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finite field *

I Multiplicative group G generated
by g : solving the DLP in G
is inverting the map: x 7→ gx

I A hard problem in general,
and used as such in cryptography.

I Several groups in practice:

I Two families of algorithms :
I Generic algorithms (Pollard’s

Rho, Pohlig-Hellman...)
I Specific algorithms

(Index Calculus *)
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Index Calculus Algorithms

If you want to compute Discrete Logs in G :

1. Relation Collection (or Sieving) Phase
G

known

→ Create a lot of sparse multiplicative relations between
some (small) specific elements = the factor base∏

gei
i =

∏
ge′i

i ⇒
∑

(ei − e′i ) log(gi) = 0

→ So a lot of sparse linear equations
2. Linear Algebra
→ Recover the Discrete Logs of the factor base

3. Individual Logarithm Phase
→ Recover the Discrete Log of an arbitrary element
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Sieving Phase and Commutative Diagram

I How to obtain relations? E

E1 E2

G

u1
u2

v1
v2

∀x ∈ E , v1(u1(x)) = v2(u2(x)) thanks to commutativity.

I How to obtain "good" relations ?
I Define B1 and B2 two small sets.

Factor base :=v1(B1)
⋃
v2(B2)

I Keep only x such that ui(x) =
∏

bi∈Bi
bi and get:

thanks to morphisms.
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Number Field Sieve (NFS)

I Solves the DLP for medium and high char. fields Fpn .
I Belongs to the family of Index Calculus algorithms
⇒ 3 phases.

I Commutative Diagram ?
With m ∈ Fpn a root of f1 and f2 :

Z [X ]

Q [X ] /(f1(X )) ∼= Q(θ1) Q(θ2) ∼= Q [X ] /(f2(X ))

Fpn

X 7→ θ1

X 7→ θ2

θ1 7→ m
θ2 7→ m

Factor base ? Bi := prime ideals (of the ring of integers)
with a norm smaller than a certain smoothnessbound.
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I Notation : LQ(α, c) = exp
(
c(logQ)α(log logQ)1−α

)

I In FQ of characteristic p = LQ(lp, c) :

Co
m
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ity

of
D
LP

0 1
3

2
3 1 lp

Quasi-Polynomial FFS

NFS

2006: Joux, Lercier
Smart, Vercauteren
2014: Barbulescu, P.
2015: Barbulescu,
Gaudry, Guillevic, Morain
This talk, Part I: P.

LQ
( 1
3

) LQ
(
1
3 , low c

)
LQ (α + o(1))

when p = LQ (α)

medium p high psmall p
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downturn:
MNFS-Conj
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Polynomial Selection

Preliminaries to the diagram:

NFS-Conj

Find two polynomials f1 and f2 with
an irreducible factor I of degree n modulo p.

}
Polynomial
selection

I Define Fpn as Fp[X ]/(I).
I ⇒ f1 and f2 have a common root m ∈ Fpn .

Requirement: Good prob. to obtain a relation
→ Good prob. for a norm to be smooth
→ Small norms† in the two number fields
→ f1 and f2 with not too high degrees and not too large
coefficients.

New polynomial selection proposed by Barbulescu, Gaudry,
Guillevic and Morain: the Conjugation Method.

†NormQ[X ]/(f )(ϕ) = Res(ϕ, f ) if f is monic.
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→ Good prob. for a norm to be smooth
→ Small norms† in the two number fields

→ f1 and f2 with not too high degrees and not too large
coefficients.

New polynomial selection proposed by Barbulescu, Gaudry,
Guillevic and Morain: the Conjugation Method.

†NormQ[X ]/(f )(ϕ) = Res(ϕ, f ) if f is monic.
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The Conjugation Method

Aim: Find two polynomials f1 and f2 with an irreducible
factor of degree n modulo p.

I Start with ga and gb ∈ Z[X ]
I Find u and v small integers such that X 2 + uX + v is:

I irreducible over Z[X ] but has roots λ and λ′ modulo p
I ga + λgb is irreducible modulo p

I Set f1 = ga
2 − ugagb + vgb

2. Note that
f1 ≡ ga

2 + (λ+ λ′)gagb + λλ′gb
2 mod p

≡ (ga + λgb)(ga + λ′gb) mod p
I Rewrite λ = a/b mod p with a, b ≈ √p (continued frac.)

I Set f2 = bga + agb. Note that f2 ≡ ga + λgb mod p.

Degrees

< n

n

2n

n

Coeffs.

small
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In practice
Sparse linear algebra

Nearly sparse linear algebra

The Multiple Number Field Sieve

MNFS

I Idea from integer factorization [Coppersmith 93], prime
fields [Matyukhin 03], high and medium characteristic
[Barbulescu, P. 14].

I With m a common root of f1, . . . , fV in Fpn :
Z [X ]

Q (θ1) Q (θ2) Q (θi) Q (θV−1) Q (θV )

Fpn

X 7→ θi

θi 7→ m

I Choice of poly. f1 and f2 with a common root m in Fpn

⇒ linear combination of f1 and f2
⇒ for i = 3, . . . ,V : fi = αi f1 + βi f2 with αi , βi ≈

√
V .
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In practice
Sparse linear algebra

Nearly sparse linear algebra

Dissymetric MNFS in one slide

Dissymmetric = when a polynomial is better than the
other.

I E.g: f1, f2 have same coeff. size but deg f2 > deg f1

⇒ Higher norms in Q(θ2), . . . ,Q(θV ) than in Q(θ1).
I Sieving: keep only polynomials that lead to a B-smooth

norm in the first number field and a B′-smooth norm in
(at least) one other number field.
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In practice
Sparse linear algebra

Nearly sparse linear algebra

Our aim is to combine:

I the Conjugation Method
I with MNFS.

NFS-Conj

+

MNFS

⇒ Best algorithm to solve the DLP
in medium characteristic finite fields Fpn .

=
MNFS-CM
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improvements
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Combining Conj and MNFS

In practice
Sparse linear algebra

Nearly sparse linear algebra

Obstruction and Dreams

Conj produces:
I f1 with high degree, small coefficients
I f2 with small degree, high coefficients

I ⇒ Linear combinations of f1 and f2 would have both
inconveniences: high degrees and high coefficients.

Our main idea:
I Linear combinations of

f1 and f2 and another poly. f3
I What was the f3 of my dreams ?

f3 with small degree, high coefficients
+ Shares the same common root m

+ Independent from f2 over Q

 How to
catch it ?

I ⇒ Linear combinations of f2 and f3 have
small degrees and high coefficients.
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Catching f3 in the Conjugation Method

I Start with ga and gb ∈ Z[X ]
I Find u and v small integers such that X 2 + uX + v is:

I irreducible over Z[X ] but has roots λ and λ′ modulo p
I ga + λgb is irreducible modulo p

I Set f1 = ga
2 − ugagb + vgb

2. Note that
f1 ≡ ga

2 + (λ+ λ′)gagb + λλ′gb
2 mod p

≡ (ga + λgb)(ga + λ′gb) mod p
I Rewrite λ = a/b mod p with a, b ≈ √p (continued frac.)

I Set f2 = bga + agb. Note that f2 ≡ ga + λgb mod p.

Degrees

2n

n

Coeffs.

small

√p
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I Find u and v small integers such that X 2 + uX + v is:

I irreducible over Z[X ] but has roots λ and λ′ modulo p
I ga + λgb is irreducible modulo p

I Set f1 = ga
2 − ugagb + vgb

2. Note that
f1 ≡ ga

2 + (λ+ λ′)gagb + λλ′gb
2 mod p

≡ (ga + λgb)(ga + λ′gb) mod p
I Rewrite λ = a/b mod p with a, b ≈ √p (continued frac.)

and λ = a′/b′ mod p with a′, b′ ≈ √p
I Set f2 = bga + agb. Note that f2 ≡ ga + λgb mod p.

Degrees
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n

Coeffs.
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Catching f3 in the Conjugation Method

I Start with ga and gb ∈ Z[X ]
I Find u and v small integers such that X 2 + uX + v is:

I irreducible over Z[X ] but has roots λ and λ′ modulo p
I ga + λgb is irreducible modulo p

I Set f1 = ga
2 − ugagb + vgb

2. Note that
f1 ≡ ga

2 + (λ+ λ′)gagb + λλ′gb
2 mod p

≡ (ga + λgb)(ga + λ′gb) mod p
I Rewrite λ = a/b mod p with a, b ≈ √p (continued frac.)

and λ = a′/b′ mod p with a′, b′ ≈ √p
I Set f2 = bga + agb. Note that f2 ≡ ga + λgb mod p.

and f3 = b′ga + a′gb

Degrees

2n

n
n

Coeffs.

small

√p

√p
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And then ?

Construct a Multiple NFS thanks to:
I Q[X ]/(f1(X )) on one side
I Q[X ]/(fi(X )) on the other side, where number fields

are defined through fi = αi f2 + βi f3 with αi , βi ≈
√
V
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Asymptotic Complexity Analysis

The idea is classical:
1. Choose parameters of size:

I Sieving space : LQ(1/3)
I Smoothness bounds B and B′: LQ(1/3)
I Number of number fields V : LQ(1/3)

2. Runtime of the sieving ≈ cost of the linear algebra.
3. Size of the factor base ≈ number of equations created

(i.e. the probability to obtain a good relation
multiplied by the sieving space).

4. Optimize the total runtime under these constraints.

⇒ LQ

(
1
3 ,

3
√

8(9+4
√
6)

15

) MNFS-CM
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Concrete impact

Complexity ↘ from LQ(1/3, 2.201) to LQ(1/3, 2.156).
Is it a lot?

I `← security level we need
Q ← order of the associated target finite field.
With previous algorithms: ` = LQ(1/3, 2.201).

I Now, To get Q′ such that ` = LQ′(1/3, 2.156) we need:
I (2.156)3 logQ′(log logQ′)2 = (2.201)3 logQ(log logQ)2

I so logQ′(log logQ′)2 ≈ 1.064 logQ(log logQ)2

I it yields logQ′ ≈ 1.064 logQ.

⇒ Increase the bitsize of the finite field by 6.4% to get the
same security level.



Discrete Log in
Medium

Characteristic

Cécile Pierrot

NFS
Index Calculus

Classical NFS

Theoretical
improvements
Conj. method

Multiple NFS

Combining Conj and MNFS

In practice
Sparse linear algebra

Nearly sparse linear algebra

Concrete impact

Complexity ↘ from LQ(1/3, 2.201) to LQ(1/3, 2.156).
Is it a lot?

I `← security level we need
Q ← order of the associated target finite field.
With previous algorithms: ` = LQ(1/3, 2.201).

I Now, To get Q′ such that ` = LQ′(1/3, 2.156) we need:
I (2.156)3 logQ′(log logQ′)2 = (2.201)3 logQ(log logQ)2

I so logQ′(log logQ′)2 ≈ 1.064 logQ(log logQ)2

I it yields logQ′ ≈ 1.064 logQ.
⇒ Increase the bitsize of the finite field by 6.4% to get the
same security level.



Discrete Log in
Medium

Characteristic

Cécile Pierrot

NFS
Index Calculus

Classical NFS

Theoretical
improvements
Conj. method

Multiple NFS

Combining Conj and MNFS

In practice
Sparse linear algebra

Nearly sparse linear algebra

I the Generalized Joux-Lercier Method [BGGM 15]
I with MNFS.

NFS-GJL

p = Lpn(2/3, cp)
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Complexities at p = Lpn(2/3, cp)
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Part II, Practical improvement:
Nearly Sparse Linear Algebra.

A joint work with Antoine Joux.
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Index Calculus Algorithms

If you want to compute Discrete Logs in G :

1. Collection of Relations (or Sieving Phase)
G
known

→ Create a lot of sparse multiplicative relations
between some (small) specific elements = the factor
base∏

gei
i =

∏
ge′i

i ⇒
∑

(ei − e′i ) log(gi) = 0

→ So a lot of sparse linear equations
2. Linear Algebra
→ Recover the Discrete Logs of the factor base

3. Individual Logarithm Phase
→ Recover the Discrete Log of an arbitrary element
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Linear Algebra and Index Calculus

I Matrix over finite sets.
I Sparse matrices = the major part of the entries = 0.

Often: nbr of non zero coeffs per row is bounded by a
constant, let us say K .

Some famous examples
I Factoring. Seek for a non trivial elt of the kernel of a

matrix mod 2.
I Discrete log. Last records in small charac. for instance.

Advantages ?
I Less memory
I Specific algorithms
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Sparse Linear Algebra



Discrete Log in
Medium

Characteristic

Cécile Pierrot

NFS
Index Calculus

Classical NFS

Theoretical
improvements
Conj. method

Multiple NFS

Combining Conj and MNFS

In practice
Sparse linear algebra

Nearly sparse linear algebra

Sparse Linear Algebra

How to use less memory: for any non zero coeff. in a row,
let memorize its column number and its value together.

Example
With F7 and K = 3.

M =



1 0 0 0 3 0 0 2

2 0 1 0 0 2 0 0

0 0 0 4 0 0 1 0

0 0 0 3 0 0 0 1

1 1 0 0 0 0 0 0

0 0 5 0 0 0 0 2

0 5 0 0 0 6 0 0

0 0 0 0 2 1 0 0

0 3 0 1 0 0 2 0



→



[1, 1] [5, 3] [8, 2]

[1, 2] [3, 1] [6, 2]

[4, 4] [7, 1] [0, 0]

[4, 3] [8, 1] [0, 0]

[1, 1] [2, 1] [0, 0]

[3, 5] [8, 2] [0, 0]

[2, 5] [6, 6] [0, 0]

[5, 2] [6, 1] [0, 0]

[2, 3] [4, 1] [7, 1]
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Sparse Linear Algebra

How to use less memory: for any non zero coeff. in a row,
let memorize its column number and its value together.

Example
With F7 and K = 3.

M =



1 0 0 0 3 0 0 2

2 0 1 0 0 2 0 0

0 0 0 4 0 0 1 0

0 0 0 3 0 0 0 1

1 1 0 0 0 0 0 0

0 0 5 0 0 0 0 2

0 5 0 0 0 6 0 0

0 0 0 0 2 1 0 0

0 3 0 1 0 0 2 0


→



[1, 1] [5, 3] [8, 2]

[1, 2] [3, 1] [6, 2]

[4, 4] [7, 1] [0, 0]

[4, 3] [8, 1] [0, 0]

[1, 1] [2, 1] [0, 0]

[3, 5] [8, 2] [0, 0]

[2, 5] [6, 6] [0, 0]

[5, 2] [6, 1] [0, 0]

[2, 3] [4, 1] [7, 1]
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Sparse Linear Algebra, Naive method

We want to solve Mx = 0.
Let us manage a simple Gaussian Elimination.

1 0 0 0 3 0 0 2 0

2 0 1 0 0 2 0 0 0

0 0 0 4 0 0 1 0 0

0 0 0 3 0 0 0 1 0

1 1 0 0 0 0 0 0 0

0 0 5 0 0 0 0 2 0

0 5 0 0 0 6 0 0 0

0 0 0 0 2 1 0 0 0

0 3 0 1 0 0 2 0 0



l2 − 2l1

→



[1, 1] [5, 3] [8, 2] 0

[1, 2] [3, 1] [6, 2] 0

[4, 4] [7, 1] [0, 0] 0

[4, 3] [8, 1] [0, 0] 0

[1, 1] [2, 1] [0, 0] 0

[3, 5] [8, 2] [0, 0] 0

[2, 5] [6, 6] [0, 0] 0

[5, 2] [6, 1] [0, 0] 0

[2, 3] [4, 1] [7, 1] 0



[8, 2]??

it overflows the available memory!
→ Stupid method.



Discrete Log in
Medium

Characteristic

Cécile Pierrot

NFS
Index Calculus

Classical NFS

Theoretical
improvements
Conj. method

Multiple NFS

Combining Conj and MNFS

In practice
Sparse linear algebra

Nearly sparse linear algebra

Sparse Linear Algebra, Naive method

We want to solve Mx = 0.
Let us manage a simple Gaussian Elimination.

1 0 0 0 3 0 0 2 0

0 0 1 0 1 2 0 2 4

0 0 0 4 0 0 1 0 0

0 0 0 3 0 0 0 1 0

1 1 0 0 0 0 0 0 0

0 0 5 0 0 0 0 2 0

0 5 0 0 0 6 0 0 0

0 0 0 0 2 1 0 0 0

0 3 0 1 0 0 2 0 0



l2 − 2l1

→



[1, 1] [5, 3] [8, 2] 0

[5, 1] [3, 1] [6, 2] 4

[4, 4] [7, 1] [0, 0] 0

[4, 3] [8, 1] [0, 0] 0

[1, 1] [2, 1] [0, 0] 0

[3, 5] [8, 2] [0, 0] 0

[2, 5] [6, 6] [0, 0] 0

[5, 2] [6, 1] [0, 0] 0

[2, 3] [4, 1] [7, 1] 0



[8, 2]??

it overflows the available memory!
→ Stupid method.
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Sparse Linear Algebra, specific algorithms

I Adapted Gaussian Elimination
= choose pivots that minimize the loss of sparsity

1 0 0 0 3 0 0 2 0

2 0 1 0 0 2 0 0 0

0 0 0 4 0 0 1 0 0

0 0 0 3 0 0 0 1 0

1 1 0 0 0 0 0 0 0

0 0 5 0 0 0 0 2 0

0 5 0 0 0 6 0 0 0

0 0 0 0 2 1 0 0 0

0 3 0 1 0 0 2 0 0


→



[1, 1] [5, 3] [8, 2] 0

[1, 2] [3, 1] [6, 2] 0

[4, 4] [7, 1] [0, 0] 0

[4, 3] [8, 1] [0, 0] 0

[1, 1] [2, 1] [0, 0] 0

[3, 5] [8, 2] [0, 0] 0

[2, 5] [6, 6] [0, 0] 0

[5, 2] [6, 1] [0, 0] 0

[2, 3] [4, 1] [7, 1] 0


I or, without any modification of the matrix, using

matrix-by-vector multiplications only:
I Krylov Subspace methods
I Wiedemann algorithm(s)
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Wiedemann
1986

Problem
Solve:

Sx = 0 or Sx = y

with S a sparse matrix with coefficients in a ring K,
K non zero coeffs. per row max,
N= max(# rows, # col)

S =



1 0 0 0 3 0 0 2

2 0 1 0 0 2 0 0

0 0 0 4 0 0 1 0

0 0 0 3 0 0 0 1

1 1 0 0 0 0 0 0

0 0 5 0 0 0 0 2

0 5 0 0 0 6 0 0

0 0 0 0 2 1 0 0

0 3 0 1 0 0 2 0


K = 3
N = 9
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Wiedemann
1. Preconditioning step : We transform S into a square

matrix A.

S

R A

×

=

Why?
I Powers of A are well defined.
I A not sparse but multiplying SR = A with a

vector is quick: O(KN)
I S.x = 0⇒ A.x = 0 (or S.x = y ⇒ A.x = y ′ = R.y).

The converse is true for almost all random matrices R.
Try to solve A.x = 0 (or A.x = y ′).
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2. Computation of a scalar sequence : (twAiv)i=0,··· ,2n
with v ,w two random vectors and n = # col. of A.

3. Reconstruction of the minimal polynomial of A .

Why does 2 help 3 ?
I Cayley-Hamilton theorem: the characteristic polynomial

of A, of degree n, annihilates A.
I so we seek for ai s.t.

∑n
i=0 aiAi = 0. (?1)

I ⇒ There exists a linear recursive relationship between
the elements of (twAiv)i=0,··· ,2n !

I Berlekamp-Massey permits to recover the minimal poly.
of a recursive linear sequence.

I (?2) for some random v and w ⇒almost always (?1).
We have found ai s.t.

∑n
i=0 aiAi = 0.
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4. Computation of the solution.
I How to solve Ax = 0 thanks to

∑n
i=0 aiAi = 0 ?

If there is a solution then a0 = 0.
So for a random vector r :

n∑
i=1

aiAi r = 0⇔ A
( n∑

i=1
aiAi−1r

)
︸ ︷︷ ︸

Here is x !

= 0

I How to solve Ax = y thanks to
∑n

i=0 aiAi = 0 ?
A inversible permits to assume a0 6= 0.

So
n∑

i=0
aiAix = 0⇔ −a0x =

n∑
i=1

aiAix

⇔ x = −(1/a0)
∑n

i=1 aiAi−1Ax
⇔ x = −(1/a0)

∑n
i=1 aiAi−1y . Here is x again !
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In practice
Sparse linear algebra

Nearly sparse linear algebra

Wiedemann
1. Preconditioning step: Transformation of S into A .

The problem becomes:
A.x = 0 or A.x = y ′.

2. Computation of a scalar sequence: (twAiv)i=0,··· ,2n
with v ,w two random vectors and n = # col. of A.

Complexity: Cost of multiplication A -vector × length
of the sequence = O(KN2)

3. Reconstruction of the minimal polynomial of A thanks
to Berlekamp-Massey algorithm.

Complexity: quasi-linear in N (with fast B-M. algo).

4. Computation of the solution.

Complexity: Cost of multiplication A -vector × nbr elts
of the sum = O(KN2)

Final asymptotic complexity:
O(KN2)
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Let us parallelize!

I 1994. Coppersmith. Distributed computations for
sparse linear algebra over F2.

I 1995. Kaltofen. Generalized this idea to Fpn .
I 2002. Thomé. Generalized fast Berlekamp-Massey.
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In practice
Sparse linear algebra

Nearly sparse linear algebra

From Wiedemann to Block Widemann
1. Preconditioning step: Transformation of S into a

square matrix A . The problem becomes:
A.x = 0 ou A.x = y ′.

2. Computation of a scalar sequence: (twAiv)i=0,··· ,2n
with v ,w two random vectors

Parallelization over c
machines :

1 (tWAiv1)i=0,··· ,2n/c
· · · · · ·

c (tWAivc)i=0,··· ,2n/c

Complexity : O(KN2) but distributed over c machines.

3. Reconstruction of the minimal polynomial of A
thanks to Berlekamp-Massey algorithm.

Complexity :
Õ(c2N)

4. Computation of the solution.

Complexity : O(KN2)
distributed.

Final asymptotic complexity: O(KN2) + Õ(c2N)
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From Wiedemann to Block Widemann
1. Preconditioning step: Transformation of S into a

square matrix A . The problem becomes:
A.x = 0 ou A.x = y ′.

2. Computation of a matrix sequence: (tW AiV )i=0,··· ,2n/c
with V = (v1, · · · , vc),W two random matrices
Parallelization over c machines :

1 (tWAiv1)i=0,··· ,2n/c
· · · · · ·

c (tWAivc)i=0,··· ,2n/c

Complexity : O(KN2) but distributed over c machines.
3. Reconstruction of coeffs. aij s.t.

∑c
j=1

∑n/c
i=0 aijAivj = 0

thanks to Thomé algorithm. Complexity : Õ(c2N)
4. Computation of the solution. Complexity : O(KN2)

distributed.
Final asymptotic complexity: O(KN2) + Õ(c2N)
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Dlog-NFS raises a question of identity...

... what if the matrix is not truly sparse?
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Matrices in NFS
Computing Dlog with NFS leads to consider matrices of the
form:

S =



1 0 0 0 3 0 0 2 5 3

2 0 1 0 0 2 0 0 6 2

0 0 0 4 0 0 1 0 6 4

0 0 0 3 0 0 0 1 5 2

1 1 0 0 0 0 0 0 3 1

0 0 5 0 0 0 0 2 1 1

0 5 0 0 0 6 0 0 2 1

0 0 0 0 2 1 0 0 1 6

0 3 0 1 0 0 2 0 5 6

0 0 0 0 3 0 0 3 4 2

0 2 0 3 0 0 2 0 5 1



Is it sparse?

K = 5
N = 11

Is it dense?

I If we apply a classical algo., we don’t take advantage of
zero coeffs.

I If we apply Block-Wiedemann, we don’t take advantage
of the particular distribution of non zero coeffs.
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I Number fields complicate the linear algebra step: need
to take into account the contribution of units in these
number fields.

I ⇒ Schirokauer maps.
I 1 unit = +1 Schirokauer map = +1 dense column

Example
I Latest record on a prime field Fp, (p ≈ 180 digits)
I June 2014 by Bouvier, Gaudry, Imbert, Jeljeli,Thomé.

Sparse part
K = 150
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Nearly sparse linear algebra

Definition
M is (d-)nearly sparse if it is of the form:

Ms sparse part
at most K coeffs 6= 0 per row

M
d
de
ns
e
co
lu
m
ns

c d

N

Problem
Solve: M · x = 0 or M · x = y
where M is a nearly sparse matrix with coeff. in a ring K.
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Nearly sparse linear algebra

Remark
I There is no restriction on the nbr of dense columns.

I Being able to recover a non trivial elt of the kernel of a
nearly sparse matrix suffices!

Let’s assume we want to solve M · x = y with M a d-nearly
sparse matrix.

Then M ·
x

=
y
⇔ M y

·
x
−1 = 0.

Since M y
is d + 1-nearly sparse, it’s ok.
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Nearly sparse linear algebra

Remark
I There is no restriction on the nbr of dense columns.
I Being able to recover a non trivial elt of the kernel of a

nearly sparse matrix suffices!

Let’s assume we want to solve M · x = y with M a d-nearly
sparse matrix.

Then M ·
x

=
y
⇔ M y

·
x
−1 = 0.

Since M y
is d + 1-nearly sparse, it’s ok.
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Nearly sparse linear algebra

Definition
M is (d-)nearly sparse if it is of the form:

Ms sparse part
at most K coeffs 6= 0 per row

M
d
de
ns
e
co
lu
m
ns

s d

N

Problem
Solve:

M · x = 0
where M is a nearly sparse matrix with coeff. in a ring K.
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A dedicated algorithm

Since M is (also) a sparse matrix of parameters K+d , N,
we may apply Block-Wiedemann!
Asymptotic complexity:

O((K + d)N2) + Õ(c2N)

Main result
We propose to design an algorithm with asymptotic
complexity:

O(KN2) + Õ(max(c2, d2)N)
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A dedicated algorithm

Since M is (also) a sparse matrix of parameters K+d , N,
we may apply Block-Wiedemann!
Asymptotic complexity:

O((K + d)N2) + Õ(c2N)

Main result
We propose to design an algorithm with asymptotic
complexity:

O(KN2) + Õ(max(c2, d2)N)
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Key ideas

Ms sparse part

M
d
de
ns
e
co
lu
m
ns

s d

N

1. Apply Block-Wiedemann on the sparse part only.
2. Make the d dense columns contribute in the initial

block V , i .e. set each dense col. = one initial vector of
the matrix sequences to construct.
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Nearly sparse linear algebra algorithm
1. Preconditioning step on the RIGHT of the matrix M :

Rs

d

s + d d

(0)

(0)

Id

Ms Md A Md

×

=

Why ?
I Powers of A are well defined.
I Multiplying RMs = A by a vector is quick enough.
I If R surj. : (A|Md).x = 0⇒ M.x = 0

Try to solve (A|Md).x = 0.
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Nearly sparse linear algebra algorithm

For the sake of simplicity: # machines = # dense col.
2. Computation of a matrix sequence: (tWAiV )i=0,··· ,2N

with V = (v1, · · · , vd),W two rand. matrices.
Parallelization over c machines :

1 (tWAiv1)i=0,··· ,2N/d
· · · · · ·

d (tWAivd)i=0,··· ,2N/d

3. Reconstruction of coeffs. aij s.t.
∑d

j=1
∑N/d

i=0 aijAidj = 0
thanks to Thomé

.
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Nearly sparse linear algebra algorithm

For the sake of simplicity: # machines = # dense col.
2. Computation of a matrix sequence: (tWAiV )i=0,··· ,2N

with V = (d1, · · · , dd),W one rand. matrix and
d1, · · · , dd the d dense col.
Parallelization over d machines :

1 (tWAid1)i=0,··· ,2N/d
· · · · · ·

d (tWAidd)i=0,··· ,2N/d

3. Reconstruction of coeffs. aij s.t.
∑d

j=1
∑N/d

i=0 aijAidj = 0
thanks to Thomé

.
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Nearly sparse linear algebra algorithm

For the sake of simplicity: # machines = # dense col.
2. Computation of a matrix sequence: (tWAiV )i=0,··· ,2N

with V = (d1, · · · , dd),W one rand. matrix and
d1, · · · , dd the d dense col.
Parallelization over d machines :

1 (tWAid1)i=0,··· ,2N/d
· · · · · ·

d (tWAidd)i=0,··· ,2N/d

3. Reconstruction of coeffs. aij s.t.
∑d

j=1
∑N/d

i=0 aijAidj = 0
thanks to Thomé.
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4. Computation of an elt of the kernel of AMd

d∑
j=1

N/d∑
i=0

aijAidj = 0 ⇔
d∑

j=1

N/d∑
i=1

aijAidj +
d∑

j=1
a0jdj = 0

⇔ A ·
d∑

j=1

N/d∑
i=1

aijAi−1dj︸ ︷︷ ︸
let us say x ′

+
d∑

j=1
a0jdj = 0

⇔ A · x ′
+ a01

d1
+ a02

d2

+ · · ·+ a0d
dd

= 0

So t(x ′|a01|a02| · · · |a0d) ∈ ker AMd .
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Asymptotic complexity

Main result
We obtain an asymptotic complexity of:

O(KN2) + Õ(max(c2, d2)N) operations,

to be compared with previous O((K + d)N2) + Õ(c2N) complexity.

When d ≤ c, it becomes:

O(KN2) + Õ(c2N) operations.

Remark
When we have more machines than dense columns, these
columns cost NOTHING with our algorithm!
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Asymptotic Complexity

And if c < d , how many dense col. can we still have?
I As soon as d < N1−ε (ε > 0), our algorithm is better

than Block-Wiedemann.
I As soon as d < Nω−2−ε (ε > 0), it is better than

classical (dense) linear algebra algorithms of complexity
O(Nω).

Example
Recalling that ω ≈ 2.37, with N1/3 dense columns for
instance, our algorithm is still faster than any others.
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Asymptotic Complexity

And if c < d , how many dense col. can we still have?
I As soon as d < N1−ε (ε > 0), our algorithm is better

than Block-Wiedemann.
I As soon as d < Nω−2−ε (ε > 0), it is better than

classical (dense) linear algebra algorithms of complexity
O(Nω).

Example
Recalling that ω ≈ 2.37, with N1/3 dense columns for
instance, our algorithm is still faster than any others.
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Nearly Sparse Linear Algebra applied to Dlog
I Latest record on a prime field Fp, (p ≈ 180 digits)
I June 2014 by Bouvier, Gaudry, Imbert, Jeljeli,Thomé.
I Parameters of the matrix: N ≈ 7, 28 millions of rows,

K = 150 non zero coeff. per row,
4 dense columns.

I Parallelized over 16 machines.

Ms sparse part
K = 150

M
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To conclude with medium characteristic

I If your are a cryptographer:
increase your finite fields cardinality by 6.4%

I If you are a cryptanalyst:
do not worry about dense columns.
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Merci de votre attention !
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