Discrete Logarithms in Medium Characteristic Finite Fields

Cécile Pierrot ${ }^{1,2}$

${ }^{1}$ Funded by CNRS and DGA
${ }^{2}$ Laboratoire d'Informatique de Paris 6
UPMC, Sorbonne-Universités, France
September 28th, 2015
ECC 2015, Bordeaux

The Discrete Logarithm Problem (DLP)

- Multiplicative group G generated by g : solving the DLP in G is inverting the map: $x \mapsto g^{x}$
- A hard problem in general, and used as such in cryptography.

NFS

Index Calculus

The Discrete Logarithm Problem (DLP)

- Multiplicative group G generated by g : solving the DLP in G is inverting the map: $x \mapsto g^{x}$
- A hard problem in general, and used as such in cryptography.
- Several groups in practice:

NFS
Index Calculus

The Discrete Logarithm Problem (DLP)

- Multiplicative group G generated by g : solving the DLP in G is inverting the map: $x \mapsto g^{x}$
- A hard problem in general, and used as such in cryptography.
- Several groups in practice:

NFS
Index Calculus

The Discrete Logarithm Problem (DLP)

- Multiplicative group G generated by g : solving the DLP in G is inverting the map: $x \mapsto g^{x}$
- A hard problem in general, and used as such in cryptography.
- Several groups in practice:
- Two families of algorithms :
- Generic algorithms (Pollard's Rho, Pohlig-Hellman...)
- Specific algorithms (Index Calculus *)

NFS Index Calculus

The Discrete Logarithm Problem (DLP)

- Multiplicative group G generated by g : solving the DLP in G is inverting the map: $x \mapsto g^{x}$
- A hard problem in general, and used as such in cryptography.
- Several groups in practice:
- Two families of algorithms :
- Generic algorithms (Pollard's Rho, Pohlig-Hellman...)
- Specific algorithms (Index Calculus *)

NFS Index Calculus

Index Calculus Algorithms

Discrete Log in Medium
Characteristic
Cécile Pierrot
If you want to compute Discrete Logs in G :

1. Relation Collection (or Sieving) Phase

Index Calculus
Classical NFS

Theoretical

improvements
Conj. method
Multiple NFS
Combining Conj and MNFS

Index Calculus Algorithms

If you want to compute Discrete Logs in G :

1. Relation Collection (or Sieving) Phase
 \rightarrow Create a lot of sparse multiplicative relations between some (small) specific elements $=$ the factor base

$$
\Pi \varepsilon_{i}^{q}=\Pi \varepsilon_{i}^{q_{i}}
$$

Index Calculus

Classical NFS

Index Calculus Algorithms

If you want to compute Discrete Logs in G :

1. Relation Collection (or Sieving) Phase
 \rightarrow Create a lot of sparse multiplicative relations between some (small) specific elements $=$ the factor base

$$
\prod g_{i}^{e_{i}}=\prod g_{i}^{e_{i}^{\prime}} \Rightarrow \quad \sum\left(e_{i}-e_{i}^{\prime}\right) \log \left(g_{i}\right)=0
$$

\rightarrow So a lot of sparse linear equations

Index Calculus Algorithms

If you want to compute Discrete Logs in G :

1. Relation Collection (or Sieving) Phase
 \rightarrow Create a lot of sparse multiplicative relations between some (small) specific elements $=$ the factor base

$$
\prod g_{i}^{e_{i}}=\prod g_{i}^{e_{i}^{\prime}} \Rightarrow \quad \sum\left(e_{i}-e_{i}^{\prime}\right) \log \left(g_{i}\right)=0
$$

\rightarrow So a lot of sparse linear equations
2. Linear Algebra
\rightarrow Recover the Discrete Logs of the factor base

Index Calculus Algorithms

If you want to compute Discrete Logs in G :

1. Relation Collection (or Sieving) Phase
 \rightarrow Create a lot of sparse multiplicative relations between some (small) specific elements $=$ the factor base

$$
\prod g_{i}^{e_{i}}=\prod g_{i}^{e_{i}^{\prime}} \Rightarrow \quad \sum\left(e_{i}-e_{i}^{\prime}\right) \log \left(g_{i}\right)=0
$$

\rightarrow So a lot of sparse linear equations
2. Linear Algebra
\rightarrow Recover the Discrete Logs of the factor base
3. Individual Logarithm Phase
\rightarrow Recover the Discrete Log of an arbitrary element

Sieving Phase and Commutative Diagram

- How to obtain relations?

NFS

Index Calculus
Classical NFS
Theoretical
improvements
Conj. method
Multiple NFS
Combining Conj and MNFS
In practice
Sparse linear algebra

Sieving Phase and Commutative Diagram

- How to obtain relations?

Index Calculus

Classical NFS

Theoretical

improvements

Conj. method
Multiple NFS
Combining Conj and MNFS
In practice
Sparse linear algebra
$\forall x \in E, v_{1}\left(u_{1}(x)\right)=v_{2}\left(u_{2}(x)\right)$ thanks to commutativity.

Sieving Phase and Commutative Diagram

- How to obtain relations?

$\forall x \in E, v_{1}\left(u_{1}(x)\right)=v_{2}\left(u_{2}(x)\right)$ thanks to commutativity.
- How to obtain "good" relations ?
- Define B_{1} and B_{2} two small sets. Factor base $:=v_{1}\left(B_{1}\right) \bigcup v_{2}\left(B_{2}\right)$

Sieving Phase and Commutative Diagram

- How to obtain relations?

$\forall x \in E, v_{1}\left(u_{1}(x)\right)=v_{2}\left(u_{2}(x)\right)$ thanks to commutativity.
- How to obtain "good" relations ?
- Define B_{1} and B_{2} two small sets. Factor base $:=v_{1}\left(B_{1}\right) \bigcup v_{2}\left(B_{2}\right)$
- Keep only x such that $u_{i}(x)=\prod_{b_{i} \in B_{i}} b_{i}$ and get:

$$
v_{1}\left(u_{1}(x)\right)=v_{2}\left(u_{2}(x)\right)
$$

Sieving Phase and Commutative Diagram

- How to obtain relations?

Index Calculus
Classical NFS

$\forall x \in E, v_{1}\left(u_{1}(x)\right)=v_{2}\left(u_{2}(x)\right)$ thanks to commutativity.

- How to obtain "good" relations ?
- Define B_{1} and B_{2} two small sets. Factor base $:=v_{1}\left(B_{1}\right) \bigcup v_{2}\left(B_{2}\right)$
- Keep only x such that $u_{i}(x)=\prod_{b_{i} \in B_{i}} b_{i}$ and get:

$$
v_{1}\left(\prod_{b_{i} \in B_{2}} b_{i}\right)=v_{2}\left(\prod_{b_{i} \in B_{2}} b_{i}\right)
$$

Sieving Phase and Commutative Diagram

- How to obtain relations?

$\forall x \in E, v_{1}\left(u_{1}(x)\right)=v_{2}\left(u_{2}(x)\right)$ thanks to commutativity.
- How to obtain "good" relations ?
- Define B_{1} and B_{2} two small sets. Factor base $:=v_{1}\left(B_{1}\right) \bigcup v_{2}\left(B_{2}\right)$
- Keep only x such that $u_{i}(x)=\prod_{b_{i} \in B_{i}} b_{i}$ and get:

$$
\prod_{b_{i} \in B_{2}} v_{1}\left(b_{i}\right)=\prod_{b_{i} \in B_{2}} v_{2}\left(b_{i}\right) \quad \text { thanks to morphisms. }
$$

Number Field Sieve (NFS)

- Solves the DLP for medium and high char. fields $\mathbb{F}_{p^{n}}$.
- Belongs to the family of Index Calculus algorithms $\Rightarrow 3$ phases.

Number Field Sieve (NFS)

- Solves the DLP for medium and high char. fields $\mathbb{F}_{p^{n}}$.
- Belongs to the family of Index Calculus algorithms $\Rightarrow 3$ phases.
- Commutative Diagram ? With $m \in \mathbb{F}_{p^{n}}$ a root of f_{1} and f_{2} :

$\mathbb{Q}[X] /\left(f_{1}(X)\right) \cong \mathbb{Q}\left(\theta_{1}\right)$
$\mathbb{Q}\left(\theta_{2}\right) \cong \mathbb{Q}[X] /\left(f_{2}(X)\right)$

Number Field Sieve (NFS)

- Solves the DLP for medium and high char. fields $\mathbb{F}_{p^{n}}$.
- Belongs to the family of Index Calculus algorithms $\Rightarrow 3$ phases.
- Commutative Diagram ?

With $m \in \mathbb{F}_{p^{n}}$ a root of f_{1} and f_{2} :

Factor base ? $B_{i}:=$ prime ideals (of the ring of integers) with a norm smaller than a certain smoothness* bound.

[^0]
Complexities

Discrete Log in Medium
 Characteristic

Cécile Pierrot

- Notation: $L_{Q}(\alpha, c)=\exp \left(c(\log Q)^{\alpha}(\log \log Q)^{1-\alpha}\right)$

Index Calculus

Classical NFS
Theoretical
improvements
Conj. method
Multiple NFS
Combining Conj and MNFS
In practice
Sparse linear algebra
Nearly sparse linear algebra

Complexities

- Notation: $L_{Q}(\alpha, c)=\exp \left(c(\log Q)^{\alpha}(\log \log Q)^{1-\alpha}\right)$
- In \mathbb{F}_{Q} of characteristic $p=L_{Q}\left(I_{p}, c\right)$:

Classical NFS
Theoretical
improvements
Conj. method
Multiple NFS
Combining Conj and MNFS
In practice
Sparse linear algebra
Nearly sparse linear algebra
$L_{Q}\left(\frac{1}{3}\right.$, high $\left.c\right)$
$L_{Q}\left(\frac{1}{3}\right.$, low $\left.c\right)$
$0 \quad$ small $p \quad \frac{1}{3} \quad$ medium p
Quasi-Polynomial FFS
NF

Complexities

- Notation: $L_{Q}(\alpha, c)=\exp \left(c(\log Q)^{\alpha}(\log \log Q)^{1-\alpha}\right)$
- In \mathbb{F}_{Q} of characteristic $p=L_{Q}\left(I_{p}, c\right)$:

Complexities

- Notation: $L_{Q}(\alpha, c)=\exp \left(c(\log Q)^{\alpha}(\log \log Q)^{1-\alpha}\right)$
- $\ln \mathbb{F}_{Q}$ of characteristic $p=L_{Q}\left(I_{p}, c\right)$:

Complexities

- Notation: $L_{Q}(\alpha, c)=\exp \left(c(\log Q)^{\alpha}(\log \log Q)^{1-\alpha}\right)$
- $\operatorname{In} \mathbb{F}_{Q}$ of characteristic $p=L_{Q}\left(I_{p}, c\right)$:

Classical NFS

Theoretical

improvements
Conj. method
Multiple NFS
Combining Conj and MNFS
2014: Barbulescu, P. 2015: Barbulescu, Gaudry, Guillevic, Morain

Complexities

- Notation: $L_{Q}(\alpha, c)=\exp \left(c(\log Q)^{\alpha}(\log \log Q)^{1-\alpha}\right)$
- $\operatorname{In} \mathbb{F}_{Q}$ of characteristic $p=L_{Q}\left(I_{p}, c\right)$:

Part I, Asymptotic Complexity downturn:
 MNFS-Conj

Polynomial Selection

Preliminaries to the diagram:

Find two polynomials f_{1} and f_{2} with an irreducible factor \mathcal{I} of degree n modulo p.

- Define $\mathbb{F}_{p^{n}}$ as $\mathbb{F}_{p}[X] /(\mathcal{I})$.
- $\Rightarrow f_{1}$ and f_{2} have a common root $m \in \mathbb{F}_{p^{n}}$.

Polynomial Selection

Preliminaries to the diagram:

Find two polynomials f_{1} and f_{2} with an irreducible factor \mathcal{I} of degree n modulo p.

- Define $\mathbb{F}_{p^{n}}$ as $\mathbb{F}_{p}[X] /(\mathcal{I})$.
- $\Rightarrow f_{1}$ and f_{2} have a common root $m \in \mathbb{F}_{p^{n}}$.

Requirement: Good prob. to obtain a relation

[^1]
Polynomial Selection

Preliminaries to the diagram:

NFS-Conj

Find two polynomials f_{1} and f_{2} with an irreducible factor \mathcal{I} of degree n modulo p.

- Define $\mathbb{F}_{p^{n}}$ as $\mathbb{F}_{p}[X] /(\mathcal{I})$.
- $\Rightarrow f_{1}$ and f_{2} have a common root $m \in \mathbb{F}_{p^{n}}$.

Requirement: Good prob. to obtain a relation
\rightarrow Good prob. for a norm to be smooth

[^2]
Polynomial Selection

Preliminaries to the diagram:

NFS-Conj

Find two polynomials f_{1} and f_{2} with an irreducible factor \mathcal{I} of degree n modulo p.

- Define $\mathbb{F}_{p^{n}}$ as $\mathbb{F}_{p}[X] /(\mathcal{I})$.
- $\Rightarrow f_{1}$ and f_{2} have a common root $m \in \mathbb{F}_{p^{n}}$.

Requirement: Good prob. to obtain a relation
\rightarrow Good prob. for a norm to be smooth
\rightarrow Small norms ${ }^{\dagger}$ in the two number fields

[^3]
Polynomial Selection

Preliminaries to the diagram:

NFS-Conj

Find two polynomials f_{1} and f_{2} with an irreducible factor \mathcal{I} of degree n modulo p.

- Define $\mathbb{F}_{p^{n}}$ as $\mathbb{F}_{p}[X] /(\mathcal{I})$.
- $\Rightarrow f_{1}$ and f_{2} have a common root $m \in \mathbb{F}_{p^{n}}$.

Requirement: Good prob. to obtain a relation
\rightarrow Good prob. for a norm to be smooth
\rightarrow Small norms ${ }^{\dagger}$ in the two number fields
$\rightarrow f_{1}$ and f_{2} with not too high degrees and not too large coefficients.
${ }^{\dagger} \operatorname{Norm}_{\mathbb{Q}[X] /(f)}(\varphi)=\operatorname{Res}(\varphi, f)$ if f is monic..

Polynomial Selection

Preliminaries to the diagram:

NFS-Conj

Find two polynomials f_{1} and f_{2} with $\}$ Polynomial an irreducible factor \mathcal{I} of degree n modulo p. $\}$ selection

- Define $\mathbb{F}_{p^{n}}$ as $\mathbb{F}_{p}[X] /(\mathcal{I})$.
- $\Rightarrow f_{1}$ and f_{2} have a common root $m \in \mathbb{F}_{p^{n}}$.

Requirement: Good prob. to obtain a relation
\rightarrow Good prob. for a norm to be smooth
\rightarrow Small norms ${ }^{\dagger}$ in the two number fields
$\rightarrow f_{1}$ and f_{2} with not too high degrees and not too large coefficients.
${ }^{\dagger} \operatorname{Norm}_{\mathbb{Q}[X] /(f)}(\varphi)=\operatorname{Res}(\varphi, f)$ if f is monic..

Polynomial Selection

Preliminaries to the diagram:

NFS-Conj

Find two polynomials f_{1} and f_{2} with $\}$ Polynomial an irreducible factor \mathcal{I} of degree n modulo p. $\}$ selection

- Define $\mathbb{F}_{p^{n}}$ as $\mathbb{F}_{p}[X] /(\mathcal{I})$.
- $\Rightarrow f_{1}$ and f_{2} have a common root $m \in \mathbb{F}_{p^{n}}$.

Requirement: Good prob. to obtain a relation
\rightarrow Good prob. for a norm to be smooth
\rightarrow Small norms ${ }^{\dagger}$ in the two number fields
$\rightarrow f_{1}$ and f_{2} with not too high degrees and not too large coefficients.

New polynomial selection proposed by Barbulescu, Gaudry, Guillevic and Morain: the Conjugation Method.

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.

Index Calculus

Classical NFS

Theoretical

 improvementsConj. method
Multiple NFS
Combining Conj and MNFS
In practice
Sparse linear algebra

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.

- Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$

Index Calculus

Classical NFS

Theoretical

Conj. method
Multiple NFS
Combining Conj and MNFS
In practice
Sparse linear algebra
Nearly sparse linear algebra

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.

- Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$
- Find u and v small integers such that $X^{2}+u X+v$ is:
- irreducible over $\mathbb{Z}[X]$ but has roots λ and λ^{\prime} modulo p
- $g_{a}+\lambda g_{b}$ is irreducible modulo p

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.

- Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$
- Find u and v small integers such that $X^{2}+u X+v$ is:
- irreducible over $\mathbb{Z}[X]$ but has roots λ and λ^{\prime} modulo p
- $g_{a}+\lambda g_{b}$ is irreducible modulo p
- Set $f_{1}=g_{a}{ }^{2}-u g_{a} g_{b}+v g_{b}{ }^{2}$. Note that
$f_{1} \equiv g_{a}^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}^{2} \bmod p$
$\equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p$

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.

- Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$
- Find u and v small integers such that $X^{2}+u X+v$ is:
- irreducible over $\mathbb{Z}[X]$ but has roots λ and λ^{\prime} modulo p
- $g_{a}+\lambda g_{b}$ is irreducible modulo p
- Set $f_{1}=g_{a}{ }^{2}-u g_{a} g_{b}+v g_{b}{ }^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}{ }^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}{ }^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}($ continued frac.)

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.

- Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$
- Find u and v small integers such that $X^{2}+u X+v$ is:
- irreducible over $\mathbb{Z}[X]$ but has roots λ and λ^{\prime} modulo p
- $g_{a}+\lambda g_{b}$ is irreducible modulo p
- Set $f_{1}=g_{a}{ }^{2}-u g_{a} g_{b}+v g_{b}{ }^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}{ }^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}{ }^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued frac.)
- Set $f_{2}=b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.

- Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$
- Find u and v small integers such that $X^{2}+u X+v$ is:

- Set $f_{1}=g_{a}{ }^{2}-u g_{a} g_{b}+v g_{b}{ }^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}{ }^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}{ }^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued frac.)
- Set $f_{2}=b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.
$<n \stackrel{\text { Start with }}{ } g_{a}$ and $g_{b} \in \mathbb{Z}[X]$

- Find μ and v small integers such that $X^{2}+u X+v$ is:

- Set $f_{1}=g_{a}{ }^{2}-u g_{a} g_{b}+v g_{b}{ }^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}{ }^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued frac.)
- Set $f_{2}=b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.
$<n \vee$ Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$

- Find μ and v small integers such that $X^{2}+u X+v$ is:

$2 n \vee \operatorname{Set} f_{1}=g_{a}^{2}-u g_{a} g_{b}+v g_{b}^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}{ }^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}{ }^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued frac.)
n_{r} Set $f_{2}=b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.
$<n \vee$ Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$

- Find μ and v small integers such that $X^{2}+u X+v$ is:

$2 n \vee \operatorname{Set} f_{1}=g_{a}^{2}-\boldsymbol{u} g_{a} g_{b}+\boldsymbol{v} g_{b}^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued frac.)
$n<$ Set $f_{2}=b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.
$<n \vee$ Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$

- Find μ and v small integers such that $X^{2}+u X+v$ is:

$2 n \vee \operatorname{Set} f_{1}=g_{a}{ }^{2}-u g_{a} g_{b}+\boldsymbol{v} g_{b}{ }^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued frac.)
$n>$ Set $f_{2}=b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.

- Find μ and v small integers such that $X^{2}+u X+v$ is:

$2 n \vee \operatorname{Set} f_{1}=g_{a}^{2}-u g_{a} g_{b}+v g_{b}^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued frac.)
$n^{>}$Set $f_{2}=b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.

- Find μ and v small integers such that $X^{2}+u X+v$ is:

$2 n \vee \operatorname{Set} f_{1}=g_{a}{ }^{2}-u g_{a} g_{b}+v g_{b}{ }^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued frac.)
$n^{>}$Set $f_{2} \equiv b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.

- Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$
- Find u and v small integers such that $X^{2}+u X+v$ is:
- irreducible over $\mathbb{Z}[X]$ but has roots λ and λ^{\prime} modulo p
- $g_{a}+\lambda g_{b}$ is irreducible modulo p
$2 n \vee$ Set $f_{1}=g_{a}^{2}-u g_{a} g_{b}+v g_{b}{ }^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued frac.)
$n^{>}$Set $f_{2}=b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.

The Conjugation Method

Aim: Find two polynomials f_{1} and f_{2} with an irreducible factor of degree n modulo p.

- Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$
- Find u and v small integers such that $X^{2}+u X+v$ is:
- irreducible over $\mathbb{Z}[X]$ but has roots λ and λ^{\prime} modulo p
- $g_{a}+\lambda g_{b}$ is irreducible modulo p
$2 n \vee \operatorname{Set} f_{1}=g_{a}^{2}-u g_{a} g_{b}+v g_{b}{ }^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

$\begin{aligned} f_{1} & \equiv g_{a}{ }^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}{ }^{2} \bmod p \\ & \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p \\ -~ R e w r i t e ~ & \lambda=a / b \bmod p \text { with } a, b \approx \sqrt{p} \text { (continued frac.) }\end{aligned}$
$n>$ Set $f_{2} \equiv b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.

The Multiple Number Field Sieve

- Idea from integer factorization [Coppersmith 93], prime fields [Matyukhin 03], high and medium characteristic [Barbulescu, P. 14].

Discrete Log in Medium

Characteristic

Cécile Pierrot

The Multiple Number Field Sieve

- Idea from integer factorization [Coppersmith 93], prime fields [Matyukhin 03], high and medium characteristic [Barbulescu, P. 14].
- With m a common root of f_{1}, \ldots, f_{V} in $\mathbb{F}_{p^{n}}$:

The Multiple Number Field Sieve

- Idea from integer factorization [Coppersmith 93], prime fields [Matyukhin 03], high and medium characteristic [Barbulescu, P. 14].
- With m a common root of f_{1}, \ldots, f_{V} in $\mathbb{F}_{p^{n}}$:

- Choice of poly. f_{1} and f_{2} with a common root m in $\mathbb{F}_{p^{n}}$ \Rightarrow linear combination of f_{1} and f_{2}
\Rightarrow for $i=3, \ldots, V: f_{i}=\alpha_{i} f_{1}+\beta_{i} f_{2}$ with $\alpha_{i}, \beta_{i} \approx \underline{\sqrt{V}}$,

Dissymetric MNFS in one slide

 MediumCharacteristic
Cécile Pierrot
Dissymmetric $=$ when a polynomial is better than the other.

- E.g: f_{1}, f_{2} have same coeff. size but $\operatorname{deg} f_{2} \geqslant \operatorname{deg} f_{1}$

NFS
 Index Calculus

Classical NFS
Theoretical
improvements
Conj. method
Multiple NFS
Combining Conj and MNFS

Dissymetric MNFS in one slide

Dissymmetric $=$ when a polynomial is better than the other.

- E.g: f_{1}, f_{2} have same coeff. size but $\operatorname{deg} f_{2} \geqslant \operatorname{deg} f_{1}$ \Rightarrow Higher norms in $\mathbb{Q}\left(\theta_{2}\right), \ldots, \mathbb{Q}\left(\theta_{V}\right)$ than in $\mathbb{Q}\left(\theta_{1}\right)$.

Index Calculus

Classical NFS
Theoretical
improvements
Conj. method
Multiple NFS
Combining Conj and MNFS

Dissymetric MNFS in one slide

Dissymmetric $=$ when a polynomial is better than the other.

- E.g: f_{1}, f_{2} have same coeff. size but $\operatorname{deg} f_{2} \geqslant \operatorname{deg} f_{1}$ \Rightarrow Higher norms in $\mathbb{Q}\left(\theta_{2}\right), \ldots, \mathbb{Q}(\theta v)$ than in $\mathbb{Q}\left(\theta_{1}\right)$.
- Sieving: keep only polynomials that lead to a B-smooth norm in the first number field and a B^{\prime}-smooth norm in (at least) one other number field.

Dissymetric MNFS in one slide

Dissymmetric $=$ when a polynomial is better than the other.

- E.g: f_{1}, f_{2} have same coeff. size but $\operatorname{deg} f_{2} \geqslant \operatorname{deg} f_{1}$ \Rightarrow Higher norms in $\mathbb{Q}\left(\theta_{2}\right), \ldots, \mathbb{Q}\left(\theta_{V}\right)$ than in $\mathbb{Q}\left(\theta_{1}\right)$.
- Sieving: keep only polynomials that lead to a B-smooth norm in the first number field and a B^{\prime}-smooth norm in (at least) one other number field.

Our aim is to combine:

NFS

Index Calculus
Classical NFS
Theoretical
improvements
Conj. method
Multiple NFS
Combining Conj and MNFS
In practice
Sparse linear algebra
Nearly sparse linear algebra

Our aim is to combine:

- the Conjugation Method
- with MNFS.

Index Calculus
Classical NFS

Theoretical

improvements

Conj. method
Multiple NFS
Combining Conj and MNFS
In practice
Sparse linear algebra
Nearly sparse linear algetra

Our aim is to combine:

- the Conjugation Method
- with MNFS.

\Rightarrow Best algorithm to solve the DLP
in medium characteristic finite fields $\mathbb{F}_{p^{n}}$.

Obstruction and Dreams

Conj produces:

- f_{1} with high degree, small coefficients
- f_{2} with small degree, high coefficients

NFS
 Index Calculus
 Classical NFS
 Theoretical

improvements
Conj. method
Multiple NFS
Combining Conj and MNFS

Obstruction and Dreams

Conj produces:

- f_{1} with high degree, small coefficients
- f_{2} with small degree, high coefficients
- \Rightarrow Linear combinations of f_{1} and f_{2} would have both 6 inconveniences: high degrees and high coefficients.

Cécile Pier

NFS Index Calculus

Classical NFS
Theoretical
improvements
Conj. method
Multiple NFS

Obstruction and Dreams

Conj produces:

- f_{1} with high degree, small coefficients
- f_{2} with small degree, high coefficients
- \Rightarrow Linear combinations of f_{1} and f_{2} would have both inconveniences: high degrees and high coefficients.
Our main idea:
- Linear combinations of f_{1} and f_{2}

Obstruction and Dreams

Conj produces:

- f_{1} with high degree, small coefficients
- f_{2} with small degree, high coefficients
- \Rightarrow Linear combinations of f_{1} and f_{2} would have both inconveniences: high degrees and high coefficients.
Our main idea:
- Linear combinations of f_{1} and f_{2} and another poly. f_{3}

Obstruction and Dreams

Conj produces:

- f_{1} with high degree, small coefficients
- f_{2} with small degree, high coefficients
- \Rightarrow Linear combinations of f_{1} and f_{2} would have both 6 inconveniences: high degrees and high coefficients.
Our main idea:
- Linear combinations of f_{1} and f_{2} and another poly. f_{3}
- What was the f_{3} of my dreams ?
f_{3} with small degree, high coefficients
+ Shares the same common root m + Independent from f_{2} over \mathbb{Q}

Obstruction and Dreams

Conj produces:

- f_{1} with high degree, small coefficients
- f_{2} with small degree, high coefficients
- \Rightarrow Linear combinations of f_{1} and f_{2} would have both inconveniences: high degrees and high coefficients.
Our main idea:
- Linear combinations of f_{1} and f_{2} and another poly. f_{3}
- What was the f_{3} of my dreams ?
f_{3} with small degree, high coefficients
+ Shares the same common root m + Independent from f_{2} over \mathbb{Q}
- \Rightarrow Linear combinations of f_{2} and f_{3} have small degrees and high coefficients.

Obstruction and Dreams

Conj produces:

- f_{1} with high degree, small coefficients
- f_{2} with small degree, high coefficients
- \Rightarrow Linear combinations of f_{1} and f_{2} would have both inconveniences: high degrees and high coefficients.
Our main idea:
- Linear combinations of f_{1} and f_{2} and another poly. f_{3}
- What was the f_{3} of my dreams ?
f_{3} with small degree, high coefficients
+ Shares the same common root m + Independent from f_{2} over \mathbb{Q}
- \Rightarrow Linear combinations of f_{2} and f_{3} have small degrees and high coefficients.

Catching f_{3} in the Conjugation Method

- Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$
- Find u and v small integers such that $X^{2}+u X+v$ is:
- irreducible over $\mathbb{Z}[X]$ but has roots λ and λ^{\prime} modulo p
- $g_{a}+\lambda g_{b}$ is irreducible modulo p

$$
\begin{aligned}
2 n \stackrel{\text { Set }}{ } f_{1} & =g_{a}{ }^{2}-u g_{a} g_{b}+v g_{b}{ }^{2} . \text { Note that } \\
f_{1} & \equiv g_{a}{ }^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}{ }^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued frac.)
- Set $f_{2} \equiv b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.

Catching f_{3} in the Conjugation Method

- Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$
- Find u and v small integers such that $X^{2}+u X+v$ is:
- irreducible over $\mathbb{Z}[X]$ but has roots λ and λ^{\prime} modulo p
- $g_{a}+\lambda g_{b}$ is irreducible modulo p
- Set $f_{1}=g_{a}{ }^{2}-u g_{a} g_{b}+v g_{b}{ }^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}{ }^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued frac.)
$n_{\wedge} \vee$ Set $f_{2} \equiv b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.

Catching f_{3} in the Conjugation Method

- Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$
- Find u and v small integers such that $X^{2}+u X+v$ is:
- irreducible over $\mathbb{Z}[X]$ but has roots λ and λ^{\prime} modulo p
- $g_{a}+\lambda g_{b}$ is irreducible modulo p
- Set $f_{1}=g_{a}{ }^{2}-u g_{a} g_{b}+v g_{b}{ }^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}{ }^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued frac.) and $\lambda=a^{\prime} / b^{\prime} \bmod p$ with $a^{\prime}, b^{\prime} \approx \sqrt{p}$
$n_{\star} \vee$ Set $f_{2} \equiv b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.
Coeffs.

Catching f_{3} in the Conjugation Method

- Start with g_{a} and $g_{b} \in \mathbb{Z}[X]$
- Find u and v small integers such that $X^{2}+u X+v$ is:
- irreducible over $\mathbb{Z}[X]$ but has roots λ and λ^{\prime} modulo p
- $g_{a}+\lambda g_{b}$ is irreducible modulo p
- Set $f_{1}=g_{a}^{2}-u g_{a} g_{b}+v g_{b}^{2}$. Note that

$$
\begin{aligned}
f_{1} & \equiv g_{a}^{2}+\left(\lambda+\lambda^{\prime}\right) g_{a} g_{b}+\lambda \lambda^{\prime} g_{b}{ }^{2} \bmod p \\
& \equiv\left(g_{a}+\lambda g_{b}\right)\left(g_{a}+\lambda^{\prime} g_{b}\right) \bmod p
\end{aligned}
$$

- Rewrite $\lambda=a / b \bmod p$ with $a, b \approx \sqrt{p}$ (continued fac.) and $\lambda=a^{\prime} / b^{\prime} \bmod p$ with $a^{\prime}, b^{\prime} \approx \sqrt{p}$
$n \wedge$ Set $f_{2}=b g_{a}+a g_{b}$. Note that $f_{2} \equiv g_{a}+\lambda g_{b} \bmod p$.
n
$b_{3}=b^{\prime} g_{a}+a^{\prime} g_{b}$

And then ?

Construct a Multiple NFS thanks to:

- $\mathbb{Q}[X] /\left(f_{1}(X)\right)$ on one side
$\mathbb{Q}[X] /\left(f_{i}(X)\right)$ on the other side, where number fields are defined through $f_{i}=\alpha_{i} f_{2}+\beta_{i} f_{3}$ with $\alpha_{i}, \beta_{i} \approx \sqrt{V}$

Combining Conj and MNFS

In practice

Sparse linear algebra

Asymptotic Complexity Analysis

The idea is classical:

1. Choose parameters of size:

- Sieving space : $L_{Q}(1 / 3)$
- Smoothness bounds B and $B^{\prime}: L_{Q}(1 / 3)$
- Number of number fields V : $L_{Q}(1 / 3)$

NFS
 Index Calculus

Classical NFS
Theoretical
improvements
Conj. method
Multiple NFS
Combining Conj and MNFS

Asymptotic Complexity Analysis

The idea is classical:

1. Choose parameters of size:

- Sieving space : $L_{Q}(1 / 3)$
- Smoothness bounds B and $B^{\prime}: L_{Q}(1 / 3)$
- Number of number fields V : $L_{Q}(1 / 3)$

2. Runtime of the sieving \approx cost of the linear algebra.
3. Size of the factor base \approx number of equations created (i.e. the probability to obtain a good relation multiplied by the sieving space).

Asymptotic Complexity Analysis

The idea is classical:

1. Choose parameters of size:

- Sieving space : $L_{Q}(1 / 3)$
- Smoothness bounds B and $B^{\prime}: L_{Q}(1 / 3)$
- Number of number fields V : $L_{Q}(1 / 3)$

2. Runtime of the sieving \approx cost of the linear algebra.
3. Size of the factor base \approx number of equations created (i.e. the probability to obtain a good relation multiplied by the sieving space).
4. Optimize the total runtime under these constraints.

Asymptotic Complexity Analysis

The idea is classical:

1. Choose parameters of size:

- Sieving space : $L_{Q}(1 / 3)$
- Smoothness bounds B and $B^{\prime}: L_{Q}(1 / 3)$
- Number of number fields V : $L_{Q}(1 / 3)$

2. Runtime of the sieving \approx cost of the linear algebra.
3. Size of the factor base \approx number of equations created (i.e. the probability to obtain a good relation multiplied by the sieving space).
4. Optimize the total runtime under these constraints.

$$
\Rightarrow L_{Q}\left(\frac{1}{3}, \sqrt[3]{\frac{8(9+4 \sqrt{6})}{15}}\right)
$$

Concrete impact

Complexity \searrow from $L_{Q}(1 / 3,2.201)$ to $L_{Q}(1 / 3,2.156)$. Is it a lot?

- $\ell \leftarrow$ security level we need
$Q \leftarrow$ order of the associated target finite field.
With previous algorithms: $\ell=L_{Q}(1 / 3,2.201)$.
- Now, To get Q^{\prime} such that $\ell=L_{Q^{\prime}}(1 / 3,2.156)$ we need:
- $(2.156)^{3} \log Q^{\prime}\left(\log \log Q^{\prime}\right)^{2}=(2.201)^{3} \log Q(\log \log Q)^{2}$
- so $\log Q^{\prime}\left(\log \log Q^{\prime}\right)^{2} \approx 1.064 \log Q(\log \log Q)^{2}$
- it yields $\log Q^{\prime} \approx 1.064 \log Q$.

Concrete impact

Complexity \searrow from $L_{Q}(1 / 3,2.201)$ to $L_{Q}(1 / 3,2.156)$. Is it a lot?
$\checkmark \ell \leftarrow$ security level we need
$Q \leftarrow$ order of the associated target finite field.
With previous algorithms: $\ell=L_{Q}(1 / 3,2.201)$.

- Now, To get Q^{\prime} such that $\ell=L_{Q^{\prime}}(1 / 3,2.156)$ we need:
- $(2.156)^{3} \log Q^{\prime}\left(\log \log Q^{\prime}\right)^{2}=(2.201)^{3} \log Q(\log \log Q)^{2}$
- so $\log Q^{\prime}\left(\log \log Q^{\prime}\right)^{2} \approx 1.064 \log Q(\log \log Q)^{2}$
- it yields $\log Q^{\prime} \approx 1.064 \log Q$.
\Rightarrow Increase the bitsize of the finite field by 6.4% to get the same security level.
- the Generalized Joux-Lercier Method [BGGM 15]
- with MNFS.

$$
p=L_{p^{n}}\left(2 / 3, c_{p}\right)
$$

Complexities at $p=L_{p^{n}}\left(2 / 3, c_{p}\right)$

 MediumCharacteristic
Cécile Pierrot

Part II, Practical improvement: Nearly Sparse Linear Algebra.

A joint work with Antoine Joux.

Index Calculus Algorithms

If you want to compute Discrete Logs in G :

1. Collection of Relations (or Sieving Phase)
 \rightarrow Create a lot of sparse multiplicative relations between some (small) specific elements $=$ the factor base

$$
\prod g_{i}^{e_{i}}=\prod g_{i}^{e_{i}^{\prime}} \Rightarrow \sum\left(e_{i}-e_{i}^{\prime}\right) \log \left(g_{i}\right)=0
$$

\rightarrow So a lot of sparse linear equations
2. Linear Algebra
\rightarrow Recover the Discrete Logs of the factor base
3. Individual Logarithm Phase
\rightarrow Recover the Discrete Log of an arbitrary element

Linear Algebra and Index Calculus

- Matrix over finite sets.
- Sparse matrices $=$ the major part of the entries $=0$. Often: nbr of non zero coeffs per row is bounded by a constant, let us say K.

Some famous examples

- Factoring. Seek for a non trivial elt of the kernel of a matrix mod 2.
- Discrete log. Last records in small charac. for instance.

Advantages ?

- Less memory
- Specific algorithms

Sparse Linear Algebra

NFS

Index Calculus
Classical NFS
Theoretical
improvements
Conj. method
Multiple NFS
Combining Conj and MNFS

n practice

Sparse linear algebra
Nearly sparse linear algebra

Sparse Linear Algebra

How to use less memory: for any non zero coeff. in a row, let memorize its column number and its value together.

Example

With \mathbb{F}_{7} and $K=3$.

$$
M=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 3 & 0 & 0 & 2 \\
2 & 0 & 1 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & 0 & 0 & 2 \\
0 & 5 & 0 & 0 & 0 & 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\
0 & 3 & 0 & 1 & 0 & 0 & 2 & 0
\end{array}\right)
$$

NFS
 Index Calculus

Classical NFS

Theoretical

mprovements

Conj. method
Multiple NFS
Combining Conj and MNFS

Sparse Linear Algebra

How to use less memory: for any non zero coeff. in a row, let memorize its column number and its value together.

Example

With \mathbb{F}_{7} and $K=3$.

$$
M=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 3 & 0 & 0 & 2 \\
2 & 0 & 1 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & 0 & 0 & 2 \\
0 & 5 & 0 & 0 & 0 & 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\
0 & 3 & 0 & 1 & 0 & 0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
{[1,1]} & {[5,3]} & {[8,2]} \\
{[1,2]} & {[3,1]} & {[6,2]} \\
{[4,4]} & {[7,1]} & {[0,0]} \\
{[4,3]} & {[8,1]} & {[0,0]} \\
{[1,1]} & {[2,1]} & {[0,0]} \\
{[3,5]} & {[8,2]} & {[0,0]} \\
{[2,5]} & {[6,6]} & {[0,0]} \\
{[5,2]} & {[6,1]} & {[0,0]} \\
{[2,3]} & {[4,1]} & {[7,1]}
\end{array}\right)
$$

Sparse Linear Algebra, Naive method

We want to solve $M x=0$.
Let us manage a simple Gaussian Elimination.

Sparse Linear Algebra, Naive method

We want to solve $M x=0$.
Let us manage a simple Gaussian Elimination.
it overflows the available memory!
\rightarrow Stupid method.

Sparse Linear Algebra, specific algorithms

- Adapted Gaussian Elimination $=$ choose pivots that minimize the loss of sparsity

$$
\left(\begin{array}{llllllll|l}
1 & 0 & 0 & 0 & 3 & 0 & 0 & 2 & 0 \\
2 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & \mid \\
0 & 0 & 0 & 4 & 0 & 0 & 1 & 0 & \mid \\
0 & 0 & 0 & 3 & 0 & 0 & 0 & 1 & \mid \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \mid \\
1 & 0 \\
0 & 0 & 5 & 0 & 0 & 0 & 0 & 2 & \mid \\
0 & 5 & 0 & 0 & 0 & 6 & 0 & 0 & \mid \\
0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 1 & 0 & 0 & 2 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
{[1,1]} & {[5,3]} & {[8,2]} & 0 \\
{[1,2]} & {[3,1]} & {[6,2]} & \mid \\
{[4,4]} & {[7,1]} & {[0,0]} & 0 \\
{[4,3]} & {[8,1]} & {[0,0]} & 0 \\
{[1,1]} & {[2,1]} & {[0,0]} & 0 \\
{[3,5]} & {[8,2]} & {[0,0]} & 0 \\
{[2,5]} & {[6,6]} & {[0,0]} & 0 \\
{[5,2]} & {[6,1]} & {[0,0]} & 0 \\
{[2,3]} & {[4,1]} & {[7,1]} & 0
\end{array}\right)
$$

- or, without any modification of the matrix, using matrix-by-vector multiplications only:
- Krylov Subspace methods
- Wiedemann algorithm(s)

Wiedemann

 1986Problem
Solve:

$$
S x=0 \quad \text { or } \quad S x=y
$$

with S a sparse matrix with coefficients in a ring \mathbb{K}, K non zero coeffs. per row max,
$N=\max (\#$ rows, \# col)

$$
S=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 3 & 0 & 0 & 2 \\
2 & 0 & 1 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & 0 & 0 & 2 \\
0 & 5 & 0 & 0 & 0 & 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\
0 & 3 & 0 & 1 & 0 & 0 & 2 & 0
\end{array}\right) \quad \begin{aligned}
& K=3 \\
& N=9
\end{aligned}
$$

Wiedemann

1. Preconditioning step : We transform S into a square matrix A.

NFS

Index Calculus
Classical NFS
Theoretical
improvements
Conj. method
Multiple NFS
Combining Conj and MNFS

n practice

Sparse linear algebra
Nearly sparse linear algebra

Wiedemann

 Medium1. Preconditioning step : We transform S into a square matrix A.

Why?

- Powers of A are well defined.
- A not sparse but multiplying $R S=A$ with a vector is quick: $O(K N)$
- S. $x=0 \Rightarrow A . x=0$ (or S. $x=y \Rightarrow A . x=y^{\prime}=R . y$).

The converse is true for almost all random matrices R.
Try to solve $A . x=0\left(\right.$ or $\left.A . x=y^{\prime}\right)$.

Wiedemann

Discrete Log in Medium
Characteristic
Cécile Pierrot
2. Computation of a scalar sequence : $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
3. Reconstruction of the minimal polynomial of A.

Wiedemann

Discrete Log in Medium
Characteristic
Cécile Pierrot
2. Computation of a scalar sequence : $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
3. Reconstruction of the minimal polynomial of A.

Why does 2 help 3 ?

Wiedemann

2. Computation of a scalar sequence : $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
3. Reconstruction of the minimal polynomial of A.

Why does 2 help 3 ?

- Cayley-Hamilton theorem: the characteristic polynomial of A, of degree n, annihilates A.
- so we seek for a_{i} s.t. $\sum_{i=0}^{n} a_{i} A^{i}=0$.

Wiedemann

2. Computation of a scalar sequence : $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
3. Reconstruction of the minimal polynomial of A.

Why does 2 help 3 ?

- Cayley-Hamilton theorem: the characteristic polynomial of A, of degree n, annihilates A.
- so we seek for a_{i} s.t. $\sum_{i=0}^{n} a_{i} A^{i}=0$.
$\triangleright \Rightarrow \forall j \in \mathbb{N}, A^{j}\left(\sum_{i=0}^{n} a_{i} A^{i}\right)=0$.

Wiedemann

2. Computation of a scalar sequence : $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
3. Reconstruction of the minimal polynomial of A.

Why does 2 help 3 ?

- Cayley-Hamilton theorem: the characteristic polynomial of A, of degree n, annihilates A.
- so we seek for a_{i} s.t. $\sum_{i=0}^{n} a_{i} A^{i}=0$.
- $\Rightarrow \forall j \in \mathbb{N}, \sum_{i=0}^{n} a_{i} A^{i+j}=0$.

Wiedemann

2. Computation of a scalar sequence : $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
3. Reconstruction of the minimal polynomial of A.

Why does 2 help 3 ?

- Cayley-Hamilton theorem: the characteristic polynomial of A, of degree n, annihilates A.
- so we seek for a_{i} s.t. $\sum_{i=0}^{n} a_{i} A^{i}=0$.
- $\Rightarrow \forall j \in \mathbb{N}, \forall v$ vector, $\sum_{i=0}^{n} a_{i} A^{i+j} v=0$.

Wiedemann

2. Computation of a scalar sequence : $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
3. Reconstruction of the minimal polynomial of A.

Why does 2 help 3 ?

- Cayley-Hamilton theorem: the characteristic polynomial of A, of degree n, annihilates A.
- so we seek for a_{i} s.t. $\sum_{i=0}^{n} a_{i} A^{i}=0$.
- $\Rightarrow \forall j \in \mathbb{N}, \forall v, w$ vectors, $\sum_{i=0}^{n} a_{i}{ }^{t} w A^{i+j} v=0$.

Wiedemann

2. Computation of a scalar sequence : $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
3. Reconstruction of the minimal polynomial of A.

Why does 2 help 3 ?

- Cayley-Hamilton theorem: the characteristic polynomial of A, of degree n, annihilates A.
- so we seek for a_{i} s.t. $\sum_{i=0}^{n} a_{i} A^{i}=0$.
$\bullet \Rightarrow \forall j \in \mathbb{N}, \forall v, w$ vectors, $\sum_{i=0}^{n} a_{i}{ }^{t} w A^{i+j} v=0$.
- \Rightarrow There exists a linear recursive relationship between the elements of $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$!

Wiedemann

2. Computation of a scalar sequence: $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
3. Reconstruction of the minimal polynomial of A.

Why does 2 help 3 ?

- Cayley-Hamilton theorem: the characteristic polynomial of A, of degree n, annihilates A.
- so we seek for a_{i} s.t. $\sum_{i=0}^{n} a_{i} A^{i}=0$.
- $\Rightarrow \forall j \in \mathbb{N}, \forall v, w$ vectors, $\sum_{i=0}^{n} a_{i}{ }^{t} w A^{i+j} v=0$.
- \Rightarrow There exists a linear recursive relationship between the elements of $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$!
- Berlekamp-Massey permits to recover the minimal poly. of a recursive linear sequence.

Wiedemann

2. Computation of a scalar sequence: $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
3. Reconstruction of the minimal polynomial of A.

Why does 2 help 3 ?

- Cayley-Hamilton theorem: the characteristic polynomial of A, of degree n, annihilates A.
- so we seek for a_{i} s.t. $\sum_{i=0}^{n} a_{i} A^{i}=0$.
- $\Rightarrow \forall j \in \mathbb{N}, \forall v, w$ vectors, $\sum_{i=0}^{n} a_{i}{ }^{t} w A^{i+j} v=0$.
- \Rightarrow There exists a linear recursive relationship between the elements of $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$!
- Berlekamp-Massey permits to recover the minimal poly. of a recursive linear sequence.
- $\left(\star_{2}\right)$ for some random v and $w \Rightarrow_{\text {almost always }}\left(\star_{1}\right)$.

Wiedemann

2. Computation of a scalar sequence : $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
3. Reconstruction of the minimal polynomial of A.

Why does 2 help 3 ?

- Cayley-Hamilton theorem: the characteristic polynomial of A, of degree n, annihilates A.
- so we seek for a_{i} s.t. $\sum_{i=0}^{n} a_{i} A^{i}=0$.
- $\Rightarrow \forall j \in \mathbb{N}, \forall v, w$ vectors, $\sum_{i=0}^{n} a_{i}{ }^{t} w A^{i+j} v=0$. (\star_{2})
- \Rightarrow There exists a linear recursive relationship between the elements of $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$!
- Berlekamp-Massey permits to recover the minimal poly. of a recursive linear sequence.
- $\left(\star_{2}\right)$ for some random v and $w \Rightarrow_{\text {almost always }}\left(\star_{1}\right)$.

We have found a_{i} s.t. $\sum_{i=0}^{n} a_{i} A^{i}=0$.

Wiedemann

Discrete Log in Medium
Characteristic
Cécile Pierrot
4. Computation of the solution.

- How to solve $A x=0$ thanks to $\sum_{i=0}^{n} a_{i} A^{i}=0$? If there is a solution then $a_{0}=0$.
So for a random vector r :

$$
\sum_{i=1}^{n} a_{i} A^{i} r=0 \Leftrightarrow A \underbrace{\left(\sum_{i=1}^{n} a_{i} A^{i-1} r\right)}_{\text {Here is } x!}=0
$$

Wiedemann

4. Computation of the solution.

- How to solve $A x=0$ thanks to $\sum_{i=0}^{n} a_{i} A^{i}=0$? If there is a solution then $a_{0}=0$.
So for a random vector r :

$$
\sum_{i=1}^{n} a_{i} A^{i} r=0 \Leftrightarrow A \underbrace{\left(\sum_{i=1}^{n} a_{i} A^{i-1} r\right)}_{\text {Here is } x!}=0
$$

- How to solve $A x=y$ thanks to $\sum_{i=0}^{n} a_{i} A^{i}=0$? A inversible permits to assume $a_{0} \neq 0$.

$$
\begin{aligned}
& \text { So } \sum_{i=0}^{n} a_{i} A^{i} x=0 \Leftrightarrow-a_{0} x=\sum_{i=1}^{n} a_{i} A^{i} x \\
& \Leftrightarrow x=-\left(1 / a_{0}\right) \sum_{i=1}^{n} a_{i} A^{i-1} A x \\
& \Leftrightarrow x=-\left(1 / a_{0}\right) \sum_{i=1}^{n} a_{i} A^{i-1} y \text {. Here is } x \text { again! }
\end{aligned}
$$

Wiedemann

1. Preconditioning step: Transformation of S into A. The problem becomes:

$$
A \cdot x=0 \quad \text { or } \quad A \cdot x=y^{\prime}
$$

2. Computation of a scalar sequence: $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
3. Reconstruction of the minimal polynomial of A thanks to Berlekamp-Massey algorithm.
4. Computation of the solution.

Wiedemann

1. Preconditioning step: Transformation of S into A. The problem becomes:

$$
A \cdot x=0 \quad \text { or } \quad A \cdot x=y^{\prime}
$$

2. Computation of a scalar sequence: $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A. Complexity: Cost of multiplication $A_{\text {-vector }} \times$ length of the sequence $=O\left(K N^{2}\right)$
3. Reconstruction of the minimal polynomial of A thanks to Berlekamp-Massey algorithm.
4. Computation of the solution.

Wiedemann

1. Preconditioning step: Transformation of S into A. The problem becomes:

$$
A \cdot x=0 \quad \text { or } \quad A \cdot x=y^{\prime} .
$$

2. Computation of a scalar sequence: $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A. Complexity: Cost of multiplication $A_{\text {-vector }} \times$ length of the sequence $=O\left(K N^{2}\right)$
3. Reconstruction of the minimal polynomial of A thanks to Berlekamp-Massey algorithm.
Complexity: quasi-linear in N (with fast B-M. algo).
4. Computation of the solution.

Wiedemann

1. Preconditioning step: Transformation of S into A. The problem becomes:

$$
A \cdot x=0 \quad \text { or } \quad A \cdot x=y^{\prime}
$$

2. Computation of a scalar sequence: $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A. Complexity: Cost of multiplication $A_{\text {-vector }} \times$ length of the sequence $=O\left(K N^{2}\right)$
3. Reconstruction of the minimal polynomial of A thanks to Berlekamp-Massey algorithm.
Complexity: quasi-linear in N (with fast B-M. algo).
4. Computation of the solution.

Complexity: Cost of multiplication $A_{\text {-vector }} \times$ nbr elts of the sum $=O\left(K N^{2}\right)$

Wiedemann

1. Preconditioning step: Transformation of S into A. The problem becomes:

$$
A \cdot x=0 \quad \text { or } \quad A \cdot x=y^{\prime}
$$

2. Computation of a scalar sequence: $\left({ }^{t} w A^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors and $n=\#$ col. of A.
Complexity: Cost of multiplication $A_{\text {-vector }} \times$ length of the sequence $=O\left(K N^{2}\right)$
3. Reconstruction of the minimal polynomial of A thanks to Berlekamp-Massey algorithm.
Complexity: quasi-linear in N (with fast B-M. algo).
4. Computation of the solution.

Complexity: Cost of multiplication $A_{\text {-vector }} \times$ nbr elts of the sum $=O\left(K N^{2}\right)$
Final asymptotic complexity:

Let us parallelize!

Discrete Log in Medium
Characteristic
Cécile Pierrot

- 1994. Coppersmith. Distributed computations for sparse linear algebra over \mathbb{F}_{2}.

Let us parallelize!

Discrete Log in Medium

Index Calculus

Classical NFS
Theoretical
improvements
Conj. methot
Multiple NFS
Combining Conj and MNFS

n practice

Sparse linear algebra

Nearly sparse linear algebra

- 1994. Coppersmith. Distributed computations for sparse linear algebra over \mathbb{F}_{2}.
- 1995. Kaltofen. Generalized this idea to $\mathbb{F}_{p^{n}}$.

Let us parallelize!

Index Calculus

Classical NFS
Theoretical
improvements
Conj. method
Multiple NFS
Combining Conj and MNFS
In practice

Sparse linear algebra

Nearly sparse linear algebra

- 1994. Coppersmith. Distributed computations for sparse linear algebra over \mathbb{F}_{2}.
- 1995. Kaltofen. Generalized this idea to $\mathbb{F}_{p^{n}}$.
- 2002. Thomé. Generalized fast Berlekamp-Massey.

From Wiedemann to Block Widemann

1. Preconditioning step: Transformation of S into a square matrix A. The problem becomes:
2. Computation of a scalar sequence: $\left({ }^{t} w A^{\prime} \dot{A}^{i} v\right)_{i=0, \cdots, 2 n}$ with v, w two random vectors
3. Reconstruction of the minimal polynomial of A thanks to Berlekamp-Massey algorithm.
4. Computation of the solution.

From Wiedemann to Block Widemann

1. Preconditioning step: Transformation of S into a
2. Computation of a matrix sequence: $\left({ }^{t} y^{\prime} A^{i} V\right)_{i=0, \cdots, 2 n / c}$ with $V=\left(v_{1}, \cdots, v_{c}\right), W$ two random matrices
3. Reconstruction of the minimal polynomial of A thanks to Berlekamp-Massey algorithm.
4. Computation of the solution.

From Wiedemann to Block Widemann

1. Preconditioning step: Transformation of S into a square matrix A. The problem becomes:
2. Computation of a matrix sequence: $\left({ }^{t}{ }^{\prime}{ }^{\prime} \text {, } A^{i} V\right)_{i=0, \cdots, 2 n / c}$ with $V=\left(v_{1}, \cdots, v_{c}\right), W$ two random matrices
Parallelization over c machines :

3. Reconstruction of the minimal polynomial of A thanks to Berlekamp-Massey algorithm.
4. Computation of the solution.

From Wiedemann to Block Widemann

1. Preconditioning step: Transformation of S into a square matrix A. The problem becomes:
2. Computation of a matrix sequence: $\left({ }^{t}{ }^{\prime}{ }^{\prime}, A^{\prime} A^{i} V\right)_{i=0, \cdots, 2 n / c}$ with $V=\left(v_{1}, \cdots, v_{c}\right), W$ two random matrices
Parallelization over c machines :

$$
\begin{array}{cc}
\text { El } & \left({ }^{t} W A^{i} v_{1}\right)_{i=0, \cdots, 2 n / c} \\
\cdots & \cdots \\
\text { 皿c } & \left(t W A^{i} v_{c}\right)_{i=0, \cdots, 2 n / c}
\end{array}
$$

Complexity: $\mathrm{O}\left(K N^{2}\right)$ but distributed over c machines.
3. Reconstruction of the minimal polynomial of A thanks to Berlekamp-Massey algorithm.
4. Computation of the solution.

From Wiedemann to Block Widemann

1. Preconditioning step: Transformation of S into a square matrix A. The problem becomes:
2. Computation of a matrix sequence: $\left({ }^{t} y^{\prime}{ }^{\prime} A^{i} V\right)_{i=0, \cdots, 2 n / c}$ with $V=\left(v_{1}, \cdots, v_{c}\right), W$ two random matrices
Parallelization over c machines :

$$
\begin{array}{cc}
{ }^{\circ} 1 & \left({ }^{t} W A^{i} v_{1}\right)_{i=0, \cdots, 2 n / c} \\
\cdots & \cdots \\
{ }^{\circ} c & \left({ }^{t} W A^{i} v_{c}\right)_{i=0, \cdots, 2 n / c}
\end{array}
$$

Complexity: $\mathrm{O}\left(K N^{2}\right)$ but distributed over c machines.
3. Reconstruction of coeffs. $a_{i j}$ s.t. $\sum_{j=1}^{c} \sum_{i=0}^{n / c} a_{i j} A^{i} v_{j}=0$ thanks to Thomé algorithm. Complexity: $\tilde{O}\left(c^{2} N\right)$
4. Computation of the solution.

From Wiedemann to Block Widemann

1. Preconditioning step: Transformation of S into a square matrix A. The problem becomes:
2. Computation of a matrix sequence: $\left({ }^{t} y^{\prime}{ }^{\prime} A^{i} V\right)_{i=0, \cdots, 2 n / c}$ with $V=\left(v_{1}, \cdots, v_{c}\right), W$ two random matrices
Parallelization over c machines:

$$
\begin{array}{cc}
\text { N } & \left({ }^{t} W A^{i} v_{1}\right)_{i=0, \cdots, 2 n / c} \\
\cdots & \cdots \\
{ }^{=} c & \left({ }^{t} W A^{i} v_{c}\right)_{i=0, \cdots, 2 n / c}
\end{array}
$$

Complexity: $\mathrm{O}\left(K N^{2}\right)$ but distributed over c machines.
3. Reconstruction of coeffs. $a_{i j}$ s.t. $\sum_{j=1}^{c} \sum_{i=0}^{n / c} a_{i j} A^{i} v_{j}=0$ thanks to Thomé algorithm. Complexity: $\tilde{O}\left(c^{2} N\right)$
4. Computation of the solution. Complexity: $O\left(K N^{2}\right)$ distributed.

From Wiedemann to Block Widemann

1. Preconditioning step: Transformation of S into a square matrix A. The problem becomes:
2. Computation of a matrix sequence: $\left({ }^{t} y^{\prime}{ }^{\prime} A^{i} V\right)_{i=0, \cdots, 2 n / c}$ with $V=\left(v_{1}, \cdots, v_{c}\right), W$ two random matrices
Parallelization over c machines:

$$
\begin{array}{cc}
{ }^{\text {a }} 1 & \left({ }^{t} W A^{i} v_{1}\right)_{i=0, \cdots, 2 n / c} \\
\cdots & \cdots \\
\underbrace{\circ} c & \left({ }^{t} W A^{i} v_{c}\right)_{i=0, \cdots, 2 n / c}
\end{array}
$$

Complexity: $\mathrm{O}\left(K N^{2}\right)$ but distributed over c machines.
3. Reconstruction of coeffs. $a_{i j}$ s.t. $\sum_{j=1}^{c} \sum_{i=0}^{n / c} a_{i j} A^{i} v_{j}=0$ thanks to Thomé algorithm. Complexity: $\tilde{O}\left(c^{2} N\right)$
4. Computation of the solution. Complexity: $O\left(K N^{2}\right)$ distributed.
Final asymptotic complexity: $O\left(K N^{2}\right)+\tilde{O}\left(c^{2} N\right)$

Dlog-NFS raises a question of identity...

Matrices in NFS

Computing Dlog with NFS leads to consider matrices of the form:

$$
\boldsymbol{S}=\left(\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 3 & 0 & 0 & 2 & 5 & 3 \\
2 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 6 & 2 \\
0 & 0 & 0 & 4 & 0 & 0 & 1 & 0 & 6 & 4 \\
0 & 0 & 0 & 3 & 0 & 0 & 0 & 1 & 5 & 2 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 5 & 0 & 0 & 0 & 0 & 2 & 1 & 1 \\
0 & 5 & 0 & 0 & 0 & 6 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 1 & 6 \\
0 & 3 & 0 & 1 & 0 & 0 & 2 & 0 & 5 & 6 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 3 & 4 & 2 \\
0 & 2 & 0 & 3 & 0 & 0 & 2 & 0 & 5 & 1
\end{array}\right) \quad \text { Is it sparse? Is it dense? } \begin{gathered}
K=5 \\
N=11 \\
\\
\end{gathered}
$$

- If we apply a classical algo., we don't take advantage of zero coeffs.
- If we apply Block-Wiedemann, we don't take advantage of the particular distribution of non zero coeffs.
- Number fields complicate the linear algebra step: need to take into account the contribution of units in these number fields.
- \Rightarrow Schirokauer maps.
- 1 unit $=+1$ Schirokauer map $=+1$ dense column

Example

- Latest record on a prime field $\mathbb{F}_{p},(p \approx 180$ digits $)$
- June 2014 by Bouvier, Gaudry, Imbert, Jeljeli,Thomé.

Nearly sparse linear algebra

 Medium
Definition

M is (d-)nearly sparse if it is of the form:

NFS
 Index Calculus

Classical NFS

Theoretical

improvements
Conj. method
Multiple NFS
Combining Conj and MNFS

Problem

Solve:

$$
M \cdot x=0 \quad \text { or } \quad M \cdot x=y
$$

where M is a nearly sparse matrix with coeff. in a ring \mathbb{K}.

Nearly sparse linear algebra

Remark

- There is no restriction on the nbr of dense columns.

Nearly sparse linear algebra

Remark

- There is no restriction on the nbr of dense columns.
- Being able to recover a non trivial elt of the kernel of a nearly sparse matrix suffices!

Let's assume we want to solve $M \cdot x=y$ with M a d-nearly sparse matrix.
Then $(M) \cdot(x)=(y) \Leftrightarrow\left(\begin{array}{l|l}M & y\end{array}\right) \cdot\binom{x}{-1}=0$.
Since $\left(M^{y}\right)$ is $d+1$-nearly sparse, it's ok.

Nearly sparse linear algebra

 MediumCharacteristic
Cécile Pierrot

Definition

M is $(d-)$ nearly sparse if it is of the form:

Problem

Solve:

$$
M \cdot x=0
$$

where M is a nearly sparse matrix with coeff. in a ring \mathbb{K}.

A dedicated algorithm

Since M is (also) a sparse matrix of parameters $K+d, N$, we may apply Block-Wiedemann!
Asymptotic complexity:

$$
O\left((K+d) N^{2}\right)+\tilde{O}\left(c^{2} N\right)
$$

A dedicated algorithm

Since M is (also) a sparse matrix of parameters $K+d, N$, we may apply Block-Wiedemann!
Asymptotic complexity:

$$
O\left((K+d) N^{2}\right)+\tilde{O}\left(c^{2} N\right)
$$

Main result
We propose to design an algorithm with asymptotic complexity:

$$
O\left(K N^{2}\right)+\tilde{O}\left(\max \left(c^{2}, d^{2}\right) N\right)
$$

Key ideas

NFS Index Calculus

Classical MFS
Theoretical

improvements

Conj. method
Multiple NFS
Combining Conj and MNFS
In practice
Sparse linear algebra
Nearly sparse linear algebra

1. Apply Block-Wiedemann on the sparse part only.
2. Make the d dense columns contribute in the initial block V,i.e. set each dense col. = one initial vector of the matrix sequences to construct.

Nearly sparse linear algebra algorithm

1. Preconditioning step on the RIGHT of the matrix M :

Why ?

- Powers of A are well defined.
- Multiplying $M_{s} R=A$ by a vector is quick enough.
- If R surj. : $\left(A \mid M_{d}\right) \cdot x=0 \Rightarrow M . x=0$

Try to solve $\left(A \mid M_{d}\right) \cdot x=0$.

Nearly sparse linear algebra algorithm

For the sake of simplicity: \# machines $=\#$ dense col.
2. Computation of a matrix sequence: $\left({ }^{t} W A^{i} V\right)_{i=0, \cdots, 2 N}$ with $V=\left(v_{1}, \cdots, v_{d}\right), W$ two rand. matrices.
Parallelization over c machines :

$$
\begin{array}{cc}
E^{2} & \left({ }^{t} W A^{i} v_{1}\right)_{i=0, \cdots, 2 N / d} \\
\cdots & \cdots \\
\underbrace{-} d & \left({ }^{t} W A^{i} v_{d}\right)_{i=0, \cdots, 2 N / d}
\end{array}
$$

Nearly sparse linear algebra algorithm

For the sake of simplicity: \# machines $=\#$ dense col.
2. Computation of a matrix sequence: $\left({ }^{t} W A^{i} V\right)_{i=0, \cdots, 2 N}$ with $V=\left(d_{1}, \cdots, d_{d}\right), W$ one rand. matrix and d_{1}, \cdots, d_{d} the d dense col.
Parallelization over d machines :

$$
\begin{array}{cc}
\text { Eol } & \left({ }^{t} W A^{i} d_{1}\right)_{i=0, \cdots, 2 N / d} \\
\cdots & \cdots \\
\text { E. } & \left({ }^{t} W A^{i} d_{d}\right)_{i=0, \cdots, 2 N / d}
\end{array}
$$

Nearly sparse linear algebra algorithm

For the sake of simplicity: \# machines $=\#$ dense col.
2. Computation of a matrix sequence: $\left({ }^{t} W A^{i} V\right)_{i=0, \cdots, 2 N}$ with $V=\left(d_{1}, \cdots, d_{d}\right), W$ one rand. matrix and d_{1}, \cdots, d_{d} the d dense col.
Parallelization over d machines :

$$
\begin{array}{cc}
\text { Fold } & \left({ }^{t} W A^{i} d_{1}\right)_{i=0, \cdots, 2 N / d} \\
\cdots & \cdots \\
\underbrace{-1} d & \left({ }^{t} W A^{i} d_{d}\right)_{i=0, \cdots, 2 N / d}
\end{array}
$$

3. Reconstruction of coeffs. $a_{i j}$ s.t. $\sum_{j=1}^{d} \sum_{i=0}^{N / d} a_{i j} A^{i} d_{j}=0$ thanks to Thomé.

Nearly sparse linear algebra algorithm

4. Computation of an elt of the kernel of $A M_{d}$

$$
\begin{array}{r}
\sum_{j=1}^{d} \sum_{i=0}^{N / d} a_{i j} A^{i} d_{j}=0 \Leftrightarrow \sum_{j=1}^{\sum_{j=1}^{d} \sum_{i=1}^{N / d} a_{i j} A^{i} d_{j}+\sum_{j=1}^{d} a_{0 j} d_{j}=0} \\
\Leftrightarrow A \cdot \underbrace{\sum_{j=1}^{d} \sum_{i=1}^{N / d} a_{i j} A^{i-1} d_{j}}_{\text {let us say } x^{\prime}}+\sum_{j=1}^{d} a_{0 j} d_{j}=0 \\
\Leftrightarrow \quad A \cdot x^{\prime}+a_{01} d_{1}+a_{02} d_{2} \\
+\cdots+a_{0 d} d_{d}=0
\end{array}
$$

So ${ }^{t}\left(x^{\prime}\left|a_{01}\right| a_{02}|\cdots| a_{0 d}\right) \in \operatorname{ker}\left(A M_{d}\right.$.

Asymptotic complexity

Main result
We obtain an asymptotic complexity of:

$$
O\left(K N^{2}\right)+\tilde{O}\left(\max \left(c^{2}, d^{2}\right) N\right) \text { operations, }
$$

to be compared with previous $O\left((K+d) N^{2}\right)+\tilde{O}\left(c^{2} N\right)$ complexity. When $d \leq c$, it becomes:

$$
O\left(K N^{2}\right)+\tilde{O}\left(c^{2} N\right) \text { operations. }
$$

Remark

When we have more machines than dense columns, these columns cost NOTHING with our algorithm!

Asymptotic Complexity

And if $c<d$, how many dense col. can we still have?

- As soon as $d<N^{1-\epsilon}(\epsilon>0)$, our algorithm is better than Block-Wiedemann.
- As soon as $d<N^{\omega-2-\epsilon}(\epsilon>0)$, it is better than classical (dense) linear algebra algorithms of complexity $O\left(N^{\omega}\right)$.

Asymptotic Complexity

And if $c<d$, how many dense col. can we still have?

- As soon as $d<N^{1-\epsilon}(\epsilon>0)$, our algorithm is better than Block-Wiedemann.
- As soon as $d<N^{\omega-2-\epsilon}(\epsilon>0)$, it is better than classical (dense) linear algebra algorithms of complexity $O\left(N^{\omega}\right)$.

Example

Recalling that $\omega \approx 2.37$, with $N^{1 / 3}$ dense columns for instance, our algorithm is still faster than any others.

Nearly Sparse Linear Algebra applied to Dlog

- Latest record on a prime field $\mathbb{F}_{p},(p \approx 180$ digits $)$
- June 2014 by Bouvier, Gaudry, Imbert, Jeljeli,Thomé.
- Parameters of the matrix: $N \approx 7,28$ millions of rows, $K=150$ non zero coeff. per row, 4 dense columns.
- Parallelized over 16 machines.

To conclude with medium characteristic

- If your are a cryptographer: increase your finite fields cardinality by 6.4\%
- If you are a cryptanalyst: do not worry about dense columns.

Discrete Log in Medium
Characteristic
Cécile Pierrot

Theoretical

mprovements

Conj, method
Multiple NFS
Combining Conj and MNFS
in practice
Sparse linear algebra
Nearly sparse linear algebra

[^0]: *An ideal \mathfrak{I} is B-smooth if all its factors have norms lower than B.

[^1]: ${ }^{\dagger} \operatorname{Norm}_{\mathbb{Q}[X] /(f)}(\varphi)=\operatorname{Res}(\varphi, f)$ if f is monic.

[^2]: ${ }^{\dagger} \operatorname{Norm}_{\mathbb{Q}[X] /(f)}(\varphi)=\operatorname{Res}(\varphi, f)$ if f is monic.

[^3]: ${ }^{\dagger} \operatorname{Norm}_{\mathbb{Q}[X] /(f)}(\varphi)=\operatorname{Res}(\varphi, f)$ if f is monic.

