Computing modular polynomials in dimension 2 ECC 2015, Bordeaux

Enea Milio

29/09/2015

Computing modular polynomials

1 Dimension 1 : elliptic curves

2 Dimension 2 : abelian surfaces

- Computation of the modular polynomials
- Smaller invariants

Computing modular polynomials

Dimension 1 : elliptic curves

Dimension 2 : abelian surfaces

- Computation of the modular polynomials
- Smaller invariants

Motivation

An **isogeny** between two elliptic curves E_1 and E_2 is a surjective map with finite kernel. The **degree** of the isogeny is the cardinality of the kernel.

Many applications :

- Theory ;
- Cryptography : transfert the DLP ;
- SEA algorithm ;
- Class polynomials;
- Graph of isogenies.

For cryptography, we work over finite fields.

Here, we work on \mathbb{C} .

- The theory is "easy" on $\mathbb{C}\,;$
- Numerical computation;
- The modular polynomials can be reduced modulo *p*.

Complex elliptic curves

Let $\mathcal{H}_1 = \{a + \imath b : b > 0\} \subset \mathbb{C}$ be the **Poincaré half plane**.

Proposition

Let E/\mathbb{C} be an elliptic curve. Then there exists a lattice

 $\Lambda = \mathbb{Z} + \tau \mathbb{Z}, \qquad where \quad \tau \in \mathcal{H}_1$

and a complex analytic isomorphism $E \simeq \mathbb{C}/\Lambda$ of complex Lie groups.

Isomorphism

Modular group : $SL_2(\mathbb{Z}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \}$

Group action :

$$\begin{array}{rcl} \operatorname{SL}_2(\mathbb{Z}) \times \mathcal{H}_1 & \longrightarrow & \mathcal{H}_1 \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau & = & \frac{a\tau + b}{c\tau + d} \end{array}$$

Proposition

Two elliptic curves E_1 and E_2 over \mathbb{C} corresponding to the lattices $\Lambda_1 = \mathbb{Z} + \tau_1 \mathbb{Z}$ and $\Lambda_2 = \mathbb{Z} + \tau_2 \mathbb{Z}$ are **isomorphic** if and only if there exists $\gamma \in SL_2(\mathbb{Z})$ such that $\tau_2 = \gamma \tau_1$.

 \implies change of basis of the lattice.

Fundamental domain \mathcal{F}_1

Fundamental domain \mathcal{F}_1

Fundamental domain \mathcal{F}_1

Modular function

Let p be a prime and

$$\Gamma_0(p) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}
ight) \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 mod p
ight\}.$$

Definition

Let $\Gamma \subset SL_2(\mathbb{Z})$ be a congruence subgroup of finite index. $f : \mathcal{H}_1 \to \mathbb{C}$ is a modular function for Γ if

• f is meromorphic on \mathcal{H}_1 (and on the cusps);

2 for all $\gamma \in \Gamma$ and $\tau \in \mathcal{H}_1$, $f(\gamma \tau) = f(\tau)$.

Example

•
$$j(\tau)$$
 is a modular function for $\mathrm{SL}_2(\mathbb{Z})$;

• $j_p(\tau) := j(p\tau)$ is a modular function for $\Gamma_0(p)$.

Let $\Gamma \subset SL_2(\mathbb{Z})$ be a congruence subgroup of finite index. Denote by \mathbb{C}_{Γ} the field of modular functions for Γ . Then

Theorem • $\mathbb{C}_{\mathrm{SL}_2(\mathbb{Z})} = \mathbb{C}(j);$ • $\mathbb{C}_{\Gamma_0(p)} = \mathbb{C}(j, j_p).$

Isogeny

We are interested in the isogenies of degree p.

Let C_p be a set of representatives of $SL_2(\mathbb{Z})/\Gamma_0(p)$.

The isogenous points of degree p are : $p\gamma\tau$, $\gamma \in C_p$.

Theorem

The field extension $\mathbb{C}_{\Gamma_0(p)}/\mathbb{C}_{\mathrm{SL}_2(\mathbb{Z})} = \mathbb{C}(j, j_p)/\mathbb{C}(j)$ is algebraic of degree $[\mathrm{SL}_2(\mathbb{Z}) : \Gamma_0(p)] = p + 1.$

Conjugate functions of j_p in $\mathbb{C}_{\Gamma_0(p)}/\mathbb{C}_{\mathrm{SL}_2(\mathbb{Z})} : j_p^{\gamma}(\tau) := j(p\gamma\tau), \ \gamma \in \mathrm{C}_p$.

Modular polynomial

The **classical modular polynomial** of index p is the polynomial Φ_p that parameterizes isomorphism classes of elliptic curves together with an isogeny of degree p:

$$\Phi_p(X, j(E)) = \prod_{E' \text{ p-isogenous to E}} (X - j(E')).$$

It is also the minimal polynomial of j_p for the extension $\mathbb{C}_{\Gamma_0(p)}/\mathbb{C}_{\mathrm{SL}_2(\mathbb{Z})}$, thus

$$\Phi_p(X,j) = \prod_{\gamma \in \mathcal{C}_p} (X - j_p^{\gamma}) \in \mathbb{Z}[X,j].$$

Algorithm

Computation of the modular polynomials by evaluation/interpolation (Enge 2009).

$$\Phi_p(X,j) = \prod_{\gamma \in \mathcal{C}_p} (X - j_p^{\gamma}) = X^{p+1} + \sum_{i=0}^p c_i(j) X^i.$$

• Evaluate :

$$\prod_{\gamma \in C_p} (X - j(p\gamma\tau)) = X^{p+1} + \sum_{i=0}^p c_i(j(\tau))X^i;$$

 \Rightarrow Evaluate in deg_j(Φ_p) + 1 = (p + 1) + 1 values τ .

• Interpolate c_i .

Evaluation of j in $\tilde{O}(N)$ at precision N digits (Dupont 2006); Algorithm quasi-linear : $\tilde{O}(p^3)$.

Examples

 $p = 2 \Phi_2(X, Y) = X^3 + (-Y^2 + 1488Y - 162000)X^2 + (1488Y^2 + 40773375Y + 8748000000)X + (Y^3 - 162000Y^2 + 8748000000)X + (Y^3 - 162000Y^2 + 1488Y^2 +$

 $p = 3 \phi_3(X, Y) = X^4 + (-Y^3 + 2232Y^2 - 1069956Y + 36864000)X^3 + (2232Y^3 + 2587918086Y^2 + 8900222976000Y + 45298483200000)X^2 + (-1069956Y^3 + 8900222976000Y^2 - 77084596633600000Y + 185542587187200000000)X + (Y^4 + 36864000Y^3 + 45298483200000Y^2 + 185542587187200000000Y)$

 $p = 5 \phi_5(x, y) = x^6 + (-y^5 + 3720Y^4 - 4550940Y^3 + 2028551200Y^2 - 246683410950Y + 1963211489280)X^5 + (3720Y^5 + 1665999364600Y^4 + 107878928185336800Y^3 + 33083609779811215375Y^2 + 128541798906628816384000Y + 128473313284142456253440)X^4 + (-4550940Y^5 + 107878928185336800Y^4 - 441206965512914835246100Y^3 + 26898488858380731577417728000Y^2 - 192457934618928299655108231168000Y + 280244777828439527804321565297868800)X^3 + (2028551200Y^5 + 383083609779811215375Y^4 + 26898488858380731577417728000Y^3 + 5110941777552418083110765199360000Y^2 + 36554736583949629295706472332656640000Y + 6692500042627997708487149415015068467200)X^2 + (-246683410950Y^5 + 128541798906828816384000Y^4 - 192457934618928299655108231168000Y^3 + 36554735653949622925706472332656640000Y^2 - 264073457076620596259715790247978782949376Y + 53274330803424425450420160273356509151232000)X + (Y^6 + 1963211489280Y^5 + 1284733132841424456253440Y^4 + 28024477782843952780432156529786880V)^3 + 669250004262799770848714915015068467200Y^2 + 53274330803424425450420160273356509151232000)X + (Y^6 + 1963211489280Y^5 + 1284733132841424456253440Y^4 + 28024477782843952780432156529786880V)^3 + 66925000426279977084714915015068467200Y^2 + 53274330803424425450420160273356509151232000)X + (Y^6 + 1963211489280Y^5 + 128473313284142456253440Y^4 + 28024477782843952780432156529786880V)^3 + 66925000426279977084714915015068467200Y 2 + 53274330803424425450420160273356509151232000)X + (Y^6 + 1963211489280Y^5 + 128473313284142456253440Y^4 + 28024477782843952780432156529786880V)^3 + 66925000426279977084715472135869775347691071362751004672000)$

Other invariants : Schläfli, Weber, theta functions.

Schläfli 1870, $p = 5 : x^6 - x^5y^5 + 4xy + y^6$.

Computing modular polynomials

Dimension 1 : elliptic curves

2

Dimension 2 : abelian surfaces

- Computation of the modular polynomials
- Smaller invariants

Computing modular polynomials

Dimension 1 : elliptic curves

Dimension 2 : abelian surfaces

- Computation of the modular polynomials
- Smaller invariants

Real Multiplication : cyclic isogenies

Motivation

Dimension 2 : principally polarized abelian surfaces (ppas) \implies Jacobian of hyperelliptic curves of genus 2 (or product of elliptic curves);

Cryptography : competitive with elliptic curves;

 \implies we want to do the same thing !

Siegel space

Siegel upper half-space \mathcal{H}_2 the set of 2×2 symmetric matrices over \mathbb{C} with positive definite imaginary part.

Ppas on \mathbb{C} : $A \simeq \mathbb{C}^2 / \Lambda$ where $\Lambda = \mathbb{Z}^2 + \Omega \mathbb{Z}^2$, with $\Omega \in \mathcal{H}_2$ (period matrix).

Let
$$J = \begin{pmatrix} 0 & ld_2 \\ -ld_2 & 0 \end{pmatrix}$$
. Symplectic group :

$$\operatorname{Sp}_4(\mathbb{Z}) = \{ \gamma \in \operatorname{GL}_4(\mathbb{Z}) : {}^t\gamma J\gamma = J \}.$$

Group action : $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \Omega = (A\Omega + B)(C\Omega + D)^{-1}.$

We have a fundamental domain \mathcal{F}_2 .

Siegel modular threefold : $\mathcal{H}_2/\mathrm{Sp}_4(\mathbb{Z})$.

Modular forms and functions

Let Γ be a subgroup of finite index of $\text{Sp}_4(\mathbb{Z})$ and $k \in \mathbb{Z}$.

Definition

A Siegel modular form of weight k for Γ is a function $f:\mathcal{H}_2\to\mathbb{C}$ such that :

1 f is holomorphic on \mathcal{H}_2 ;

Definition

Siegel modular function for Γ : $f = \frac{f_1}{f_2}$ quotient of Siegel modular forms of same weight. Thus, $f(\gamma \Omega) = f(\Omega)$.

Theta functions

Theta functions (of characteristic $\frac{1}{2}$) :

Define for $a = (a_0, a_1)$ and $b = (b_0, b_1)$ in $\{0, 1\}^2$:

$$heta_{b_0+2b_1+4a_0+8a_1}(\Omega) = \sum_{n\in\mathbb{Z}^2} \exp(\imath\pi t(n+rac{a}{2})\Omega(n+rac{a}{2}) + \imath\pi t(n+rac{a}{2})b)$$

- 16 theta functions;
- 6 are identically zero;

•
$$\mathcal{P} = \{0, 1, 2, 3, 4, 6, 8, 9, 12, 15\};$$

• θ_i^2 = Siegel modular form of weight 1 for $\Gamma(2,4)$.

 $\Gamma(2,4) = \left\{ \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix}\right) \in \operatorname{Sp}_4(\mathbb{Z}) : \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix}\right) \equiv \mathit{Id}_4 \bmod 2, \mathit{B}_0 \equiv \mathit{C}_0 \equiv 0 \bmod 4 \right\}.$

Theta functions

Let

$$\begin{split} h_{10} &= \prod_{i \in \mathcal{P}} \theta_i^2, \\ h_4 &= \sum_{i \in \mathcal{P}} \theta_i^8, \\ h_6 &= \sum_{60 \text{ triples } (i,j,k) \in \mathcal{P}^3} \pm (\theta_i \theta_j \theta_k)^4, \\ h_{12} &= \sum_{15 \text{ tuples } (i,j,k,l,m,n) \in \mathcal{P}^6} (\theta_i \theta_j \theta_k \theta_l \theta_m \theta_n)^4. \end{split}$$

 \Rightarrow h_i is a Siegel modular form of weight *i* for the group $\text{Sp}_4(\mathbb{Z})$.

Generalization of the *j*-invariant

Definition

We call **Igusa invariants**, or *j*-invariants, the Siegel modular functions j_1, j_2, j_3 for $\text{Sp}_4(\mathbb{Z})$ defined by

$$j_1 := \frac{h_{12}^5}{h_{10}^6}, \quad j_2 := \frac{h_4 h_{12}^3}{h_{10}^4}, \quad j_3 := \frac{(h_{12}h_4 - 2h_6h_{10})h_{12}^2}{3h_{10}^4}$$

Theorem (Igusa 1962, Spallek 1994)

The field of Siegel modular functions invariant by $\text{Sp}_4(\mathbb{Z})$ is $\mathbb{C}(j_1, j_2, j_3)$.

Generically, two ppas have the same j-invariants if and only if they are isomorphic.

Isogeny

The functions

$$j_{\ell,p}(\Omega) := j_{\ell}(p\Omega), \quad \ell = 1, 2, 3,$$

are Siegel modular functions for $\Gamma_0(p)$, where

$${\sf F}_0(p):=ig\{ig(egin{array}{c}{A}&B\\{C}&Dig)\in{
m Sp}_4({\mathbb Z}):C\equiv0\ {
m mod}\ pig\}$$

is of index $[\operatorname{Sp}_4(\mathbb{Z}):\Gamma_0(p)]=p^3+p^2+p+1.$

Ppas (p, p)-isogenous to Ω : $p\gamma\Omega$, where $\gamma \in C_p = Sp_4(\mathbb{Z})/\Gamma_0(p)$.

Theorem (Bröker-Lauter 2009)

The field of Siegel modular functions invariant by $\Gamma_0(p)$ is $\mathbb{C}(j_1, j_2, j_3, j_{1,p})$.

We define

$$j_{\ell,p}^{\gamma}(\Omega) := j_{\ell}(p\gamma\Omega), \quad \ell = 1, 2, 3.$$

Modular polynomials in dimension 2

$$\Phi_{1,\rho}(X) = \prod_{\gamma \in \mathcal{C}_{\rho}} (X - j_{1,\rho}^{\gamma}),$$

(minimal polynomial of the extension $\mathbb{C}(j_1, j_2, j_3, j_{1,p})/\mathbb{C}(j_1, j_2, j_3))$,

and for
$$\ell = 2, 3,$$
 $\Psi_{\ell,p}(X) = \sum_{\gamma \in C_p} j_{\ell,p}^{\gamma} \prod_{\gamma' \in C_p \setminus \{\gamma\}} (X - j_{1,p}^{\gamma'}).$

Proposition (Bröker-Lauter 2009) $\Phi_{1,p}, \Psi_{2,p}, \Psi_{3,p} \in \mathbb{Q}(j_1, j_2, j_3)[X].$

We have $j_{\ell,p}^{\gamma}(\Omega) = \Psi_{\ell,p}(j_{1,p}^{\gamma}(\Omega), j_1(\Omega), j_2(\Omega), j_3(\Omega))/\Phi_{1,p}'(j_{1,p}^{\gamma}(\Omega), j_1(\Omega), j_2(\Omega), j_3(\Omega)).$

Algorithm

How to compute the modular polynomials?

Evaluation/interpolation :

$$\Phi_{1,p}(X,j_1(\Omega),j_2(\Omega),j_3(\Omega)) = X^{p^3+p^2+p+1} + \sum_{i=0}^{p^3+p^2+p} c_i(j_1(\Omega),j_2(\Omega),j_3(\Omega)) X^i.$$

where $c_i \in \mathbb{Q}(j_1, j_2, j_3)$.

Problem : Interpolation of trivariate rational fractions.

Interpolation

We can not choose the matrices Ω as we want !

Complexity

Inversion : $(j_1(\Omega), j_2(\Omega), j_3(\Omega)) \longrightarrow \Omega$ in $\tilde{O}(N)$ (Dupont 2006).

Fast evaluation of the Igusa invariants : $\tilde{O}(N)$ (Dupont 2006, Enge-Thomé 2014).

Complexity of the computation of the modular polynomials : $\tilde{O}(d_{j_1}d_{j_2}d_{j_3}p^3N)$.

Streng invariants

The modular polynomials have been computed by Dupont for p = 2 only. For p = 3 they are too big.

Other invariants?

 \Rightarrow Streng 2010 :

$$i_1 := \frac{h_4 h_6}{h_{10}}, \quad i_2 := \frac{h_4^2 h_{12}}{h_{10}^2}, \quad i_3 := \frac{h_4^5}{h_{10}^2}.$$

while Igusa :

$$j_1 := rac{h_{12}^5}{h_{10}^6}, \quad j_2 := rac{h_4 h_{12}^3}{h_{10}^4}, \quad j_3 := rac{(h_{12}h_4 - 2h_6h_{10})h_{12}^2}{3h_{10}^4}.$$

Theorem

The field of Siegel modular functions is $\mathbb{C}(j_1, j_2, j_3) = \mathbb{C}(i_1, i_2, i_3)$.

Comparison

For $p = 3 : \Phi_{1,3}(X, f_1, f_2, f_3) = X^{40} + \sum_{i=0}^{39} c_i(f_1, f_2, f_3) X^i$.

i	j ₁	<i>i</i> 1	j2	i ₂	j3	i ₃
0	394	61	288	32	278	32
1	302	61	286	32	276	31
2	302	61	286	32	276	31
:	÷		÷			÷
37	268	41	382	22	253	21
38	263	36	375	21	248	19
39	257	31	367	20	243	17

Memory space :

- *p* = 2 : 2.1 MB against 57 MB.
- *p* = 3 : 890 MB.

Denominators

• Denominators for Igusa invariants for p = 2:

 $j_1^{\alpha} D_2(j_1, j_2, j_3)^6$ (α ranging between 5 and 21)

• Denominators for Streng invariants for p = 2:

 $i_3^\alpha D_2(i_1,i_2,i_3)$ and $i_3^\alpha D_2(i_1,i_2,i_3)^2~(\alpha$ varies from 0 to 3)

• Denominators for Streng invariants for p = 3:

 $i_3^{\alpha} D_3(i_1, i_2, i_3)^2$ and $i_3^{\alpha} D_3(i_1, i_2, i_3)^4$ (α varies from 0 to 4)

Examples

 $\begin{array}{l} D_2(lg) = 236196j_1^5 + (-972j_2^2 + (5832j_3 + 19245600)j_2 + (-8748j_3^2 - 104976000j_3 + 125971200000))j_1^4 + (j_2^4 + (-12j_3 - 77436)j_2^3 + (54j_3^2 + 870912j_3 - 507384000)j_2^2 + (-108j_3^3 - 3090960j_3^2 + 2099520000j_3)j_2 + (81j_3^4 + 349920j_3^3))j_1^3 + (78j_2^5 + (-1332j_3 + 592272)j_2^4 + (8910j_3^2 - 4743360j_3)j_2^3 + (-29376j_3^3 + 9331200j_3^2)j_2^2 + 47952j_3^4j_2 - 31104j_3^5)j_1^2 + (-159j_2^6 + (1728j_3 - 41472)j_2^5 - 6048j_3^2j_2^4 + 6912j_3^3j_2^3)j_1 + (80j_2^7 - 384j_3j_2^6). \end{array}$

$$\begin{split} D_2(Str) &= (24576i_3i_1^5 + (96i_2^3 - 4608i_3i_2)i_1^4 + (-6220800i_3i_2 - 12288i_3^2)i_1^3 + (-23328i_2^4 - 48i_3i_2^3 + 1088640i_3i_2^2 + 2304i_3^2i_2 + 24883200i_3^2)i_1^2 + (93312i_3i_2^3 + 419904000i_3i_2^2 - 5909760i_3^2i_2 + (1536i_3^3 - 8398080000i_3^2))i_1 + (1417176i_2^5 - 5832i_3i_2^4 + (6i_3^2 - 94478400i_3)i_2^3 + 287712i_3^2i_2^2 + (-288i_3^3 + 1154736000i_3^2)i_2 + (-248832i_3^3 + 755827200000i_3^2))). \end{split}$$

 $D_3(Str) = 1073741824i_1^{13}i_2i_3 + 1048576i_1^{12}i_2^4 - 100663296i_1^{12}i_2^2i_3 805306368i_{1}^{12}i_{3}^{2} + 23653961957376i_{1}^{11}i_{2}^{2}i_{3} - 1610612736i_{1}^{11}i_{2}i_{3}^{2} + 391378894848i_{1}^{11}i_{3}^{2} + 3913788648i_{1}^{11}i_{3}^{2} + 3913786i_{1}^{11}i_{3}^{2} + 3913786i_{1}^{11}i_{3}^{11}i_{3}^{2} + 3913786i_{1}^{11}i_{3}^{2} + 3913786i_{1}^{11}i_{3}^{2} + 3913786i_{1}^{11}i_{3}^{11}i_{3}^{2} + 3913786i_{1}^{11}i_{3}^{11}i_{3}^{2} + 3913786i_{1}^{11}i_{3}^{11}i_{3}^{11} + 3913786i_{1}^{11}i_{3}^{11}i_{3}^{11} + 3913786i_{1}^{11}i_{3}^{11} + 3913786i_{1}^{11}i_{3}^{11} + 3913786i_{1}^{11}i_{3}^{11} + 3916i_{1}^{11}i_{1}^{11}i_{3}^{11} + 3916i_{1}^{11}i_{1}^{11}i_{3}^{11} + 3916i$ $23123460096i_{1}^{10}i_{2}^{5} - 1572864i_{1}^{10}i_{3}^{4}i_{3} - 2220871385088i_{1}^{10}i_{2}^{5}i_{3} + 150994944i_{1}^{10}i_{2}^{2}i_{3}^{2} + 150944i_{1}^{10}i_{2}^{2}i_{3}^{2} + 15094i_{1}^{10}i_{2}^{2}i_{3}^{2} + 15094i_{1}^{10}i_{2}^{2}i_{3}^{2} + 1506i_{1}^{10}i_{1}^{2}i_{2}^{2} + 1506i_{1}^{10}i_{1}^{2}i_{3}^{2} + 1506i_{1}^{10}i_{1}^{2}i_{3}^{2} + 1506i_{1}^{10}i_{1}^{2}i_{1}^{2} + 15$ $1912538199490560i_{10}^{10}i_{2}i_{7}^{2}+1207959552i_{10}^{10}i_{7}^{3}-39627113103360i_{10}^{10}i_{7}^{2}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}^{4}i_{7}+1885039755264i_{7}^{9}i_{7}+1885039755264i_{7}^{9}i_{7}+1885039755264i_{7}^{9}i_{7}+1885039755264i_{7}^{9}i_{7}+1885039755264i_{7}+188503975666i_{7}+186506$ 217027664414244864i?i3i1-113664992477184i?i3i2+1006632960i?ivi2- $152617815730248744960i_{1}^{9}i_{2}i_{1}^{2}-1448199755661312i_{1}^{9}i_{1}^{3}+212468467875840i_{1}^{8}i_{2}^{6}+$ $65691648000i_1^3i_2^5i_3 + 983040i_1^3i_3^5i_4^2 - 169468806884327424i_1^3i_3^5i_3 - 6305124188160i_1^3i_3^5i_4^2 - 1694688068843274426i_1^3i_3^5i_3^5 - 6305124i_1^3i_3^5i_3^5 - 6305i_1^3i_3^5 - 630i_1^3i_3^5 - 60i_1^3i_3^5 - 60i_1^3i_3$ $94371840i_{1}^{8}i_{2}^{2}i_{3}^{2} + 552004832446119936i_{1}^{8}i_{2}^{2}i_{3}^{2} - 853581062209536i_{1}^{8}i_{2}i_{3}^{2} +$ 2192102843693456141844480i^{*}i₂i²-754974720i^{*}i⁴+115173392856354127872i^{*}i²- $13232363778146304i_1^7i_2^5i_3 - 784286613504i_1^7i_2^4i_3^2 + 3201946631712311279616i_1^7i_2^5i_3 +$ $335544320i_1^7i_2i_3^4 + 298045608749759987712i_1^7i_2i_3^3 + 602576730980352i_1^7i_3^4 -$ 1699781338847946744004608i7i3+1041201726825553920i7i3+634990989219840i7i5ia- $52624982016i_{1}^{6}i_{3}^{1}i_{3}^{2} + 283321851788881281024i_{1}^{6}i_{3}^{1}i_{3} - 327680i_{1}^{6}i_{3}^{1}i_{3}^{1} + 220052660032438272i_{1}^{6}i_{3}^{1}i_{3}^{2}i_{3}^{2} + 283321851788881281024i_{1}^{6}i_{3}^{1}i_{3}^{1} - 327680i_{1}^{6}i_{3}^{1}i_{3}^{1} + 220052660032438272i_{1}^{6}i_{3}^{1}i_{3}^{2} + 283321851788881281024i_{1}^{6}i_{3}^{1}i_{3}^{2} - 327680i_{1}^{6}i_{3}^{1}i_{3}^{1} + 220052660032438272i_{1}^{6}i_{3}^{1}i_{3}^{2} + 283321851788881281024i_{1}^{6}i_{3}^{2}i_{3}^{2} - 327680i_{1}^{6}i_{3}^{1}i_{3}^{1} + 220052660032438272i_{1}^{6}i_{3}^{2}i_{3}^{2} + 283321851788881281024i_{1}^{6}i_{3}^{2}i_{3}^{2} - 327680i_{1}^{6}i_{3}^{1}i_{3}^{1} + 220052660032438272i_{1}^{6}i_{3}^{2}i_{3}^{2} + 283321851788881281024i_{1}^{6}i_{3}^{2}i_{3}^{2} - 327680i_{1}^{6}i_{3}^{1}i_{3}^{2} + 220052660032438272i_{1}^{6}i_{3}^{2}i_{3}^{2} + 283321851788881281024i_{1}^{6}i_{3}^{2}i_{3}^{2} - 327680i_{1}^{6}i_{3}^{2}i_{3}^{2} + 283321851788881281024i_{1}^{6}i_{3}^{2}i_{3}^{2} + 283321861666i_{1}^{6}i_{3}^{2}i_{3}^{2} + 283321866i_{1}^{6}i_{3}^{2}i_{3}^{2} + 28332186i_{1}^{6}i_{3}^{2}i_{3}^{2} + 28332i_{1}^{6}i_{3}^{2}i_{3}^{2} + 28332i_{1}^{6}i_{3}i_{3}^{2} + 28332i_{1}^{6}i_{3}i_{3}^{2} + 28332i_{1}^{6}i_{3}i_{3}^{2} + 28332i_{1}^{6}i_{3}i_{3}^{2} + 28332i_{1}^{6}i_{3}i_{3}^{2} + 28332i_{1}^{6}i_{3}i_{3}i_{3}^{2} + 28332i_{1}^{6}i_{1}i_{3}i_{3}i_{3}^{2} + 28332i_{1}^{6}i_{1}i_{3}i_{3}i_{3} + 28332i_{1}i_{1}i_{3}i_{3}$ $5051361263616i_{1}^{6}i_{3}^{2}i_{3}^{2} - 190938200244582471892992i_{1}^{6}i_{3}^{2}i_{3}^{2} + 31457280i_{1}^{6}i_{3}^{2}i_{3}^{4} -$ $38286251079255982080i_1^6i_2^2i_3^3 - 7784410537473661314263900160i_1^6i_2^2i_3^2$ 81096968503296i⁵i,i⁴-6268888273473709362118656i⁵i,i³+251658240i⁶i⁴- $10569523360776192i_{1}^{2}i_{2}^{2}-4638615481599896235073536i_{1}^{2}i_{3}^{2}-118674948096i_{1}^{2}i_{3}^{2}+$ $9503957409357763952640i_1^5i_2^4i_3^2+2941904259840540672i_1^5i_2^3i_3^3+3618779438490652637954187264i_1^2i_2^2i_3^2i_3^2+3618779438490652637954187264i_1^2i_2^2i_3^2+2941904259840540672i_1^5i_2^3i_3^3+3618779438490652637954187264i_1^2i_2^2i_3^2+2941904259840540672i_1^5i_2^3i_3^3+3618779438490652637954187264i_1^2i_2^2+2941904259840540672i_1^5i_2^3i_3^3+3618779438490652637954187264i_1^2i_2^2+2941904259840540672i_1^5i_2^3i_3^3+3618779438490652637954187264i_1^2i_2^2+2941904259840540672i_1^5i_2^3i_3^3+3618779438490652637954187264i_1^2+2941904259840540672i_1^3i_2^3i_3^3+3618779438490652637954187264i_1^2+2941904259840540672i_1^3i_2^3+3618779438490652637954187264i_1^2+2941904259840540672i_1^3i_2^3+3618779438490652637954187264i_1^2+2941904259840540672i_1^3i_2^3+3618779438490652637954187264i_1^2+2941904259840540672i_1^3i_2^3+3618779438490652637954187264i_1^2+2941904259840540672i_1^3i_2^3+3618779438490652637954i_1^3+36187794i_1^3+36i_1^3$ $22887256817664i_{1}^{5}i_{2}^{2}i_{3}^{4} + 1557150937623844175609856i_{1}^{5}i_{3}^{2}i_{3}^{3} + 62914560i_{1}^{5}i_{2}i_{3}^{5} - 6291466i_{1}^{5}i_{2}i_{3}^{5} - 629146i_{1}^{5}i_{2}i_{3}^{5} - 629146i_{1}^{5}i_{2}i_{3}^{5} - 629146i_{1}^{5}i_{2}i_{3}^{5} - 629146i_{1}^{5}i_{2}i_{3}^{5} - 629i_{1}^{5}i_{2}i_{3}^{5} - 626i_{1}^{5}i_{2}i_{3}^{5} - 626i_{1}^{5}i_{2}i_{2}i_{3}^{5} - 626i_{1}i_{2}i_{2}i_{3}^{5} - 626i_{1}i_{2}i_{2}i_{$ $86670799689200173056i_{1}^{2}i_{2}i_{3}^{4} + 78210945482001523924713209856i_{1}^{2}i_{2}i_{3}^{4} +$ 91081207185408i²i² + 4566207265162884601085952i²i⁴ - 80900957611133776805681037312i²i³ + $2870105097548602679040i_1^4i_2^8 + 896261713716314880i_1^4i_2^2i_3 + 1880971493524992i_1^4i_2^2i_3^2 + 188097149352492i_1^4i_2^2i_3^2 + 188097149352492i_1^4i_2^2 + 1880971492i_1^4i_2^2 + 1880971492i_1^4i_2^2 + 1880971492i_1^4i_2^2 + 188097149i_2^2i_3^2 + 18809i_1^4i_2^2i_3^2 + 18800i_1^4i_2^2i_3^2 + 18800i_1^2i_3^2 + 18$ 2559594048233864351947776i4i6i.+11221327872i4i5i2+780494067727704797184i45i2+ 1077088223232i⁴i³i⁴+8443058316853636251648i⁴i²i³+4652016478805165040826933736448i⁴i³i⁴ 589824013121-1338796779019960321312-3683181504016794583786842316813121+ $82081531035648i_1^4i_2i_5^5 + 2449653429540496482238464i_1^4i_2i_5^4 - 1811217712379191892949216756695$ $47185920i_{1}^{4}i_{1}^{4} + 71004250037730410496i_{1}^{4}i_{2}^{4} - 56148085403579776990704795648i_{1}^{4}i_{2}^{4} -$ $193303195584228338932224i_{11}^{3}i_{12} + 90123759266066684928i_{16}^{3}i_{6}^{4} + 86253682640195233723228416$ $14192373000496360845312i_1^3i_2^4i_3^3 - 2891463543570311890566865090560i_1^3i_2^4i_3^2 +$ $883081787222163456i_1^2i_2^2i_3^4 + 5995098052733571847066939392i_1^2i_3^2i_3^2 - 8811853774848i_1^2i_2^2i_3^2 - 8811853774848i_1^2i_3^2i_3^2 - 8811853774848i_1^2i_3^2i_3^2 - 8811853774848i_1^2i_3^2 - 88118537748i_1^2i_3^2 - 881185376i_1^2i_3^2 - 881185i_1^2i_3^2 - 881185i_1^$ $1400003098553579221647360i_1^3i_{2}^{2}i_{3}^{4} + 97479251470446402968352866672640i_1^3i_{2}^{2}i_{3}^{3} + 97479251470446402968352866672640i_{1}^{3}i_{2}^{2}i_{3}^{3} + 9747925147046602968352866672640i_{1}^{3}i_{2}^{2}i_{3}^{3} + 9747925147046602968352866672640i_{1}^{3}i_{2}^{2}i_{3}^{3} + 9747925147046602968352866672640i_{1}^{3}i_{2}^{2}i_{3}^{3} + 9747925147046602968352866672640i_{1}^{3}i_{2}^{2}i_{3}^{3} + 97479251460i_{1}^{3}i_{2}^{2}i_{3}^{3} + 97476i_{1}^{3}i_{2}^{3}i_{3}^{3} + 976i_{1}^{3}i_{2}^{3}i_{3}^{3} + 976i_{1}^{3}i_{2}^{3}i_{2}^{3} + 976i_{1}^{3}i_{2}^{3}i_{2$ $105529273322620022295815917468569600i_1^3i_2i_3^3 - 68018900041728i_1^3i_3^6 4219485009161078228590656i_1^2i_2^9 - 4663920783516479353440i_1^2i_2^8i_3 - 8349593486170324608i_1^2i_2^2i_3^2$ 2594927222047499837745975552r7i3i++168462522797184r7i5r7+3615767749123322594310432r7i 300837888行前者-215921145233199135744行前者+616229927403745317212702913984行前者- $6144i_{1}^{2}i_{2}^{4}i_{1}^{2} + 10665677157580800i_{1}^{2}i_{2}^{4}i_{1}^{4} - 487539271451605190224113792i_{1}^{2}i_{2}^{4}i_{2}^{3} +$

 $16808787545488790224850857944576i_{1}^{2}i_{2}^{2}i_{1}^{2} + 589824i_{1}^{2}i_{2}^{2}i_{1}^{2} - 2882413394767282176i_{1}^{2}i_{2}^{2}i_{1}^{2} - 2882413394767282176i_{1}^{2}i_{2}^{2}i_{1}^{2} - 28824i_{1}^{2}i_{2}^{2}i_{1}^{2} - 28824i_{1}^{2}i_{1}^{2}i_{1}^{2} - 28824i_{1}^{2}i_{1}^{2}i_{1}^{2}i_{1}^{2} - 28824i_{1}^{2}i_{1}^{2$ 249601482395717764722799104i?i?i4-54775048731235614666029499770839680i?i?i4 $9840529244160i^2_{i_2i_2} + 1200618490930489311952896i^2_{i_2i_2} - 57161118334951760396107821170688$ 4718592i7i7-20598850591658606592i7i5+1756148202989834383269273600i7i7- $178977835709619524148384i_1i_2i_3^2+3124836357738656041461702205440i_1i_2i_3+$ $80327353040040889728i_1i_5^6i_7^2 - 52049511457475420205500787648i_1i_5^6i_7^2 - 5204950i_7^6i_7^2 - 5204950i_7^6i_7^2 - 5204950i_7^6i_7^6 - 5206i_7^6i_7^6 - 5206i_7^6i_7^6 - 5206i_7^6 - 520i_7^6 - 520i_7^6$ 171351407729664i, i3i3+31066479848877793459524864i, i3i3-17182126661344900461156343499 $9835831296i_1i_9^4i_3^4 - 7865818063161388895232i_1i_4^4i_3^4 + 1084885263822875380568914521600i_1i_9^4i_3^4 + 10848852638228753805689145200i_1i_9^4i_3^4 + 10848852638228753805689145200i_1i_9^4i_3^4 + 10848852638228753805689145200i_1i_9^4i_3^4 + 10848852638228753805689145200i_1i_9^4i_3^4 + 1084885663826800i_1i_9^4i_3^4 + 10848856638200i_1i_9^4i_3^4 + 10848866600i_1i_9^4i_3^4 + 10848866600i_1i_9^4i_3^4 + 10848866600i_1i_9^4i_3^4 + 1084886600i_1i_9^4i_3^4 + 1084886600i_1i_9^4i_3^4 + 1084886600i_1i_9^4i_3^4 + 1084886600i_1i_9^4i_3^4 + 1084886600i_1i_9^4i_3^4 + 1084886600i_1i_9^4i_3^4 + 108488600i_1i_9^4i_3^4 + 108488600i_1i_9^4i_3^4 + 10848600i_1i_9^4i_3^4 + 10848600i_1i_9^4i_3^4 + 10848600i_1i_9^4i_3^4 + 1086600i_1i_9^4i_3^4 + 1086600i_1i_9^4i_3^4 + 1086600i_1i_9^4i_3^4 + 1086600i_1i_9^4i_3^4 + 1086600i_1i_9^4i_3^4 + 108600i_1i_9^4i_3^4 + 108600i_1i_9^4i_1i_9^4 + 108600i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^4i_1i_9^$ 26769697166776320i1i3i-350507041737785106690571776i1i3i+85406329739045699043184334 $859222867968i_1i_{2^15}^2 - 158918678997153812471808i_1i_2^2i_3^5 + 6034098811311665176411960989696i_1i_2^2i_3^5 - 158918678997153812471808i_1i_2^2i_3^5 - 158918678997153812471808i_1i_2^2i_3^5 + 6034098811311665176411960989696i_1i_2^2i_3^5 - 15891867896i_1i_2^2i_3^5 - 15891866i_1i_2^2i_3^5 - 15891866i_1i_2^2i_3^5 - 1589186i_1i_2^2i_3^5 - 1589186i_1i_2^2i_3^5 - 1589186i_1i_3^2i_3^5 - 1589186i_1i_3^2i_3^2 - 1589i_1i_3^2 - 1580i_1i_3^2 - 1$ 8219687635411560887978987415249552000i+i2i2+262144i+i+i2-1758652150455042048i+i+i2-44934202777922750168136710661864960000i,i⁴+2584698285924232982401063716i¹⁰-1076448164268934161725684443i++1147158102984103595196943f=-364122297955518385909414 1396299980777369520070152i5i3+10083133967459042825973517961268i5i3- $83047680i_{44}^{5} - 3420729739797762816i_{44}^{5} - 23288737190432645290652458416i_{44}^{5} +$ $58879180974264105377458087129861488i_{3}^{2}i_{4}^{2}+256i_{7}^{4}i_{5}^{6}-2818796161673088i_{7}^{4}i_{5}^{6}+$ 19128585162994430843368656i\$i\$-249217801853496426807044659839576i\$i\$+ $412301901384482808596505385031449200i\frac{2}{2}i\frac{2}{3}-24576i\frac{2}{2}i\frac{2}{3}+169510614703349760i\frac{2}{2}i\frac{2}{3}+$ 227795857854991291357100928i2i2-2175526599854742507306371238190944i2i2 $63764692992i_2i_3^2 + 43405460712485963808768i_2i_5^6 + 1477862393729354088693012596736i_2i_5^6 - 63764692992i_2i_3^2 + 6376469292i_2i_3^2 + 6376469292i_2i_3^2 + 63764692i_3^2 + 637646i_3^2 + 637646i_3^2 + 637646i_3^2 + 63764i_3^2 + 6376i_3^2 + 6376i_3^2$ $5673335901704124338996627108519232000i_{2}i_{2}^{4} - 196608i_{2}^{8} + 1418239425570766848i_{2}^{7} - 196608i_{2}^{8} + 1418239425570766848i_{2}^{8} - 196608i_{2}^{8} + 19$ 6324413850721664271452160i5+1498018164069949798113492863030784i5-388378249246442449689550606563892515000074

Computing modular polynomials

Dimension 1 : elliptic curves

Dimension 2 : abelian surfaces

- Computation of the modular polynomials
- Smaller invariants

Alternative invariants

 \Rightarrow look at modular functions for another group.

$$b_i(\Omega) := rac{ heta_i(\Omega/2)}{ heta_0(\Omega/2)}$$
, $i = 1, 2, 3$.

Modular functions for $\Gamma(2, 4)$.

Modular polynomials with b_1 , b_2 , b_3

Theorem (Mumford, Manni)

The field of modular functions invariant by $\Gamma(2,4)$ is $\mathbb{C}(b_1, b_2, b_3)$.

We look at $C_p = \Gamma(2,4)/(\Gamma_0(p) \cap \Gamma(2,4))$, p > 2.

The index is still $p^3 + p^2 + p + 1$.

Proposition

The field of modular functions invariant by $\Gamma_0(p) \cap \Gamma(2,4)$ is $\mathbb{C}(b_1, b_2, b_3, b_{1,p})$.

We compute $\Phi_{1,p}(X, b_1, b_2, b_3) = \prod_{\gamma \in C_p} (X - b_{1,p}^{\gamma})$ and $\Psi_{\ell,p}(X, b_1, b_2, b_3) = \sum_{\gamma \in C_p} b_{\ell,p}^{\gamma} \prod_{\gamma' \in C_p \setminus \{\gamma\}} (X - b_{1,p}^{\gamma'})$. They are in $\mathbb{Q}(b_1, b_2, b_3)[X]$.

Algorithm

• Evaluation of the b_i in $\tilde{O}(N)$ (Dupont 2006, Enge-Thomé 2014).

• Inversion :
$$(b_1, b_2, b_3)(\Omega) \longrightarrow \Omega$$
?

$$(b_1, b_2, b_3)(\Omega) \longrightarrow (j_1, j_2, j_3)(\Omega) \longrightarrow \Omega \mod \operatorname{Sp}_4(\mathbb{Z}).$$

Problem : we want $\Omega \mod \Gamma(2,4)$!

Solutions :

- Compute $b_i(\gamma\Omega)$ for $\gamma\in {
 m Sp}_4({\mathbb Z})/\Gamma(2,4).$ But index 11520!
- Use of functional equation of the theta functions.

Denominators with the theta functions

Polynomials computed for p = 3, 5, 7.

Always D_p in the denominator.

It is symmetric and there are relations modulo 2 and 4 between the exponents.

Symmetries

Theorem (M. 2014)

For all prime p, we have $\Phi_{1,p}(X, b_1, b_2, b_3) = \Phi_{1,p}(X, b_1, b_3, b_2)$ and $\Psi_{2,p}(X, b_1, b_3, b_2) = \Psi_{3,p}(X, b_1, b_2, b_3)$.

Proof : there always exist $\gamma \in \operatorname{Sp}_4(\mathbb{Z})/\Gamma(2,4)$ such that for all $\Omega \in \mathcal{H}_2$:

$$\begin{split} & \Phi_{1,p} \text{ is a minimal polynomial.} \\ & \Psi_{\ell,p}(b_{1,p}) = b_{\ell,p} \Phi_{1,p}'(b_{1,p}) \text{ for } \ell = 2, 3. \text{ Action on } \Psi_{2,p}(X) : \\ & \Psi_{2,p}(b_{1,p}, b_1, b_3, b_2) = b_{3,p} \Phi_{1,p}'(b_{1,p}, b_1, b_2, b_3) := \Psi_{3,p}(b_{1,p}, b_1, b_2, b_3). \end{split}$$

Relations modulo 2 and 4

We look at matrices $\boldsymbol{\gamma}$ such that

$$\begin{aligned} b_1(\gamma \Omega) &= i^{\alpha_1} b_1(\Omega) \\ b_2(\gamma \Omega) &= i^{\alpha_2} b_2(\Omega) \\ b_3(\gamma \Omega) &= i^{\alpha_3} b_3(\Omega) \end{aligned}$$
 and

$$\begin{array}{rcl} b_{1,p}(\gamma\Omega) &=& i^{\alpha_4}b_{1,p}(\Omega) \\ b_{2,p}(\gamma\Omega) &=& i^{\alpha_5}b_{2,p}(\Omega) \\ b_{3,p}(\gamma\Omega) &=& i^{\alpha_6}b_{3,p}(\Omega) \end{array}$$

Comparison

For p = 3 :

i	j ₁	<i>i</i> 1	b_1	j ₂	i ₂	<i>b</i> ₂	j3	i ₃	<i>b</i> ₃
0	394	61	40	288	32	10	278	32	10
1	302	61	37	286	32	12	276	31	12
2	302	61	38	286	32	14	276	31	14
:		÷			÷			÷	
37	268	41	17	382	22	16	253	21	16
38	263	36	14	375	21	14	248	19	14
39	257	31	13	367	20	12	243	17	12

• $p = 3: 175 \text{ KB} = \sim 5000 \text{ smaller than Streng};$

• *p* = 5 : 200 MB;

• p = 7 : 30 GB;

Computing modular polynomials

Dimension 1 : elliptic curves

Dimension 2 : abelian surfaces

- Computation of the modular polynomials
- Smaller invariants

Hilbert space

Let $D \in \mathbb{Z}^{>0}$ and $K = \mathbb{Q}(\sqrt{D})$ a real quadratic field. We take $D \in \{2, 5\}$ for simplicity. The group $\mathrm{SL}_2(\mathcal{O}_K)$ acts on \mathcal{H}_1^2 .

Proposition

The Hilbert modular surface $\mathcal{H}_1^2/\mathrm{SL}_2(\mathcal{O}_K)$ is a moduli space for isomorphism classes of ppas with real multiplication by \mathcal{O}_K .

Let p a prime number such that

$$p = \beta \overline{\beta}, \quad \beta \in O_K^+.$$

 β -isogenous surfaces : $\beta\gamma z$, $z \in \mathcal{H}_1^2$ and $\gamma \in C_p = SL_2(\mathcal{O}_K)/\Gamma_0(\beta)$; $\#C_p = p + 1$.

Hilbert and Humbert

The following diagram is commutative :

$$\begin{array}{c} \mathcal{H}_{1}^{2} \xrightarrow{\phi} \mathcal{H}_{2} \\ \downarrow \\ \downarrow \\ \mathcal{H}_{1}^{2}/\mathrm{SL}_{2}(\mathcal{O}_{\mathcal{K}}) \xrightarrow{\rho} \mathcal{H}_{2}/\mathrm{Sp}_{4}(\mathbb{Z}) \end{array}$$

where ρ is generically of degree 2 onto the Humbert surface $H_{\Delta_{\kappa}}$.

Hilbert modular function

Gundlach invariants : J_1 and J_2 for D = 2 and 5 only.

Two modular polynomials Φ_{β} and Ψ_{β} in $\mathbb{Q}(J_1, J_2)[X]$.

Algorithm

For D = 5, we have (Resnikoff 1974, Lauter-Yang 2011)

$$\begin{array}{rcl} j_1 \circ \phi &=& 8J_1(3J_2^2/J_1-2)^5;\\ j_2 \circ \phi &=& \frac{1}{2}J_1(3J_2^2/J_1-2)^3;\\ j_3 \circ \phi &=& 2^{-3}J_1(3J_2^2/J_1-2)^2(4J_2^2/J_1+2^53^2J_2/J_1-3). \end{array}$$

These equations can be inverted by Gröbner basis.

Fast evaluation of the Gundlach invariants :

$$z o \phi(z) = \Omega o (j_1(\Omega), j_2(\Omega), j_3(\Omega)) o (J_1(z), J_2(z)).$$

Inversion of the Gundlach invariants :

$$(J_1(z),J_2(z))
ightarrow (j_1(\phi(z)),j_2(\phi(z)),j_3(\phi(z)))
ightarrow \phi(z)
ightarrow z.$$

Results

D=2

р	2	7	17	23	31	41
Memory space	8.5 <i>KB</i>	172 <i>KB</i>	5.8 <i>MB</i>	21 <i>MB</i>	70 <i>MB</i>	225 <i>MB</i>

D=5

р	5	11	19	29	31
Memory space	22 <i>KB</i>	3.5 <i>MB</i>	33 <i>MB</i>	188 <i>MB</i>	248 <i>MB</i>

Theta functions

Other invariants?

$$\tilde{j}_i = j_i \circ \phi, \quad i = 1, 2, 3$$

or

$$\tilde{b}_i = b_i \circ \phi, \quad i = 1, 2, 3.$$

Works for any D. Three invariants for a space of dimension 2 : need the equation P of the Humbert component (Gruenewald 2008).

Interpolation : $\mathbb{Q}(\tilde{b}_1, \tilde{b}_2, \tilde{b}_3)/(P) = \mathbb{Q}(\tilde{b}_1, \tilde{b}_2)[\tilde{b}_3]/(P).$

Conclusion

- Implementation and generalization of the algorithm of Dupont;
- Used smaller invariants and proved properties with them;
- Definition and computation of modular polynomials with cyclic isogenies.

Perspectives

- Compute more modular polynomials;
- Release the code;
- Applications of the polynomials.