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Bellcore Attack against RSA-CRT (1997) 1/2

• secret primes p, q

• modulus N = p · q
• secret key d

• dp := d mod (p − 1) and dq := d mod (q − 1)

Require: message m ∈ ZN
Ensure: s ≡ md mod N

1: Sp := mdp mod p
2: Sq := mdq mod q
3: s := CRT (Sp, Sq)

CRT (Sp, Sq) = Sp + p · (p−1 mod q) · (Sq − Sp) mod N
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Bellcore Attack against RSA-CRT (1997) 2/2

• calculation of the correct value s, using Sp, Sq
• calculation of a faulty value s̃

• correct computation of Sq
• fault injection during computation of Sp → S̃p
• requirement: S̃p 6≡ Sp mod p

s ≡ Sp mod p s ≡ Sq mod q

s̃ ≡ S̃p mod p s̃ ≡ Sq mod q

p 6 | (s − s̃) q | (s − s̃)

=> q = gcd(s − s̃,N)
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First fault attack on ECC

First fault attack on ECC in 2000 (Biehl, Meyer, Müller [BMM00])

Idea for DFA on RSA extended to ECC

Idea:

• Exploit that the curve coefficient a6 is not used during point addition

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

• Modify the coordinates of a point

• New point will not be on the original curve

• New curve might be cryptographically less secure

• ECDLP might be easier to solve on that curve
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First fault attack on ECC

Different types of attacks:

• modified base point
• no check if input point is on the curve
• one-bit register fault at the beginning of the multiplication process d ·P

• modified intermediate point
• register faults during double-and-add algorithm

• applicable to El Gamal decryption and ECDSA

• software simulation

• countermeasure:
check if input and output points are on the original curve
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This talk:

Fault Attacks on Pairings

Preliminary questions:

1 What exactly are pairings?

2 Why are pairings interesting?

3 What is the difference between PBC and ECC?
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What exactly are pairings?

Pairing

Elliptic curve E over finite field Fq.
Finite abelian groups G1,G2 ≤ E and GT ≤ F∗

qk
, with k the embedding

degree.

A pairing is an efficiently computable, non-degenerate bilinear map

e : G1 ×G2 → GT .
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What exactly are pairings?

A pairing is an efficiently computable, non-degenerate bilinear map

e : G1 ×G2 → GT .

Computed in two steps:

1 Evaluation of the Miller function (computation of a for loop)

2 Final Exponentiation

e(P,Q) = f n,P(Q)z
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Why are pairings interesting?

Identity-based cryptography

• Identity-based cryptography first presented in 1984

• No satisfying realization until 2001

• Identity-based encryption from the weil pairing
by D. Boneh and M. K. Franklin [BF01]

• IBC used for wireless sensor networks
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What is the difference between PBC and ECC?

Security of ECC is based on ECDLP.

Elliptic Curve Discrete Logarithm Problem

Elliptic curve E over finite field Fq, P,Q ∈ E with Q = n ·P for n ∈ Z.

The ECDLP is, given P and Q, to find n.
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The difference between ECC and PBC

ECC: ECDLP

Given P and Q = n ·P, find n.

Pairings: Pairing Inversion

Given e(P,Q), find Q

Fault attacks on ECC are not directly applicable to PBC.
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One of the input points is secret
⇒ cryptanalysis has to invert two functions

Exponentiation Inversion

Given the output of the pairing as well as P ∈ G1 and the final exponent
z , find the correct preimage of the final exponentiation, i.e., the field
element fn,P(Q).

Miller Inversion
Given n, P ∈ G1, and a field element fn,P(Q), find the correct input
Q ∈ G2.
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Related Work (1/3)

First fault attack on PBC (Page, Vercauteren, 2004 [PV04]).

• Reduced Tate pairing

• Duursma-Lee algorithm

• Single fault

• Modified Miller bound n

13 / 36



Related Work (1/3)

Idea [PV04]:

1 Isolate single factor of the Duursma-Lee computation

2 Compute secret point

en(P,Q)→ en±1(P,Q)

Need two computations whose loop bounds differ exactly by one

en(P,Q)→ en+r (P,Q), en+r±1(P,Q)

Repeated fault induction

Assumption:
Values r and r ± 1 can be determined via timing/ power analysis
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Related Work (2/3)

Importance of the final exponentiation when considering fault attacks on
pairings (Whelan, Scott 2007 [WS07])

Data corruption and sign change faults on different types of pairings

Different data is corrupted:

• point P (or intermediate point during computation of r ·P)

• point Q (or intermediate point during computation of r ·Q)

• Miller variable

Assumes that the correct timing can be determined via SPA
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Related Work (2/3)

Data corruption fault attack against a variant of the ηn pairing

• no final exponentiation is required

• data corruption fault in the last iteration of the Miller loop

• system of linear equations

Sign change fault attack on the Weil pairing

• no or a simple final exponentiation

• sign change of yQ

• reduces to solving a cubic equation

Tate pairing: not vulnerable due to its more complex final exponentiation

”
... pairings with either no or a straightforward final exponentiation are

less secure than pairings with a more complex final exponentiation when
considering such fault attacks“
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Related Work (3/3)

Targeting the final exponentiation of Tate pairings (Lashermes, Fournier,
Goubin, 2013 [LFG13])

tr : E (Fp) [r ]× E
(
Fpk
)
/rE

(
Fpk
)
→ µr ⊂ F∗pk

(P,Q) 7→ tr (P,Q) = t(P,Q)(pk−1)/r .

• Recover input to the final exponentiation

• Attack targets an optimized pairing implementation

Final exponentiation: t(P,Q)
pk−1

r with pk−1
r = (pd − 1) · pd+1

Φk (p) ·
Φk (p)

r

• Needs at least three faulty computations
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Related Work (3/3)

f1 = f p
d−1, f2 = f

pd+1
Φk (p)

1 , f3 = f
Φk (p)

r
2

Repeated single faults:

1 created on f1
→ find f1 (with the help of an error-free computation)

2 created during the inversion in the first easy exponentiation
→ find a candidate for f

3 created during the inversion in the first easy exponentiation
→ find f

Open question: How to reveal the secret input to the pairing?

18 / 36



Related Work (3/3)

f1 = f p
d−1, f2 = f

pd+1
Φk (p)

1 , f3 = f
Φk (p)

r
2

Repeated single faults:

1 created on f1
→ find f1 (with the help of an error-free computation)

2 created during the inversion in the first easy exponentiation
→ find a candidate for f

3 created during the inversion in the first easy exponentiation
→ find f

Open question: How to reveal the secret input to the pairing?

18 / 36



Related Work (3/3)

f1 = f p
d−1, f2 = f

pd+1
Φk (p)

1 , f3 = f
Φk (p)

r
2

Repeated single faults:

1 created on f1
→ find f1 (with the help of an error-free computation)

2 created during the inversion in the first easy exponentiation
→ find a candidate for f

3 created during the inversion in the first easy exponentiation
→ find f

Open question: How to reveal the secret input to the pairing?

18 / 36



Related Work

Until 2014, all fault attacks on pairing computations
were only theoretically described,

but not practically conducted.

19 / 36



Higher-order fault attacks unrealistic?

If the adversary can inject multiple faults [...], then an attack
could be launched. This however, is an unrealistic attack

scenario. [WS07]

One possibility to achieve this is to consider double faults [...].
The possibility of this attack scheme is yet to be proven

[...]. [LFG13]

[...] how to properly override the Final Exponentiation in
conjunction with a fault attack on the Miller Algorithm remains

an open problem [...]. [LPE+14]
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Sketch of the first practical fault attack (FDTC ’14)

A Practical Second-Order Fault Attack
against a Real-World Pairing Implementation

joint work with J. Blömer, R. Gomes da Silva, P. Günther, and J.-P. Seifert

• eta pairing

• P,Q ∈ E (Fq) mit Fq = F2271

• n = 2(271+1)/2 + 1

• z = (q4 − 1)/#E (Fq)
Relic Library

ATXMega128A1

HW/SW combination also used on WSNs (TinyPBC)

ηn(P,Q) = f n,−P(ψ(Q))z
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Sketch of the first practical fault attack

ηn(P,Q) = f n,−P(ψ(Q))z

1 Disturbance of Miller function computation

2 Skipping of the final exponentiation

α = f n′,−P(ψ(Q))

= l [2]P′,−P(ψ(Q)) · gP′(ψ(Q)) · g [2−1]P′(ψ(Q))2.
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Disturbance of Miller function computation

1 c a l l f b 4 m u l d x s
2 . LVL43 :
3 s u b i r16 , 1
4 sbc r17 , z e r o r e g
5 . l o c 1 247 0

d i s c r i m i n a t o r 2
6 breq .+2
7 rjmp . L2
8 . LBE2 :
9 . l o c 1 486 0

10 s u b i r28 , 36
11 s b c i r29 , −2
12 out S P L , r28
13 out SP H , r29
14 pop r29
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Practical Fault Induction

Effect: Instruction Skips
Mechanism: CPU Clock Glitching

building on the results of Balasch, Gierlichs, Verbauwhede, 2011 [BGV11]
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Clock Glitching

99 MHz (fh)

33 MHz (fl)

gl trig

gl clk

∆

0 1 2 3 4 5 6 7 8 9

t1 d1 t2 d2

ti = timing of i-th glitch
di = duration of i-th glitch
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Block Diagram of the Setup

Target

Glitcher

*.py

Host

33 MHz

99 MHz

Timer(t_1,d_1,p_1)

(t_2,d_2,p_2)

...
Queue

(t_i,d_i,p_i)

*.log CPU
tgt_clk

gl_triggl_clk

tgt_io

gl_cfg

tgt_rst
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The Setup

Target Device: ATXMega128A1 (Atmel AVR family)
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Approach

Two phases:

• Profiling Phase
• Determination of good parameters for the glitches

• Target Phase
• Fault attack
• Automatic detection if both faults have been successful
• Computation of secret input point

28 / 36



Profiling Phase for First Fault

t1 in instruction cycles occurrence in %

422,780 1 < 0.01
424,515 1 < 0.01
424,941 1 < 0.01
427,731 1 < 0.01
431,069 1 < 0.01
581,804 3 0.01
581,903 28 0.08
582,001 7 0.02
582,002 590 1.66
582,100 30 0.08
582,101 1,763 4.95
582,111 1 < 0.01
582,199 297 0.83
582,200 32,890 92.35
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Target Phase

for each value of t1:

• d1 ∈ {3, 5}
• d2 ≤ 5

• t2 ∈ {26, . . . , 30}
• 2 values for each p1 and p2

• 10 repetitions

2000 = 2 · 5 · (30− 25) · 2 · 2 · 10 tests for each value of t1

< 7, 5 seconds per test =⇒ > 10.000 tests per day
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Mathematical Analysis

• Algebraic model of the secret point Q

fP(xQ , yQ) := f n′,−P(ψ(xQ , yQ))− α
= l [2]P′,−P(ψ(Q)) · gP′(ψ(Q)) · g [2−1]P′(ψ(Q))2 − α.

• Computation of candidates Q ′ for Q

VQ = V
(
f

(1)
P , . . . , f

(4)
P

)
∩ E

• Checking the candidates Q ′ ∈ VQ

ηn(P,Q ′)
?
= ηn(P,Q)
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Results

• First practical fault attack on pairings

• System for several independent instruction skips

• Applicable to a wide range of pairings

• Many instructions are potential targets for a similar attack

• Same system recently used to transfer the DLP from a
cryptographically strong elliptic curve to a weak singular curve
(Günther, Blömer, FDTC 2015 [GB15])

• Practically performed against BLS short signature scheme
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Countermeasures (1/3)

Hardware Countermeasures

• sensors which detect attempts of glitching

• power down crypto devices when operated outside the specified clock
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Countermeasures (2/3)

Software Countermeasures

generic:

• checksums

• redundant computations
(e.g., compute Miller loop twice and compare the results)

final exponentiation:

• code optimization (to prevent that there is a function call)

cryptographic protocols:

• hash results of pairing computation
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Countermeasures (3/3)

Software Countermeasures

Miller algorithm:

• ensure that the whole loop is actually computed

• ensure that the result of the computation of the whole loop is actually
further used

• blinding the points based on the bilinearity
(no randomization based on redundant representation!)

• random delays and dummy operations impede the determination of
the timings
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Future Work

• other physical faults, e.g., laser

• skipping instructions within the final exponentiation

• consider complete protocols
• repeated fault attacks with the same input might not be possible
• result of pairing is not released

Thank you for your attention.

Juliane Krämer: jkraemer@cdc.tu-darmstadt.de
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Juliane Krämer: jkraemer@cdc.tu-darmstadt.de

36 / 36



Future Work

• other physical faults, e.g., laser

• skipping instructions within the final exponentiation

• consider complete protocols
• repeated fault attacks with the same input might not be possible
• result of pairing is not released

Thank you for your attention.
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