
Fault Attacks on Pairing-Based Cryptography

Juliane Krämer

CDC
Technische Universität Darmstadt

Germany

19th Workshop on
Elliptic Curve Cryptography

September 30, 2015

Physical Attacks

Cryptanalysis

Mathematical
analysis

Physical attacks

Side channel attacks Fault attacks

1 / 36

Physical Attacks

Cryptanalysis

Mathematical
analysis

Physical attacks

Side channel attacks Fault attacks

1 / 36

Bellcore Attack against RSA-CRT (1997) 1/2

• secret primes p, q

• modulus N = p · q
• secret key d

• dp := d mod (p − 1) and dq := d mod (q − 1)

Require: message m ∈ ZN
Ensure: s ≡ md mod N

1: Sp := mdp mod p
2: Sq := mdq mod q
3: s := CRT (Sp, Sq)

CRT (Sp, Sq) = Sp + p · (p−1 mod q) · (Sq − Sp) mod N

2 / 36

Bellcore Attack against RSA-CRT (1997) 1/2

• secret primes p, q

• modulus N = p · q
• secret key d

• dp := d mod (p − 1) and dq := d mod (q − 1)

Require: message m ∈ ZN
Ensure: s ≡ md mod N

1: Sp := mdp mod p
2: Sq := mdq mod q
3: s := CRT (Sp, Sq)

CRT (Sp, Sq) = Sp + p · (p−1 mod q) · (Sq − Sp) mod N

2 / 36

Bellcore Attack against RSA-CRT (1997) 2/2

• calculation of the correct value s, using Sp, Sq
• calculation of a faulty value s̃

• correct computation of Sq
• fault injection during computation of Sp → S̃p
• requirement: S̃p 6≡ Sp mod p

s ≡ Sp mod p s ≡ Sq mod q

s̃ ≡ S̃p mod p s̃ ≡ Sq mod q

p 6 | (s − s̃) q | (s − s̃)

=> q = gcd(s − s̃,N)

3 / 36

Bellcore Attack against RSA-CRT (1997) 2/2

• calculation of the correct value s, using Sp, Sq
• calculation of a faulty value s̃

• correct computation of Sq
• fault injection during computation of Sp → S̃p
• requirement: S̃p 6≡ Sp mod p

s ≡ Sp mod p s ≡ Sq mod q

s̃ ≡ S̃p mod p s̃ ≡ Sq mod q

p 6 | (s − s̃) q | (s − s̃)

=> q = gcd(s − s̃,N)

3 / 36

Bellcore Attack against RSA-CRT (1997) 2/2

• calculation of the correct value s, using Sp, Sq
• calculation of a faulty value s̃

• correct computation of Sq
• fault injection during computation of Sp → S̃p
• requirement: S̃p 6≡ Sp mod p

s ≡ Sp mod p s ≡ Sq mod q

s̃ ≡ S̃p mod p s̃ ≡ Sq mod q

p 6 | (s − s̃) q | (s − s̃)

=> q = gcd(s − s̃,N)

3 / 36

Bellcore Attack against RSA-CRT (1997) 2/2

• calculation of the correct value s, using Sp, Sq
• calculation of a faulty value s̃

• correct computation of Sq
• fault injection during computation of Sp → S̃p
• requirement: S̃p 6≡ Sp mod p

s ≡ Sp mod p s ≡ Sq mod q

s̃ ≡ S̃p mod p s̃ ≡ Sq mod q

p 6 | (s − s̃) q | (s − s̃)

=> q = gcd(s − s̃,N)

3 / 36

Bellcore Attack against RSA-CRT (1997) 2/2

• calculation of the correct value s, using Sp, Sq
• calculation of a faulty value s̃

• correct computation of Sq
• fault injection during computation of Sp → S̃p
• requirement: S̃p 6≡ Sp mod p

s ≡ Sp mod p s ≡ Sq mod q

s̃ ≡ S̃p mod p s̃ ≡ Sq mod q

p 6 | (s − s̃) q | (s − s̃)

=> q = gcd(s − s̃,N)

3 / 36

First fault attack on ECC

First fault attack on ECC in 2000 (Biehl, Meyer, Müller [BMM00])

Idea for DFA on RSA extended to ECC

Idea:

• Exploit that the curve coefficient a6 is not used during point addition

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

• Modify the coordinates of a point

• New point will not be on the original curve

• New curve might be cryptographically less secure

• ECDLP might be easier to solve on that curve

4 / 36

First fault attack on ECC

First fault attack on ECC in 2000 (Biehl, Meyer, Müller [BMM00])

Idea for DFA on RSA extended to ECC

Idea:

• Exploit that the curve coefficient a6 is not used during point addition

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

• Modify the coordinates of a point

• New point will not be on the original curve

• New curve might be cryptographically less secure

• ECDLP might be easier to solve on that curve

4 / 36

First fault attack on ECC

Different types of attacks:

• modified base point
• no check if input point is on the curve
• one-bit register fault at the beginning of the multiplication process d ·P

• modified intermediate point
• register faults during double-and-add algorithm

• applicable to El Gamal decryption and ECDSA

• software simulation

• countermeasure:
check if input and output points are on the original curve

5 / 36

First fault attack on ECC

Different types of attacks:

• modified base point
• no check if input point is on the curve
• one-bit register fault at the beginning of the multiplication process d ·P

• modified intermediate point
• register faults during double-and-add algorithm

• applicable to El Gamal decryption and ECDSA

• software simulation

• countermeasure:
check if input and output points are on the original curve

5 / 36

First fault attack on ECC

Different types of attacks:

• modified base point
• no check if input point is on the curve
• one-bit register fault at the beginning of the multiplication process d ·P

• modified intermediate point
• register faults during double-and-add algorithm

• applicable to El Gamal decryption and ECDSA

• software simulation

• countermeasure:
check if input and output points are on the original curve

5 / 36

This talk:

Fault Attacks on Pairings

Preliminary questions:

1 What exactly are pairings?

2 Why are pairings interesting?

3 What is the difference between PBC and ECC?

6 / 36

What exactly are pairings?

Pairing

Elliptic curve E over finite field Fq.
Finite abelian groups G1,G2 ≤ E and GT ≤ F∗

qk
, with k the embedding

degree.

A pairing is an efficiently computable, non-degenerate bilinear map

e : G1 ×G2 → GT .

7 / 36

What exactly are pairings?

A pairing is an efficiently computable, non-degenerate bilinear map

e : G1 ×G2 → GT .

Computed in two steps:

1 Evaluation of the Miller function (computation of a for loop)

2 Final Exponentiation

e(P,Q) = f n,P(Q)z

8 / 36

Why are pairings interesting?

Identity-based cryptography

• Identity-based cryptography first presented in 1984

• No satisfying realization until 2001

• Identity-based encryption from the weil pairing
by D. Boneh and M. K. Franklin [BF01]

• IBC used for wireless sensor networks

9 / 36

What is the difference between PBC and ECC?

Security of ECC is based on ECDLP.

Elliptic Curve Discrete Logarithm Problem

Elliptic curve E over finite field Fq, P,Q ∈ E with Q = n ·P for n ∈ Z.

The ECDLP is, given P and Q, to find n.

10 / 36

The difference between ECC and PBC

ECC: ECDLP

Given P and Q = n ·P, find n.

Pairings: Pairing Inversion

Given e(P,Q), find Q

Fault attacks on ECC are not directly applicable to PBC.

11 / 36

The difference between ECC and PBC

ECC: ECDLP

Given P and Q = n ·P, find n.

Pairings: Pairing Inversion

Given e(P,Q), find Q

Fault attacks on ECC are not directly applicable to PBC.

11 / 36

The difference between ECC and PBC

ECC: ECDLP

Given P and Q = n ·P, find n.

Pairings: Pairing Inversion

Given e(P,Q), find Q

Fault attacks on ECC are not directly applicable to PBC.

11 / 36

One of the input points is secret
⇒ cryptanalysis has to invert two functions

Exponentiation Inversion

Given the output of the pairing as well as P ∈ G1 and the final exponent
z , find the correct preimage of the final exponentiation, i.e., the field
element fn,P(Q).

Miller Inversion
Given n, P ∈ G1, and a field element fn,P(Q), find the correct input
Q ∈ G2.

12 / 36

Related Work (1/3)

First fault attack on PBC (Page, Vercauteren, 2004 [PV04]).

• Reduced Tate pairing

• Duursma-Lee algorithm

• Single fault

• Modified Miller bound n

13 / 36

Related Work (1/3)

Idea [PV04]:

1 Isolate single factor of the Duursma-Lee computation

2 Compute secret point

en(P,Q)→ en±1(P,Q)

Need two computations whose loop bounds differ exactly by one

en(P,Q)→ en+r (P,Q), en+r±1(P,Q)

Repeated fault induction

Assumption:
Values r and r ± 1 can be determined via timing/ power analysis

14 / 36

Related Work (1/3)

Idea [PV04]:

1 Isolate single factor of the Duursma-Lee computation

2 Compute secret point

en(P,Q)→ en±1(P,Q)

Need two computations whose loop bounds differ exactly by one

en(P,Q)→ en+r (P,Q), en+r±1(P,Q)

Repeated fault induction

Assumption:
Values r and r ± 1 can be determined via timing/ power analysis

14 / 36

Related Work (1/3)

Idea [PV04]:

1 Isolate single factor of the Duursma-Lee computation

2 Compute secret point

en(P,Q)→ en±1(P,Q)

Need two computations whose loop bounds differ exactly by one

en(P,Q)→ en+r (P,Q), en+r±1(P,Q)

Repeated fault induction

Assumption:
Values r and r ± 1 can be determined via timing/ power analysis

14 / 36

Related Work (1/3)

Idea [PV04]:

1 Isolate single factor of the Duursma-Lee computation

2 Compute secret point

en(P,Q)→ en±1(P,Q)

Need two computations whose loop bounds differ exactly by one

en(P,Q)→ en+r (P,Q), en+r±1(P,Q)

Repeated fault induction

Assumption:
Values r and r ± 1 can be determined via timing/ power analysis

14 / 36

Related Work (1/3)

Idea [PV04]:

1 Isolate single factor of the Duursma-Lee computation

2 Compute secret point

en(P,Q)→ en±1(P,Q)

Need two computations whose loop bounds differ exactly by one

en(P,Q)→ en+r (P,Q), en+r±1(P,Q)

Repeated fault induction

Assumption:
Values r and r ± 1 can be determined via timing/ power analysis

14 / 36

Related Work (2/3)

Importance of the final exponentiation when considering fault attacks on
pairings (Whelan, Scott 2007 [WS07])

Data corruption and sign change faults on different types of pairings

Different data is corrupted:

• point P (or intermediate point during computation of r ·P)

• point Q (or intermediate point during computation of r ·Q)

• Miller variable

Assumes that the correct timing can be determined via SPA

15 / 36

Related Work (2/3)

Importance of the final exponentiation when considering fault attacks on
pairings (Whelan, Scott 2007 [WS07])

Data corruption and sign change faults on different types of pairings

Different data is corrupted:

• point P (or intermediate point during computation of r ·P)

• point Q (or intermediate point during computation of r ·Q)

• Miller variable

Assumes that the correct timing can be determined via SPA

15 / 36

Related Work (2/3)

Importance of the final exponentiation when considering fault attacks on
pairings (Whelan, Scott 2007 [WS07])

Data corruption and sign change faults on different types of pairings

Different data is corrupted:

• point P (or intermediate point during computation of r ·P)

• point Q (or intermediate point during computation of r ·Q)

• Miller variable

Assumes that the correct timing can be determined via SPA

15 / 36

Related Work (2/3)

Data corruption fault attack against a variant of the ηn pairing

• no final exponentiation is required

• data corruption fault in the last iteration of the Miller loop

• system of linear equations

Sign change fault attack on the Weil pairing

• no or a simple final exponentiation

• sign change of yQ

• reduces to solving a cubic equation

Tate pairing: not vulnerable due to its more complex final exponentiation

”
... pairings with either no or a straightforward final exponentiation are

less secure than pairings with a more complex final exponentiation when
considering such fault attacks“

16 / 36

Related Work (2/3)

Data corruption fault attack against a variant of the ηn pairing

• no final exponentiation is required

• data corruption fault in the last iteration of the Miller loop

• system of linear equations

Sign change fault attack on the Weil pairing

• no or a simple final exponentiation

• sign change of yQ

• reduces to solving a cubic equation

Tate pairing: not vulnerable due to its more complex final exponentiation

”
... pairings with either no or a straightforward final exponentiation are

less secure than pairings with a more complex final exponentiation when
considering such fault attacks“

16 / 36

Related Work (2/3)

Data corruption fault attack against a variant of the ηn pairing

• no final exponentiation is required

• data corruption fault in the last iteration of the Miller loop

• system of linear equations

Sign change fault attack on the Weil pairing

• no or a simple final exponentiation

• sign change of yQ

• reduces to solving a cubic equation

Tate pairing: not vulnerable due to its more complex final exponentiation

”
... pairings with either no or a straightforward final exponentiation are

less secure than pairings with a more complex final exponentiation when
considering such fault attacks“

16 / 36

Related Work (3/3)

Targeting the final exponentiation of Tate pairings (Lashermes, Fournier,
Goubin, 2013 [LFG13])

tr : E (Fp) [r]× E
(
Fpk
)
/rE

(
Fpk
)
→ µr ⊂ F∗pk

(P,Q) 7→ tr (P,Q) = t(P,Q)(pk−1)/r .

• Recover input to the final exponentiation

• Attack targets an optimized pairing implementation

Final exponentiation: t(P,Q)
pk−1

r with pk−1
r = (pd − 1) · pd+1

Φk (p) ·
Φk (p)

r

• Needs at least three faulty computations

17 / 36

Related Work (3/3)

f1 = f p
d−1, f2 = f

pd+1
Φk (p)

1 , f3 = f
Φk (p)

r
2

Repeated single faults:

1 created on f1
→ find f1 (with the help of an error-free computation)

2 created during the inversion in the first easy exponentiation
→ find a candidate for f

3 created during the inversion in the first easy exponentiation
→ find f

Open question: How to reveal the secret input to the pairing?

18 / 36

Related Work (3/3)

f1 = f p
d−1, f2 = f

pd+1
Φk (p)

1 , f3 = f
Φk (p)

r
2

Repeated single faults:

1 created on f1
→ find f1 (with the help of an error-free computation)

2 created during the inversion in the first easy exponentiation
→ find a candidate for f

3 created during the inversion in the first easy exponentiation
→ find f

Open question: How to reveal the secret input to the pairing?

18 / 36

Related Work (3/3)

f1 = f p
d−1, f2 = f

pd+1
Φk (p)

1 , f3 = f
Φk (p)

r
2

Repeated single faults:

1 created on f1
→ find f1 (with the help of an error-free computation)

2 created during the inversion in the first easy exponentiation
→ find a candidate for f

3 created during the inversion in the first easy exponentiation
→ find f

Open question: How to reveal the secret input to the pairing?

18 / 36

Related Work

Until 2014, all fault attacks on pairing computations
were only theoretically described,

but not practically conducted.

19 / 36

Higher-order fault attacks unrealistic?

If the adversary can inject multiple faults [...], then an attack
could be launched. This however, is an unrealistic attack

scenario. [WS07]

One possibility to achieve this is to consider double faults [...].
The possibility of this attack scheme is yet to be proven

[...]. [LFG13]

[...] how to properly override the Final Exponentiation in
conjunction with a fault attack on the Miller Algorithm remains

an open problem [...]. [LPE+14]

20 / 36

Higher-order fault attacks unrealistic?

If the adversary can inject multiple faults [...], then an attack
could be launched. This however, is an unrealistic attack

scenario. [WS07]

One possibility to achieve this is to consider double faults [...].
The possibility of this attack scheme is yet to be proven

[...]. [LFG13]

[...] how to properly override the Final Exponentiation in
conjunction with a fault attack on the Miller Algorithm remains

an open problem [...]. [LPE+14]

20 / 36

Higher-order fault attacks unrealistic?

If the adversary can inject multiple faults [...], then an attack
could be launched. This however, is an unrealistic attack

scenario. [WS07]

One possibility to achieve this is to consider double faults [...].
The possibility of this attack scheme is yet to be proven

[...]. [LFG13]

[...] how to properly override the Final Exponentiation in
conjunction with a fault attack on the Miller Algorithm remains

an open problem [...]. [LPE+14]

20 / 36

Sketch of the first practical fault attack (FDTC ’14)

A Practical Second-Order Fault Attack
against a Real-World Pairing Implementation

joint work with J. Blömer, R. Gomes da Silva, P. Günther, and J.-P. Seifert

• eta pairing

• P,Q ∈ E (Fq) mit Fq = F2271

• n = 2(271+1)/2 + 1

• z = (q4 − 1)/#E (Fq)
Relic Library

ATXMega128A1

HW/SW combination also used on WSNs (TinyPBC)

ηn(P,Q) = f n,−P(ψ(Q))z

21 / 36

Sketch of the first practical fault attack (FDTC ’14)

A Practical Second-Order Fault Attack
against a Real-World Pairing Implementation

joint work with J. Blömer, R. Gomes da Silva, P. Günther, and J.-P. Seifert

• eta pairing

• P,Q ∈ E (Fq) mit Fq = F2271

• n = 2(271+1)/2 + 1

• z = (q4 − 1)/#E (Fq)
Relic Library

ATXMega128A1

HW/SW combination also used on WSNs (TinyPBC)

ηn(P,Q) = f n,−P(ψ(Q))z

21 / 36

Sketch of the first practical fault attack (FDTC ’14)

A Practical Second-Order Fault Attack
against a Real-World Pairing Implementation

joint work with J. Blömer, R. Gomes da Silva, P. Günther, and J.-P. Seifert

• eta pairing

• P,Q ∈ E (Fq) mit Fq = F2271

• n = 2(271+1)/2 + 1

• z = (q4 − 1)/#E (Fq)
Relic Library

ATXMega128A1

HW/SW combination also used on WSNs (TinyPBC)

ηn(P,Q) = f n,−P(ψ(Q))z

21 / 36

Sketch of the first practical fault attack (FDTC ’14)

A Practical Second-Order Fault Attack
against a Real-World Pairing Implementation

joint work with J. Blömer, R. Gomes da Silva, P. Günther, and J.-P. Seifert

• eta pairing

• P,Q ∈ E (Fq) mit Fq = F2271

• n = 2(271+1)/2 + 1

• z = (q4 − 1)/#E (Fq)
Relic Library

ATXMega128A1

HW/SW combination also used on WSNs (TinyPBC)

ηn(P,Q) = f n,−P(ψ(Q))z

21 / 36

Sketch of the first practical fault attack

ηn(P,Q) = f n,−P(ψ(Q))z

1 Disturbance of Miller function computation

2 Skipping of the final exponentiation

α = f n′,−P(ψ(Q))

= l [2]P′,−P(ψ(Q)) · gP′(ψ(Q)) · g [2−1]P′(ψ(Q))2.

22 / 36

Sketch of the first practical fault attack

ηn(P,Q) = f n,−P(ψ(Q))z

1 Disturbance of Miller function computation

2 Skipping of the final exponentiation

α = f n′,−P(ψ(Q))

= l [2]P′,−P(ψ(Q)) · gP′(ψ(Q)) · g [2−1]P′(ψ(Q))2.

22 / 36

Sketch of the first practical fault attack

ηn(P,Q) = f n,−P(ψ(Q))z

1 Disturbance of Miller function computation

2 Skipping of the final exponentiation

α = f n′,−P(ψ(Q))

= l [2]P′,−P(ψ(Q)) · gP′(ψ(Q)) · g [2−1]P′(ψ(Q))2.

22 / 36

Disturbance of Miller function computation

1 c a l l f b 4 m u l d x s
2 . LVL43 :
3 s u b i r16 , 1
4 sbc r17 , z e r o r e g
5 . l o c 1 247 0

d i s c r i m i n a t o r 2
6 breq .+2
7 rjmp . L2
8 . LBE2 :
9 . l o c 1 486 0

10 s u b i r28 , 36
11 s b c i r29 , −2
12 out S P L , r28
13 out SP H , r29
14 pop r29

23 / 36

Disturbance of Miller function computation

1 c a l l f b 4 m u l d x s
2 . LVL43 :
3 s u b i r16 , 1
4 sbc r17 , z e r o r e g
5 . l o c 1 247 0

d i s c r i m i n a t o r 2
6 breq .+2
7 rjmp .L2
8 . LBE2 :
9 . l o c 1 486 0

10 s u b i r28 , 36
11 s b c i r29 , −2
12 out S P L , r28
13 out SP H , r29
14 pop r29

23 / 36

Disturbance of Miller function computation

1 c a l l f b 4 m u l d x s
2 . LVL43 :
3 s u b i r16 , 1
4 sbc r17 , z e r o r e g
5 . l o c 1 247 0

d i s c r i m i n a t o r 2
6 breq .+2
7
8 . LBE2 :
9 . l o c 1 486 0

10 s u b i r28 , 36
11 s b c i r29 , −2
12 out S P L , r28
13 out SP H , r29
14 pop r29

23 / 36

Practical Fault Induction

Effect: Instruction Skips
Mechanism: CPU Clock Glitching

building on the results of Balasch, Gierlichs, Verbauwhede, 2011 [BGV11]

24 / 36

Practical Fault Induction

Effect: Instruction Skips
Mechanism: CPU Clock Glitching

building on the results of Balasch, Gierlichs, Verbauwhede, 2011 [BGV11]

24 / 36

Clock Glitching

99 MHz (fh)

33 MHz (fl)

gl trig

gl clk

∆

0 1 2 3 4 5 6 7 8 9

t1 d1 t2 d2

ti = timing of i-th glitch
di = duration of i-th glitch

25 / 36

Block Diagram of the Setup

Target

Glitcher

*.py

Host

33 MHz

99 MHz

Timer(t_1,d_1,p_1)

(t_2,d_2,p_2)

...
Queue

(t_i,d_i,p_i)

*.log CPU
tgt_clk

gl_triggl_clk

tgt_io

gl_cfg

tgt_rst

26 / 36

The Setup

Target Device: ATXMega128A1 (Atmel AVR family)

27 / 36

Approach

Two phases:

• Profiling Phase
• Determination of good parameters for the glitches

• Target Phase
• Fault attack
• Automatic detection if both faults have been successful
• Computation of secret input point

28 / 36

Profiling Phase for First Fault

t1 in instruction cycles occurrence in %

422,780 1 < 0.01
424,515 1 < 0.01
424,941 1 < 0.01
427,731 1 < 0.01
431,069 1 < 0.01
581,804 3 0.01
581,903 28 0.08
582,001 7 0.02
582,002 590 1.66
582,100 30 0.08
582,101 1,763 4.95
582,111 1 < 0.01
582,199 297 0.83
582,200 32,890 92.35

29 / 36

Target Phase

for each value of t1:

• d1 ∈ {3, 5}
• d2 ≤ 5

• t2 ∈ {26, . . . , 30}
• 2 values for each p1 and p2

• 10 repetitions

2000 = 2 · 5 · (30− 25) · 2 · 2 · 10 tests for each value of t1

< 7, 5 seconds per test =⇒ > 10.000 tests per day

30 / 36

Mathematical Analysis

• Algebraic model of the secret point Q

fP(xQ , yQ) := f n′,−P(ψ(xQ , yQ))− α
= l [2]P′,−P(ψ(Q)) · gP′(ψ(Q)) · g [2−1]P′(ψ(Q))2 − α.

• Computation of candidates Q ′ for Q

VQ = V
(
f

(1)
P , . . . , f

(4)
P

)
∩ E

• Checking the candidates Q ′ ∈ VQ

ηn(P,Q ′)
?
= ηn(P,Q)

31 / 36

Results

• First practical fault attack on pairings

• System for several independent instruction skips

• Applicable to a wide range of pairings

• Many instructions are potential targets for a similar attack

• Same system recently used to transfer the DLP from a
cryptographically strong elliptic curve to a weak singular curve
(Günther, Blömer, FDTC 2015 [GB15])

• Practically performed against BLS short signature scheme

32 / 36

Results

• First practical fault attack on pairings

• System for several independent instruction skips

• Applicable to a wide range of pairings

• Many instructions are potential targets for a similar attack

• Same system recently used to transfer the DLP from a
cryptographically strong elliptic curve to a weak singular curve
(Günther, Blömer, FDTC 2015 [GB15])

• Practically performed against BLS short signature scheme

32 / 36

Results

• First practical fault attack on pairings

• System for several independent instruction skips

• Applicable to a wide range of pairings

• Many instructions are potential targets for a similar attack

• Same system recently used to transfer the DLP from a
cryptographically strong elliptic curve to a weak singular curve
(Günther, Blömer, FDTC 2015 [GB15])

• Practically performed against BLS short signature scheme

32 / 36

Countermeasures (1/3)

Hardware Countermeasures

• sensors which detect attempts of glitching

• power down crypto devices when operated outside the specified clock

33 / 36

Countermeasures (2/3)

Software Countermeasures

generic:

• checksums

• redundant computations
(e.g., compute Miller loop twice and compare the results)

final exponentiation:

• code optimization (to prevent that there is a function call)

cryptographic protocols:

• hash results of pairing computation

34 / 36

Countermeasures (2/3)

Software Countermeasures

generic:

• checksums

• redundant computations
(e.g., compute Miller loop twice and compare the results)

final exponentiation:

• code optimization (to prevent that there is a function call)

cryptographic protocols:

• hash results of pairing computation

34 / 36

Countermeasures (2/3)

Software Countermeasures

generic:

• checksums

• redundant computations
(e.g., compute Miller loop twice and compare the results)

final exponentiation:

• code optimization (to prevent that there is a function call)

cryptographic protocols:

• hash results of pairing computation

34 / 36

Countermeasures (3/3)

Software Countermeasures

Miller algorithm:

• ensure that the whole loop is actually computed

• ensure that the result of the computation of the whole loop is actually
further used

• blinding the points based on the bilinearity
(no randomization based on redundant representation!)

• random delays and dummy operations impede the determination of
the timings

35 / 36

Future Work

• other physical faults, e.g., laser

• skipping instructions within the final exponentiation

• consider complete protocols
• repeated fault attacks with the same input might not be possible
• result of pairing is not released

Thank you for your attention.

Juliane Krämer: jkraemer@cdc.tu-darmstadt.de

36 / 36

Future Work

• other physical faults, e.g., laser

• skipping instructions within the final exponentiation

• consider complete protocols
• repeated fault attacks with the same input might not be possible
• result of pairing is not released

Thank you for your attention.

Juliane Krämer: jkraemer@cdc.tu-darmstadt.de

36 / 36

Future Work

• other physical faults, e.g., laser

• skipping instructions within the final exponentiation

• consider complete protocols
• repeated fault attacks with the same input might not be possible
• result of pairing is not released

Thank you for your attention.

Juliane Krämer: jkraemer@cdc.tu-darmstadt.de

36 / 36

Future Work

• other physical faults, e.g., laser

• skipping instructions within the final exponentiation

• consider complete protocols
• repeated fault attacks with the same input might not be possible
• result of pairing is not released

Thank you for your attention.

Juliane Krämer: jkraemer@cdc.tu-darmstadt.de

36 / 36

Literatur I

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
weil pairing. In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001,
21st Annual International Cryptology Conference, volume 2139 of Lecture
Notes in Computer Science, pages 213–229. Springer-Verlag, 2001.

[BGOS07] Paulo S. L. M. Barreto, Steven D. Galbraith, Colm O’Eigeartaigh, and
Michael Scott. Efficient pairing computation on supersingular Abelian
varieties. Des. Codes Cryptogr., 42(3):239–271, 2007.

[BGV11] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An In-depth and
Black-box Characterization of the Effects of Clock Glitches on 8-bit MCUs.
In Luca Breveglieri, Sylvain Guilley, Israel Koren, David Naccache, and Junko
Takahashi, editors, 2011 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 105–114, 2011.

[BMM00] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault attacks on
elliptic curve cryptosystems. In Mihir Bellare, editor, Advances in Cryptology
- CRYPTO 2000, 20th Annual International Cryptology Conference, volume
1880 of Lecture Notes in Computer Science, pages 131–146. Springer, 2000.

34 / 36

Literatur II

[GB15] Peter Günther and Johannes Blömer. Singular curve point decompression
attack. In Proceedings of Fault Tolerance and Diagnosis in Cryptography
(FDTC), 2015. To appear.

[LFG13] Ronan Lashermes, Jacques Fournier, and Louis Goubin. Inverting the Final
Exponentiation of Tate Pairings on Ordinary Elliptic Curves Using Faults. In
Cryptographic Hardware and Embedded Systems — CHES 2013, volume
8086 of Lecture Notes in Computer Science, pages 365–382. Springer Berlin
Heidelberg, 2013.

[LPE+14] Ronan Lashermes, Marie Paindavoine, Nadia El Mrabet, Jacques Fournier,
and Louis Goubin. Practical validation of several fault attacks against the
miller algorithm. In 2014 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2014.

[PV04] Daniel Page and Frederik Vercauteren. Fault and Side-Channel Attacks on
Pairing Based Cryptography. IACR Cryptology ePrint Archive, Report
2004/283, 2004.

[Sco05] Michael Scott. Computing the Tate Pairing. In Topics in Cryptology -
CT-RSA 2005, pages 293–304. Springer Berlin Heidelberg, 2005.

35 / 36

Literatur III

[WS07] Claire Whelan and Michael Scott. The Importance of the Final
Exponentiation in Pairings When Considering Fault Attacks. In Pairing,
volume 4575 of Lecture Notes in Computer Science, pages 225–246. Springer
Berlin Heidelberg, 2007.

36 / 36

