is needed to understand the complexity of this
approach.

I believe ECDLP over F2n with n prime is still safe when using the
current generation of computers.
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Thank you for your attention!
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