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Recall...

Disclaimer

So far you’ve seen elliptic curves
from both a low-level, implementation point of view

and a high-level, theoretical point of view.

I’ll try to take a “middlebrow” point of view.

(I can’t promise we’ll have the same idea of
where “middle” is, though.)
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Recall...

We work over a perfect field k.

Perfect?!
Every irred. poly. over k has distinct roots in k
Equivalently: Either char(k) = 0, or char(k) = p
and the Frobenius α 7→ αp is an automorphism.

1 Finite fields: k = Fq (what we’re really interested in)

2 Characteristic 0: k = Q,Q(
√

13),Q(t),Qp,R,C, . . .

3 ...But not (e.g.) k = Fq(t)
(because then weird stuff happens with t1/p, etc.)
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Recall...

Something (a point, a set, a curve, a function)
is defined over k if it is fixed by Gal(k/k).

If X is a thing,
then X (k) denotes its elements/points defined over k.

If k = Fq, then the objects defined over Fq are those
fixed by/commuting with the q-power Frobenius.
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Hyperelliptic Curves

From elliptic to hyperelliptic curves

We’ve considered cryptosystems built from elliptic curves.
But what’s so special about elliptic curves?

Today: X denotes an algebraic curve over k.

Examples:

X = P1 = a line

X = an elliptic curve E : y 2 = x3 + Ax + B

X : y 2 = f (x) with deg f > 4 (hyperelliptic curves)

...More generally, a plane curve X : F (x , y) = 0 in A2
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Hyperelliptic Curves

Hyperelliptic Curves

X : y 2 = f (x) = xd + · · ·

with f squarefree, of degree d > 4.
(NB: d = 1, 2 =⇒ conics; d = 3, 4 =⇒ elliptic.)

Hyperelliptic involution:

ι : (x , y) 7−→ (x ,−y) .

d odd =⇒ one point ∞ at infinity.
d even =⇒ two points ∞+, ∞− at infinity.

Key: P 7→ x(P) defines a double cover X → X/〈ι〉 ∼= P1.
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Hyperelliptic Curves

The function field

If X : F (x , y) = 0 is a plane curve over k,
then its function field is

k(X ) = k(x)[y ]/(F (x , y)) .

Its elements are rational fractions in x and y ,
modulo the curve equation F (x , y) = 0.

For more general curves:
k(X ) := fraction field of the coordinate ring.
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Divisors

Zeroes and Poles

Rational functions on X have poles and zeroes:

The zeroes of f are the points P on X where f (P) = 0.

The poles of f are the points P on X where f (P) =∞.

Note: (zeroes and poles can occur with multiplicity > 1.)

Theorem

If f is a nonzero function in k(X ), then

1 f has only finitely many zeroes and poles, and

2 counted with multiplicity, #zeroes(f ) = #poles(f ).
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Divisors

Orders of vanishing
Let f be a nonzero function on X .

We define ordP(f ) to be the order of vanishing of f at P :

ordP(f ) := n if f has a zero of multiplicity n at P

ordP(f ) := −n if f has a pole of multiplicity n at P

ordP(f ) := 0 otherwise.

Useful rules:

ordP(fg) = ordP(f ) + ordP(g) for all f , g ,P

ordP(f /g) = ordP(f )− ordP(g) for all f , g ,P

ordP(α) = 0 for all constants α 6= 0 in k
ordP(

∑
i αix

ai ybi ) = n
if the curve

∑
i αix

ai ybi = 0 intersects X n times at P
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Divisors

Principal divisors

Each function f 6= 0 on X has an associated
principal divisor: that is, a formal sum

div(f ) =
∑

P∈X (Fq)

ordP(f )(P) .

1 div(f ) = 0 if and only if f is constant (in kq \ {0});
2 div(fg) = div(f ) + div(g) and
div(f /g) = div(f )− div(g);

3 div(f ) = div(g) ⇐⇒ f = αg for some α 6= 0 in Fq.

Functions are determined by their principal divisors,
up to constant factors.
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Divisors

The set of principal divisors is denoted Prin(X ):

Prin(X ) :=
{
div(f ) : f ∈ k(X )

}
.

Since div(fg) = div(f ) + div(g), we see that

Prin(X ) is a group.

If you like exact sequences:

1 −→ k× −→ k(X )× −→ Prin(X ) −→ 0 .
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Divisors

Examples

Consider the elliptic curve E : y 2 = x3 + 1 over F13.

div(x) = (0, 1) + (0,−1)− 2∞;

div(y) = (−1, 0) + (4, 0) + (−3, 0)− 3∞;

div(x2/y) =
2(0,−1) + 2(0, 1)− (−1, 0)− (4, 0)− (−3, 0)−∞;

div(x2−y−1
xy ) =

(0,−1) + (2, 3) +∞− (0, 1)− (−3, 0)− (4, 0).

More generally:
If f (x , y) = 0 is the line through P and Q,

then div(f ) = P + Q + (	(P ⊕ Q))− 3∞.
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Divisors

General divisors

Divisors on X are formal sums of points in X (k)
with arbitrary coefficients in Z;

We define the (free abelian, infinitely generated) group

Div(X ) :=
{ ∑

P∈X (Fq)

nP(P)
}
,

with the nP in Z, and only finitely many nP 6= 0.

Observe that Prin(X ) ⊂ Div(X ).
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Divisors

The Picard group

The divisor group Div(X ) is way too big,
and doesn’t tell us anything about the geometry of X .

We work with the quotient

Pic(X ) := Div(X )/Prin(X ) .

Elements are divisor classes:

[D] = {D + div(f ) : f ∈ k} .
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Divisors

Degree

We have a degree homomorphism deg : Div(X )→ Z,

deg(
∑

P

nP(P)) =
∑

P

nP .

Its kernel is a subgroup of Div(X ), denoted Div0(X ):

Div0(X ) := ker deg = {D ∈ Div(X ) : deg(D) = 0} ⊂ Div(X ) .

Every function has the same number of zeroes and poles, so

Prin(X ) ⊂ Div0(X ) and Prin(X )(k) ⊂ Div0(X )(k) .

This inclusion is strict for almost all curves:
not every divisor of degree zero is principal!
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Divisors

Why are they called divisors?

Idea: degree-0 divisors are “parts of functions”.

Example: Consider E : y 2 = x3 + 1. The divisors

D1 = (0, 1)−∞ and D2 = (0,−1)−∞

are both in Div0(E). Neither is principal, but

D1 + D2 = div(x) .

So we can view D1 and D2 as being
“parts” (or even “factors”) of the function x ...
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Divisors

Degrees of divisor classes

deg is well-defined on divisor classes:

deg : Pic(X ) −→ Z
[D] 7−→ deg(D)

(since deg(div(f )) = 0 for all f ).

=⇒ Div0(X ) splits up into divisor classes: we set

Pic0(X ) := ker(deg : Pic(X )→ Z)

= Div0(X )/Prin(X ) .

Smith (INRIA/LIX) Hyperelliptic Curves ECC, 24/09/2015 17 / 38



Divisors

The map D 7→ (D − deg(D)∞, deg(D))
defines isomorphisms

Div(X )
∼=←→ Div0(X )× Z

Pic(X )
∼=←→ Pic0(X )× Z .

The “interesting” stuff all happens in Pic0(X ).

In fact, Pic0(X ) has the structure of an abelian variety:
a geometric object defined by polynomial equations in
projective coordinates, with a polynomial group law.

(Stop and think about what this means for a minute: in some weird universe,
divisor classes are defined by tuples of coordinates, and addition of divisor classes
modulo linear equivalence is defined by polynomial formulæ in those coordinates!)
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Differentials

Differentials
Differentials on X look like gdf , where g and f are in k(X ),

with g1df1 = g2df2 ⇐⇒
g2

g1
=

df1

df2
(← usual derivative) .

Differentials obey the usual product rule: d(fg) = fdg + gdf .
Also: d(αf + βg) = αdf + βdg and dα = 0 for α, β in k.

For example: on E : y 2 = x3 + 1, we have

2ydy = 3x2dx

Differentials are not functions on X :
they give linear functions on the tangent spaces of X .
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Differentials

The space of differentials

The differentials on X form a one-dimensional
k(X )-vector space, Ω(X ).

That is: if we fix some differential dx , then every other
differential in Ω(X ) is equal to fdx for some function f .

On the other hand:
Ω(X ) is an infinite-dimensional k-vector space.
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Differentials

Divisors of differentials

Differentials have divisors!

First, for each point P of X , we fix a local parameter tP

near P on X : ie any function with a simple zero at P .

If ω is a differential then ω/dtP is a function, so we set

ordP(ω) := ordP(ω/dtP)

(amazingly, ordP(ω) is independent of choice of tP) and

div(ω) :=
∑

P∈X
ordP(ω) .
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Differentials

Example on an elliptic curve

What is the divisor of dx on an elliptic curve E : y 2 = f (x)?

At points (α, β) where β 6= 0, we can use t(α,β) = x − α:

ord(α,β)(dx) = ord(α,β)(
dx

d(x − α)
) = ord(α,β)(1) = 0 .

If β = 0 then x − α is not a local parameter at (α, 0)
(it has a double zero), but we can use t(α,0) = y ; hence

ord(α,0)(dx) = ord(α,0)(
dx

dy
) = ord(α,0)(

2y

f ′(x)
) = 1 .

At infinity: we can take t∞ = x/y , so

ord∞(x) = ord∞(
dx

d(x/y)
) = ord∞(

yf ′(x)

f ′(x)− 2x
) = −3 .
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Differentials

Canonical divisors

div(f ω) = div(ω) + div(f ) for all f ∈ k(X ), ω ∈ Ω(X ),
so the divisors of differentials on X are

all in the same divisor class,
which we call the canonical class [K ].

Any divisor in [K ] is called a canonical divisor.

On H : y 2 = f (x) =
∏d

i=1(x − αi ), we have

K = div(dx) =

{∑d
i=1(αi , 0)− 3∞ d odd∑d
i=1(αi , 0)− 2(∞+ +∞−) d even

Smith (INRIA/LIX) Hyperelliptic Curves ECC, 24/09/2015 23 / 38



Differentials

Nonconstant differentials with no poles

So: if y 2 = f (x) = (x − α1)(x − α2)(x − α3), then

div(dx) = (α1, 0) + (α2, 0) + (α3, 0)− 3∞ .

Notice that div(y) = div(dx), so

div(
dx

y
) = 0

—that is, the differential dx/y is a nonconstant
differential with no poles (or zeroes!).
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Differentials

Regular differentials

We call differentials with no poles regular.

The regular differentials on X form
a (finite-dimensional) k-vector space

Ω1(X ) = {ω ∈ Ω(X ) : ω is regular} .

The genus of X is defined to be
the dimension of Ω1(X ).
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Differentials

Genus of hyperelliptic curves

For hyperelliptic curves

X : y 2 = f (x) = xd + · · · ,

we have

Ω1(X ) =

〈
dx

y
,

xdx

y
, . . . ,

xb(d−1)/2−1cdx

y

〉
,

so

g(X ) =

⌊
d − 1

2

⌋
.
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Differentials

Explicit regular differentials

More generally, if X/k is a nonsingular plane curve of
genus g defined by

X : F (x , y) = 0 ,

then its regular differentials are

Ω1(X ) =

〈
x i

(∂F/∂y)(x , y)
dx

〉g−1

i=0

.

For any curve X , we have deg(K ) = 2g − 2.
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Attacking anomalous elliptic curves

Anomalous elliptic curves

Let’s use differentials for something fun.
DLPs in the additive group are really fast:

they’re just (modular) division.

When can we map an ECDLP instance into (Fp,+)?

A homomorphism E(Fp) −→ (Fp,+)
can only be nontrivial if p | #E(Fp),

which (by Hasse) can only happen if #E(Fp) = p.

We call these trace-1 curves anomalous curves.
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Attacking anomalous elliptic curves

Homomorphisms into the additive group

Suppose E is defined over Fp, and that #E(Fp) = p.

Several approaches to mapping E(Fp) into (Fp,+)
(Semaev, Smart, Araki–Satoh, Rück...)

Recall: dim Ω1(E) = 1, so Ω1(E) = (Fp,+).

We will define a homomorphism

E(Fp) −→ Ω1(E) ∼= (Fp,+)

using an additive version of the Tate pairing.
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Attacking anomalous elliptic curves

Suppose #E(Fp) = p. If P is in E(Fp) then [p]P = 0, so

p(P −∞) = div(fP)

for some fP in Fp(E) (a Miller function!)

Serre: the differential dfP
fP

is regular at ∞.

Expand dfP/fP at ∞ with local parameter t = x
y

:

dfP
fP

= (a0 + a1t + a2t2 + · · · )dt

dfP/fP (and hence the ai) depends only on P .

Product rule for differentials + Algebra of Miller functions =⇒
P 7−→ dfP/fP 7−→ a0 is a homomorphism E(Fp)→ Ω1(E)→ (Fp,+)!

Smith (INRIA/LIX) Hyperelliptic Curves ECC, 24/09/2015 30 / 38



Attacking anomalous elliptic curves

Solving DLPs on anomalous curves

To solve a DLP instance Q = [m]P on an anomalous curve E/Fp:

1 Compute a0(P) and a0(Q) using Miller loops
Don’t compute fP , fQ : as in pairing computation,
build up the a0 values using double-and-add loops

2 Then
m ≡ a0(Q)/a0(P) (mod p) .

The number of E(Fp)-operations is linear in log p.

This reduction is easy to implement!
(It’s an exercise for Friday afternoon.)
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Riemann–Roch

Into space!

Let’s get back to functions on X .

Evaluating functions at points maps us from X to P1.

Evaluating a collection {f1, . . . , fn} of functions
gives us a map P 7→ (f1(P) : · · · : fn(P) : 1) into Pn.

We want to control behaviour at infinity,
hence the poles of the fi .
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Riemann–Roch

Riemann–Roch Spaces

A divisor D =
∑

P nPP is effective if all of the nP ≥ 0.

We define

L(D) := {f ∈ k(X ) : D + div(f ) is effective } ∪ {0}

...So L(D) consists of the functions
whose poles are contained in D.

L(D1 + D2) ⊇ L(D1)L(D2) for any effective D1,D2.

Note: if X = P1, then L(d∞) = {polynomials of degree ≤ d}.
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Riemann–Roch

Dimension of Riemann–Roch Spaces

Fact: L(D) is a finite-dimensional k-vector space.

What is its dimension?

If deg D < 0, then D + div(f ) can never be effective
=⇒ dim L(D) = 0.

L(0) = k (functions with no poles are constant),
so dim L(0) = 1.

More generally, L(D) = ?
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Riemann–Roch

The Riemann–Roch Theorem

The Riemann–Roch theorem tells us that for any D,

dim L(D)− dim L(K − D) = deg D − g + 1 .

Recall that K is (any) canonical divisor, and

L(K − D)←→
{
ω ∈ Ω1(X ) : ω = 0 on D

}
.

In particular, for large enough D, we have L(K − D) = 0
and hence dim L(D) = deg D − g + 1.
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Riemann–Roch

Weierstrass models of elliptic curves

Suppose E is an abstract elliptic curve over k, and let O ∈ E(k).

We have K = 0, so R–R gives dim L(D) = deg D for effective D.

L(O) = k = 〈1〉 (constants)

dim L(2O) = 2 =⇒ L(2O) = 〈1, x〉 for some x

dim L(3O) = 3 =⇒ L(3O) = 〈1, x , y〉 for some y

L(4O) = 〈1, x , x2, y〉
L(5O) = 〈1, x , x2, y , xy〉
L(6O) = 〈1, x , x2, x3, y , xy , y 2〉, but dim L(6O) = 6:
so must have a nontrivial linear relation between the 7 functions

=⇒ Weierstrass equation y 2 + a1xy + a3y = a0x3 + a2x2 + a4x + a6.

L(3O) gives us an embedding E → P2 = P(L(3O))
defined by P 7−→ (x(P) : y(P) : 1), mapping O 7→ ∞ = (0 : 1 : 0).
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Riemann–Roch

Application: canonical models for genus 2 curves

Suppose X is a curve of genus 2.

We have deg K = 2g − 2 = 2,
so L(−nK ) = 0 for n > 1.

Apply R–R to D = 0 =⇒ dim L(K ) = 2,
so L(K ) = 〈1, x〉 for some x .

Apply R–R to D = nK , n > 1: dim L(nK ) = 2n − 1 for n > 1.

L(2K ) ⊇ 〈1, x , x2〉 but dim L(2K ) = 3,
so L(2K ) = 〈1, x , x2〉.
L(3K ) ⊇ 〈1, x , x2, x3〉 but dim L(3K ) = 5,
so L(3K ) = 〈1, x , x2, x3, y〉 for some new y

...L(4K ) = 〈1, x , x2, x3, x4, y , xy〉

...L(5K ) = 〈1, x , x2, x3, x4, x5, y , xy , x2y〉
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Riemann–Roch

...Every genus 2 curve is hyperelliptic

Now L(6K ) ⊇ 〈1, x , x2, x3, x4, x5, x6, y , xy , x2y , x3y , y 2〉,
but R–R says dim L(6K ) = 11, so

there is a nontrivial k-linear relation between the 12 functions:

y 2 +
3∑

i=0

(aix
iy) =

6∑

i=0

bix
i with the ai , bi ∈ k .

char(k) 6= 2: replace y with y − 1
2

∑3
i=0 aix

i to get y 2 =
∑6

i=0 fix
i .

Now P 7→ (x(P), y(P)) defines a map from X into the plane;
its image is the hyperelliptic curve

X : y 2 = f (x) =
6∑

i=0

fix
i .
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Hyperelliptic Jacobians

Hyperelliptic Jacobians

Suppose X : y 2 = f (x) is hyperelliptic of genus g > 1.

In what follows, we suppose f has odd degree,
so X has a single point ∞ at infinity.

Even degree case is (only) slightly more complicated.

Our mission: to define a compact (and algebraic)
representation for Pic0(X ).
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Hyperelliptic Jacobians

Reduced representatives for classes

If [D] is in Pic0(X ),
then [D] has a unique reduced representative:

[D] = [P1 + · · ·+ Pr − r∞]

for some P1, . . . ,Pr ∈ X depending on [D] (not D)
such that

Pi 6=∞ and Pi 6= ι(Pj) for i 6= j (semi-reducedness)

r ≤ g (reducedness)

[D] ∈ Pic0(X )(k) ⇐⇒ P1 + · · ·+ Pr ∈ Div(X )(k)

Note: the individual Pi need not be in X (k)!

Smith (INRIA/LIX) Hyperelliptic Jacobians ECC, 25/09/2015 3 / 35



Hyperelliptic Jacobians

Why?

Because of Riemann–Roch (quelle surprise).

If [D] is in Pic0(X ), then applying R–R to D + g∞
yields a function f such that

D + g∞+ div(f ) = D ′ is effective;
so [D ′ − g∞] = [D] with deg D ′ = g .

D ′ − g∞ is almost a reduced representative:
it remains to remove any P + ι(P)− 2∞ from D ′.
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Hyperelliptic Jacobians

The Mumford representation

Suppose we have a class [D] in Pic0(X )(k),
with reduced representative

D = P1 + · · ·+ Pr − r∞ ∈ Div0(X )(k) .

The Mumford representation of [D] is the (unique)
pair of polynomials 〈a(x), b(x)〉 in k[x ] such that

a(x) =
∏r

i=1(x − x(Pi )), and

b(x(Pi )) = y(Pi ) for 1 ≤ i ≤ r ;

so for each of the x-coordinates appearing as a root of a,
b gives the corresponding y -coordinate.

If necessary, compute b by Lagrange interpolation.

Smith (INRIA/LIX) Hyperelliptic Jacobians ECC, 25/09/2015 5 / 35



Hyperelliptic Jacobians

The Mumford representation

If 〈a(x), b(x)〉 represents a class on X : y 2 = f (x), then

1 a is monic of degree r ≤ g , and

2 b satisfies deg b < r and b2 ≡ f (mod a).

Theorem: Any pair 〈a(x), b(x)〉 in k[x ]2 satisfying these
conditions represents a divisor class in Pic0(X )(k).

=⇒ identify divisor classes with Mumford reps
of their reduced representatives:

we simply write [D] = 〈a, b〉.
We associate 〈a(x), b(x)〉 with the ideal (a(x), y − b(x)).
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Hyperelliptic Jacobians

Hyperelliptic Jacobians
We can collect the Mumford representations by degree 0 ≤ d ≤ g :

Md := {〈a, b〉 : deg(b) < deg(a) = d , b2 ≡ f (mod a)} .

We view the coefficients of a(x) = xd + ad−1xd−1 + · · ·+ a1x + a0
and b(x) = bd−1xd−1 + · · ·+ b0 as coordinates on A2d .

b2 (mod a) and f (mod a) are polynomials of degree d − 1
in k[ai , bi ][x ]; the vanishing of their coefficients

defines d independent equations in the 2d coordinates,
cutting out Md as a d-dimensional subvariety in A2d .

Observe: M0 is a point; M1 is an affine copy of X ;
and #Md(Fq) = O(qd) for 0 ≤ d ≤ g .
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Hyperelliptic Jacobians

The Jacobian

Glueing together M0, . . . ,Mg , we give Pic0(X ) the
structure of a g -dimensional algebraic variety JX ,

called the Jacobian.

Over Fq, we have #JX = O(qg ).
(more precision later)

We want an expression of the group law on JX
in terms of its coordinates;

Cantor’s algorithm does this using an explicit form of
(guess what?) Riemann–Roch (quelle surprise!).
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Hyperelliptic Jacobians

Cantor’s algorithm: addition on JX
Input: Reduced divisors D1 = 〈a1, b1〉 and D2 = 〈a2, b2〉 on X .

Output: A reduced D3 = 〈a3, b3〉 s.t. [D3] = [D1 + D2] in Pic0(X ).
1 (d , u1, u2, u3) := XGCD(a1, a2, b1 + b2)

//(so d = gcd(a1, a2, b1 + b2) = u1a1 + u2a2 + u3(b1 + b2)).
2 Set a3 := a1a2/d2;
3 Set b3 := b1 + (u1a1(b2 − b1) + u3(f − b2

1))/d (mod a3);
4 If deg a3 ≤ g then go to Step 9;
5 Set ã3 := a3 and b̃3 := b3;
6 Set a3 := (f − b2

3)/a3;
7 Let (Q, b3) := Quotrem(−b3, a3);
8 While deg a3 > g

8a Set t := ã3 + Q(b3 − b̃3);
8b Set b̃3 := b3, ã3 = a3, and a3 := t;
8c Let (Q, b3) := Quotrem(−b3, a3);

9 Return 〈a3, b3〉.
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Hyperelliptic Jacobians

How does Cantor reduction work?
Suppose we want to add the Mumford/reduced representatives

〈a1, b1〉 ←→ D1 =
r∑

i=1

Pi − r∞

〈a2, b2〉 ←→ D2 =
s∑

i=1

Qi − s∞

Step 1: d(x(Pi)) = 0 iff Pi = ι(Qj) for some j

Steps 2, 3: sum D1 and D2, remove contribution of d
−→ pre-reduced D3 such that [D3] = [D1 + D2]

Loop: reduces degree of the representative until reduced.

Exercise: how many steps until the result is reduced?
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Hyperelliptic Jacobians

Cryptographic questions

We’ve seen that hyperelliptic curves of genus g over Fq

yield algebraic groups with O(qg ) elements and a
conveniently computable group law.

How can we compute #JX (Fq)?

How hard is the DLP in JX (Fq)?

How can we construct strong and fast Jacobians?

How efficient are hyperelliptic cryptosystems, and
how do they compare with elliptic cryptosystems?

Do hyperelliptic curves have destructive applications?
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Hyperelliptic Jacobians

Facts about Jacobians

What are the analogues of the elliptic curve
group structure theorems for JX?

JX [`n](k) ∼= (Z/`nZ)2g for ` 6= char(k)

JX [pn](k) ∼= (Z/pn)r for some 0 ≤ r ≤ g
(p-rank r is independent of n)

JX (Fq) ∼=
∏2g

i=1(Z/niZ) with each ni+1 | ni
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Hyperelliptic Jacobians

Facts about Jacobians
We have #JX (Fq) = χπ(1), where

χπ(T ) = T 2g + a1T 2g−1 + · · ·+ agT g

+ qag−1T g−1 + · · ·+ qg−1a1T + qg

is the characteristic polynomial of Frobenius.

Weil bounds: (
√

q − 1)2g ≤ #JX (Fq) ≤ (
√

q + 1)2g

Generically, End(JX ) is an order in a CM-field of degree 2g
(a totally imaginary extension of a totally real field of degree g)

Moduli space Hg (j-invariant analogue) is (2g − 1)-dimensional
=⇒ O(q2g−1) non-isomorphic X of genus g over Fq
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Hyperelliptic Jacobians

Point counting on Jacobians

How do we compute #JX (Fq), where q = pn?
Ultimate goal: polynomial time in log p, n, and g .

Generic group order methods (eg. BSGS): Õ(qg/2)
Sutherland’s algorithms: faster but still exponential
Easy to implement, impossible to run on big inputs

Small p: Kedlaya’s algorithm Õ(pg 4n3)
—polynomial in g and n, but exponential in log p.
(Uses MW cohomology on p-adic differentials)
Harvey’s improvements: Õ(p1/2g 4n3)
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Hyperelliptic Jacobians

Point counting on Jacobians: large p

For large p: Pila’s generalization of Schoof’s algorithm.

In theory: exponential in g , polynomial in log p and n

In practice: never implemented for g ≥ 3:

General genus 2 over Fp: Õ(log8 p). Crushingly slow.
Gaudry–Schost 2008 record: one CPU-month per 127-bit curve
For comparison, equivalent elliptic curve < 10 CPU-seconds

Special genus 2 over Fp: Õ(log5 p).
(2-param. families with efficiently computable “real” endomorphisms)
Gaudry–Kohel–S.: three CPU-hours per 128-bit curve
With early abort: practical generation of industrial-sized random
cryptographic curves
Gaudry–Kohel–S. record: 80 CPU-days per 512-bit curve
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Hyperelliptic Jacobians

Embeddings of Jacobians

The Mumford representation lets us compute with a
hyperelliptic Jacobian by dividing it up into affine pieces:

JX = M0 ∪M1 ∪ · · · ∪Mg .

In fact, JX is projective (it’s an abelian variety)
—so what are its projective embeddings?
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Hyperelliptic Jacobians

This is a nontrivial question

JX = M0 ∪M1 ∪ · · · ∪Mg with each Mi ⊂ A2i

recalls the usual decomposition Pn = A0 ∪ A1 ∪ · · · ∪ An

—but it’s not the same thing at all!

As cryptographers, we’re used to thinking of projective
coordinates as nothing more than convenient denominator

elimination, which we carry out by homogenization.

But if you just homogenize Mumford representations, then
you get something totally wrong.
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Hyperelliptic Jacobians

The Jacobi intersection model
To create projective embeddings of curves,

we used divisors and Riemann–Roch.

For example: given a point O on an elliptic E ,
we embedded E in P2 = P(L(3O)) = P(〈x , y , 1〉).

Alternative embeddings: for example, use D = 4O.

L(4O) = 〈x , y , u, v〉 (because dim L(4O) = deg(4O) = 4);

L(8O) ⊇ L(4O)2 = 〈x2, xy , xu, xv , y 2, yu, yv , u2, uv , v 2〉
but dim L(8O) = 8 =⇒ 2 quadratic relations in x , y , u, v .

=⇒ the Jacobi intersection model of E :

E : F2(x , y , u, v) = G2(x , y , u, v) = 0 ⊂ P3 = P(L(4O)) .
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Hyperelliptic Jacobians

Theta

So, if E is an elliptic curve and O is a point on E , then:

L(3O) embeds E in P2 with one cubic equation;

L(4O) embeds E in P3 with two quadratic equations.

What are the hyperelliptic analogues?

We need a divisor on JX to take the place of O on E :

Θ := {[P1+· · ·+Pg−1−(g−1)∞] : P1, . . . ,Pg−1 ∈ X (k)}

(Note: Θ = M0 ∪ · · · ∪Mg−1).

Smith (INRIA/LIX) Hyperelliptic Jacobians ECC, 25/09/2015 19 / 35



Hyperelliptic Jacobians

Projective embeddings of JX
Θ := {[P1 + · · ·+ Pg−1 − (g − 1)∞] : Pi ∈ X (k)}

We have dim L(nΘ) = ng , so

L(3Θ) embeds JX in P3g−1

L(4Θ) embeds JX in P4g−1.

The dimension of the space is exponential in g
(and so is the number of equations!)

Generally, JX does not embed in a smaller projective
space than P3g−1!
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Hyperelliptic Jacobians

Projective embeddings of JX for g = 2

For g = 2: JX is a surface, Θ is a copy of X inside JX .

L(3Θ) gives the “Grant” embedding in P8

with 10 quadratic and 3 cubic equations.

L(4Θ) gives the “Flynn” embedding in P15

with 72 quadratic equations.

JX never embeds in P3.

JX embeds in P4 if and only if End(JX ) contains
Z[(1 +

√
5)/2] (!! ...Horrocks–Mumford, etc.)
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Hyperelliptic Jacobians

The future of Jacobian arithmetic

Mumford representations are convenient, but Cantor’s
algorithm does not have a uniform execution path

=⇒ vulnerable to simple side-channel attacks.

The existing (smooth) projective embeddings are fine for
one-off computations and experiments, but they are

totally unsuitable for cryptographic applications.

Deriving convenient, compact models with efficient and
uniform group laws is a serious open problem.

Get involved (and tell us about it at ECC next year)!
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Hyperelliptic Jacobians

The DLP in hyperelliptic Jacobians

What about the DLP in hyperelliptic Jacobians?

We have N = #JX (Fq) = O(qg ).

Cryptographic contexts: N is prime (or almost).
Gold standard: Õ(

√
N) = Õ(qg/2) operations in JX (Fq)

(Pollard/BSGS generic group methods).

If the DLP is easier than this, then we are better off
using an elliptic curve over Fp with p ∼ qg .
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Hyperelliptic Jacobians

(Oversimplified) Index Calculus

Suppose we want to solve a DLP D1 = [m]D2

in a cyclic group G ∼= Z/NZ.

Choose a distinguished subset F ⊂ G, called a factor base.

Set up a matrix M over Z/NZ with a column for each element
Fj of the factor base F .

Generate random combinations [ai ]D1 ⊕ [bi ]D2,
and test each one for smoothness:
if [ai ]D1 ⊕ [bi ]D2 =

⊕
j [nj ]Fj , then add a row (nj) to M .

Once M has more rows than columns, solve to find a kernel
vector (xi) (such that (xi)M = 0).

Then
⊕

i [xiai ]D1 ⊕
⊕

i [xibi ]D2 = 0,
so m = −(

∑
i xibi)/(

∑
i xiai) (mod N).
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Hyperelliptic Jacobians

Hyperelliptic Index Calculus

For basic hyperelliptic index calculus: the factor base
F := M1(Fq) = {〈x − α, β〉 : β2 = f (α)}

has O(q) elements.

To generate F : iterate over α in Fq,
keep 〈x − α,

√
f (α)〉 where the square root is in Fq.

[D] = 〈a, b〉 ∈ JX (Fq) is smooth
if a splits completely over Fq

(smoothness testing = polynomial factorization)

Expect: 1/g ! divisor classes are smooth
=⇒ O(g !q) divisors to be tested
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Hyperelliptic Jacobians

Index Calculus Complexity (in Fq-ops)

Group ops in JC(Fq) (via Cantor) cost O(g 2 log2 q)
Degree-g poly factorizations /Fq cost O(g 2 log3 q)

Need O(q) relations; each costs
O(g !(g 2 log2 q + g 2 log3 q)) to acquire.

Sparse linear algebra (eg. Lanczos): O(gq2)(g log q)

Total: O((g 2 log3 q)g !q + (g 2 log q)q2),
= Õ(q2) for fixed g as q →∞
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Hyperelliptic Jacobians

Small g : index calculus improvements

Harley: use only a small fraction of F .
=⇒ cost drops from Õ(q2) to Õ(q2g/(g+1)).

Thériault: single large prime variant
=⇒ Õ(q2−4/(2g+1)).

Gaudry–Thomé–Thériault–Diem:
double large prime variant =⇒ Õ(q2−2/g )

Genus →∞ and q →∞:

=⇒ Lqg (1/2,
√

2)
(But let’s be serious: g �∞)
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Hyperelliptic Jacobians

Bad news for genus ≥ 3

Observe: Õ(q2−2/g ) is easier than Õ(qg/2) for g > 2.

We can do even better in genus 3 (S., Eurocrypt08):
use an explicit isogeny to move the DLP

into the Jacobian of a non-hyperelliptic genus 3 curve
(a smooth plane quartic),

where Diem’s plane curve index calculus
solves the DLP in Õ(q) group operations.
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Hyperelliptic Jacobians

How many bits for a given security level?
Suppose we want b bits of security

(ie, the attacker must use ∼ 2b operations to solve the DLP).

Curve log q element size #JX (Fq)
Elliptic ∼ 2b ∼ 2b ∼ 2b

Genus 2 ∼ b ∼ 2b ∼ 2b
Genus 3 ∼ b ∼ 3b ∼ 3b

Genus g ≥ 4 ∼ g
2g−2b ∼ g2

2g−2b ∼ g2

2g−2b

Efficiency is already suboptimal for g = 3:
genus 3 cryptosystems require 50% more space
than elliptic or genus 2 systems at the same security level.

Higher genus: even worse!

=⇒ Moral: for constructive work, stick to genus 1 and 2.
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Weil descent

Restriction of scalars

Suppose E is defined over an extension field Fqn, n > 1.

E is a one-dimensional object over a degree-n field.

Weil descent is a direct tradeoff of dimension vs degree.

Think of the complex numbers:
We can see C as the line (one-dimensional)

over a quadratic extension R(
√
−1),

but we can also visualise it as the real plane R2.

In the same way: the one-dimensional vector space Fqn

is isomorphic to the n-dimensional vector space Fn
q.
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Weil descent

Weil descent

The Weil restriction W of E is
an n-dimensional algebraic group over Fq (not Fqn)

whose Fq-points correspond to Fqn-points of E .

The Weil restriction always exists,
and doesn’t weaken E in itself.

But if we’re lucky,
we might be able to transform all (or part) of W into

the Jacobian of a higher-genus curve,
which we can attack using index calculus.
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Weil descent

Weil descent of an elliptic curve

Let’s try n = 3, with q = 2e for some e and Fq3 = Fq[θ]/(θ3 + θ+ 1).

Fq3 =
〈
ψ0 = 1, ψ1 = θ2, ψ2 = θ4

〉
Fq

Any elliptic curve over Fq3 is ∼= to one in the form

E/Fq3 : y 2 + xy = x3 + (b0ψ0 + b1ψ1 + b2ψ2) .

Equations for Weil restriction W : substitute

x = x0ψ0 + x1ψ1 + x2ψ2 , y = y0ψ0 + y1ψ1 + y2ψ2 ,

get 3 equations over Fq by collecting coefficients of the ψi .
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Weil descent

Explicit Weil restrictions

So: Weil restriction W of E : y2 + xy = x3 + (b0ψ0 + b1ψ1 + b2ψ2)
is defined in (x0, x1, x2, y0, y1, y2)-space by the three equations

x3
0 + x2

0x2 + x0x2
1 + x0y1 + x0y2 + x3

1 + x1x2
2 + x1y0 + x1y2 + x3

2 + x2y0 + x2y1

x3
0 + x2

0x1 + x0x2
1 + x0y1 + x0y2 + x2

1x2 + x1x2
2 + x1y0 + x1y1 + x3

2 + x2y0 + x2y2 + y2
1 + y2

2 + b2 + b0

x2
0x1 + x2

0x2 + x0x2
1 + x0x2

2 + x0y0 + x0y2 + x3
1 + x1y1 + x1y2 + x3

2 + x2y0 + x2y1 + y2
0 + y2

1 + b2 + b1

To get a curve in W, intersect with (say) x0 = u, x1 = u, x2 = u:

C :
(
y2
2 + uy0 = u3 + b0 , y2

0 + uy1 = u3 + b1 , y2
1 + uy2 = u3 + b2

)

Irreducible unless b0 = b1 = b2 (so β ∈ Fq). Eliminate y1, y2, put v = y0:

C : v8 + u7v + u12 + u10 + u9 + b0u6 + b2
2u4 + b4

1 .

It may not be obvious, but C is hyperelliptic of genus 3.

Desingularize C̃ → C =⇒ explicit isogeny Φ :W → Jac(C̃).
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Weil descent

Discrete logarithms on the Weil restriction

Start with a DLP instance in E(Fq3):

Q = (xQ , yQ) = [m](xP , yP) = [m]P

Weil-restricting, we get a DLP instance in W(Fq):

(xQ
0 , x

Q
1 , x

Q
2 , y

Q
0 , y

Q
1 , y

Q
2 ) = [m](xP

0 , x
P
1 , x

P
2 , y

P
0 , y

P
1 , y

P
2 ) ;

map through Φ to get a DLP instance in Jac(C):
[∑3

i=1(uQ
i , v

Q
i )− D0

]
= m

[∑3
i=1(uP

i , v
P
i )− D0

]

Solve DLP instance using index calculus in JC̃ in time Õ(q4/3):

beats Õ(q3/2) using generic algorithms in E(Fq3).
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Weil descent

Gaudry–Hess–Smart

In more generality:

Theorem (Gaudry–Hess–Smart, 2000)

Let n ≥ 4 be fixed. Write q = 2e . Then as e →∞,
we can solve the DLP in E(Fqn) for a significant
proportion of all elliptic curves E/Fqn in time O(q2+ε).

For comparison: generic attacks require time Õ(qn/2).

Reading guide:
http://www.cs.bris.ac.uk/~nigel/weil_descent.html
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