Weaknesses in Ring-LWE

joint with (Yara Elias, Kristin E. Lauter, and Ekin Ozman) and (Hao Chen and Kristin E. Lauter)

ECC, September 29th, 2015

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Lattice-Based Cryptography

Post-quantum cryptography

- Ajtai-Dwork: public-key crypto based on a shortest vector problem (1997)
- Hoffstein-Pipher-Silverman: NTRU working in $\mathbb{Z}[X]/(X^N 1)$ (1998) now standardized
- **Gentry:** Homomorphic encryption using ideal lattices (2009): perform ring operations on encrypted ring elements, to obtain correct encrypted result, without key:

うつん 川田 ・ エヨ・ エヨ・ うろう

- 1. Medical records
- 2. Machine learning
- 3. Genomic computation

Hard problems in lattices

Setting: A lattice in \mathbb{R}^n with norm. A lattice is given by a (potentially very bad) basis.

- Shortest Vector Problem (SVP): find shortest vector or a vector within factor γ of shortest.
- Gap Shortest Vector Problem (GapSVP): differentiate lattices where shortest vector is of length < γ or > βγ.
- Closest Vector Problem (CVP): find vector closest to given vector
- **Bounded Distance Decoding (BDD):** find closest vector, knowing distance is bounded (unique solution)

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

• Learning with Errors (Regev, 2005)

Learning with errors

Problem: Find a secret $s \in \mathbb{F}_q^n$ given a linear system that *s* approximately solves.

• Gaussian elimination amplifies the 'errors', fails to solve the problem.

In other words, find $s \in \mathbb{F}_q^n$ given multiple samples $(a, \langle a, s \rangle + e) \in \mathbb{F}_q^n \times \mathbb{F}_q$ where

- q prime, n a positive integer
- *e* chosen from error distribution χ

Origins: attacks on hardness of other lattice problems, e.g. an LWE oracle of modulus q gives base q digits of solution to Bounded Distance Decoding.

Ideal Lattice Cryptography

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Ideal Lattices:

- · lattices generated by an ideal of a number field
- extra symmetries
 - saves space
 - speeds computations

Ring Learning with Errors (Ring-LWE)

Search Ring-LWE (Lyubashevsky-Peikert-Regev, Brakerski-Vaikuntanathan):

- $R = \mathbb{Z}[x]/(f)$, f monic irreducible over \mathbb{Z}
- $R_q = \mathbb{F}_q[x]/(f)$, q prime
- χ an error distribution on R_q
- Given a series of samples $(a, as + e) \in R_q^2$ where
 - 1. $a \in R_q$ uniformly,
 - 2. $e \in R_q$ according to χ ,

find *s*.

Decision Ring-LWE:

 Given samples (a, b), determine if they are LWE-samples or uniform (a, b) ∈ R²_q.

Currently proposed: *R* the ring of integers of a cyclotomic field (particularly 2-power-cyclotomics).

A simple public-key cryptosystem (think El Gamal)

Public: *q*, *n*, *f* forming R_q , error χ , plus $k \in \mathbb{Z}$ moderately large **Alice:** Secret small $s \in R_q$ **Bob:** Message 0 < m < q/k, random small $r \in R_q$ **Protocol:**

Alice

$$\longrightarrow$$
 public key \longrightarrow

 (a,b=as+e_1)
 \longrightarrow

 (v=ar+e_2,w=br+e_3+km) \leftarrow (v=ar+e_3+km) \leftarrow (v=ar+e_3+km)

Decryption: $w - vs = km + re_1 + se_2 + e_3$, round to nearest multiple of *k*.

・ロト・西・・ヨ・・日・・日・ 今日・

Generic attacks on LWE problem

- Time $2^{O(n \log n)}$
 - maximum likelihood, or;
 - waiting for a to be a standard basis vector often enough

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

- Time 2^{O(*n*)}
 - Blum, Kalai, Wasserman
 - engineer a to be a standard basis vector by linear combinations
- Distinguishing attack (decision) and Decoding attack (search)
 - > polynomial time
 - relying on BKZ algorithm
 - used for setting parameters

These apply to Ring-LWE.

Polynomial embedding: practical

Polynomial embedding: Think of *R* as a lattice via

$$R \hookrightarrow \mathbb{Z}^n \hookrightarrow \mathbb{R}^n, \quad a_n x^n + \ldots + a_0 \mapsto (a_n, \ldots, a_0).$$

Note: multiplication is 'mixing' on coefficients. Actually work modulo *q*:

 $R_q \hookrightarrow \mathbb{F}_q^n, \quad a_n x^n + \ldots + a_0 \mapsto (a_n \mod q, \ldots, a_0 \mod q).$

Naive sampling: Sample each coordinate as a one-dimensional discretized Gaussian. This leads to a discrete approximation to an *n*-dimensional Gaussian.

(日) (日) (日) (日) (日) (日) (日)

Minkowski embedding: theoretical

Minkowski embedding: A number field *K* of degree *n* can be embedded into \mathbb{C}^n so that **multiplication and addition are componentwise**:

$$K \mapsto \mathbb{C}^n, \quad \alpha \mapsto (\alpha_1, \alpha_2, \dots, \alpha_n)$$

where α_i are the *n* Galois conjugates of α . Massage into \mathbb{R}^n :

$$\phi: \boldsymbol{R} \hookrightarrow \mathbb{R}^{n}, \quad (\underbrace{\alpha_{1}, \ldots, \alpha_{r}}_{\text{real}}, \underbrace{\Re(\alpha_{r+1}), \Im(\alpha_{r+1}), \ldots}_{\text{complex}}).$$

As usual, then we work modulo q (modulo prime above q). **Sampling:** Discretize a Gaussian, spherical in \mathbb{R}^n under the usual inner product.

Relation to LWE: Each Ring-LWE sample $(a, as + e) \in R_q^2$ is really *n* LWE samples $(a_i \mathbf{e}_i, \langle a_i \mathbf{e}_i, s \rangle + e_i) \in (\mathbb{Z}/q\mathbb{Z})^{n+1}$

Distortion of the error distribution

Distortion: A spherical Gaussian in Minkowski embedding is not spherical in polynomial embedding. **Linear transformation:**

 $\mathbb{Z}[X]/f(X) \to \phi(R)$

Spectral norm: The radius of the smallest ball containing the image of the unit ball.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Setting parameters

- n, dimension
- q, prime
 - q polynomial in n (security, usability)
- f or a lattice of algebraic integers
- *χ*, error distribution
 - Poly-LWE in practice
 - Ring-LWE in theory
 - Poly-LWE = Ring-LWE for 2-power cyclotomics

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

• Gaussian with small standard deviation σ

Example: $n \approx 2^{10}$, $q \approx 2^{31}$, $\sigma \approx 8$

Decision Poly-LWE Attack of Eisenträger, Hallgren and Lauter

Potential weakness: $f(1) \equiv 0 \mod q$.

Guess s(1) = g, graph supposed errors b(1) - a(1)g:

うして 山田 マイボット ボット シックション

Implementation: root of small order

Conditions: $f(\alpha) \equiv 0 \pmod{q}$ where

- $\alpha = \pm 1$ and $8\sigma \sqrt{n} < q$; or
- α small order $r \ge 3$, and $8\sigma \sqrt{n(\alpha^{r^2} 1)} / \sqrt{r(\alpha^2 1)} < q$

Attack:

- Loop through residues $g \in \mathbb{Z}/q\mathbb{Z}$
 - Loop through ℓ samples:
 - Assume $s(\alpha) = g$, derive assumptive $e(\alpha)$.
 - If $e(\alpha)$ not within q/4 of 0, throw out guess g, move to next g

Proposition (Elias-Lauter-Ozman-S.)

Runtime is $\tilde{O}(\ell q)$ with absolute implied constant.

- If algorithm keeps no guesses, samples are not PLWE.
- Otherwise, valid PLWE samples with probability $1 (1/2)^{\ell}$.

Note: Similar implementation by enumerating and sorting possible error residues.

Desired properties for search Ring-LWE attack

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

For Poly-LWE attack

• f has root of small order

For moving the attack to Ring-LWE

spectral norm is small

For search-to-decision reduction

Galois fields

Condition for weak Ring-LWE instances

- $\sigma =$ parameter for the Gaussian in Minkowski embedding
- *M* = change of basis matrix from Minkowski embedding of *R* to its polynomial basis.

Theorem (Elias-Lauter-Ozman-S.)

Let *K* be a number field with ring of integers $\cong \mathbb{Z}[x]/(f(x))$ where $f(1) \equiv 0 \pmod{q}$. Suppose the spectral norm $\rho(M)$ satisfies

$$\rho < \frac{q}{4\sqrt{2\pi}\sigma n}$$

Then Ring-LWE decision can be solved in time $\widetilde{O}(\ell q)$ with probability $1 - 2^{-\ell}$ using ℓ samples.

Provably weak Ring-LWE family

Theorem (Elias-Lauter-Ozman-S.)

Under various technical conditions, members of the family

$$f(x) = x^n + q - 1$$

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

with prime q, are weak.

Successful attacks (Elias-Lauter-Ozman-S.)

Thinkpad X220 laptop, Sage Mathematics Software

case	f	q	W	sampls per run	successful runs	time per run
PLWE	$x^{1024} + 2^{31} - 2$	2 ³¹ – 1	3.192	40	1 of 1	13.5 h
Ring	x ¹²⁸ +524288x +524285	524287	8.00	20	8 of 10	24 s
Ring	$x^{192} + 4092$	4093	8.87	20	1 of 10	25 s
Ring	$x^{256} + 8190$	8191	8.35	20	2 of 10	44 s

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Search-to-decision

 Our attacks recover s(1), i.e., the secret modulo q. That is, it solves Search-RLWE-q.

Proposition (Eisenträger-Hallgren-Lauter, Chen-Lauter-S.) Suppose K/\mathbb{Q} is Galois of degree n, and q a prime of residual degree f. Suppose there is an oracle which solves Search-RLWE-q. Then by n/f calls to the oracle, it is possible to solve Search-RLWE.

This implies a regular Search-to-Decision reduction.

Abstracting the key idea

If q is a prime above (q), then we have a ring homomorphism

$$\phi: R_q = R/(q) \to R/\mathfrak{q} \cong \mathbb{F}_{q^f}.$$

This preserves the structure of samples:

$$(a, as + e) \mapsto (\phi(a), \phi(a)\phi(s) + \phi(e))$$

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Possibly weak if

- 1. image space is small enough to search
- 2. error distribution is **non-uniform** after ϕ

Attacking

If q is a prime above (q), then we have a ring homomorphism

$$\phi: R_q = R/(q) \to R/\mathfrak{q} \cong \mathbb{F}_{q^f}.$$

Suppose

- 1. image space is small enough to search
- 2. error distribution is **non-uniform** after ϕ Attack:
 - 1. Loop through $g \in \mathbb{F}_{q^k}$ for putative $\phi(s)$
 - 2. Test distribution of $\phi(b) \phi(a)g$ (putative $\phi(e)$) on available samples.

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

Chi-square test for uniform distribution

Consider samples y_1, \ldots, y_M from a finite set

$$S = \bigsqcup_{j=1}^r S_j$$

- Expected number of samples in S_j is $c_j = \frac{|S_j|M}{|S|}$.
- Actual number: t_i.
- χ^2 statistic:

$$\chi^2(\mathcal{S}, \mathcal{Y}) = \sum_{j=1}^r \frac{(t_j - c_j)^2}{c_j}.$$

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Follows a known distribution.

Implementation: chi-square attack (Chen-Lauter-S.) Setup:

- Homomorphism: $R_q
 ightarrow R/\mathfrak{q}.$
- Error distribution is distinguishable from uniform on R/q.

Search-RLWE-q Attack:

- Loop through residues $g \in R/q$.
 - Assume $\phi(s) = g$, derive assumptive $\phi(e)$ for all samples
 - Compute χ^2 statistic on the collection
 - If looks uniform, throw out guess g
- If no g remain, samples were not RLWE.
- If \geq 2 possible *g* remain, need more samples.
- If exactly one *g* remains, it is the secret modulo q.

Search-RLWE Attack:

- Run the Search RLWE-q attack on each galois conjugate image of *s*.
- Combine using Chinese Remainder Theorem.

Security of an instance of Ring-LWE

- Fixing *R* and *q*, there is a finite list of homomorphisms.
- Therefore, to be assured of immunity of an instance of RLWE to this family of attacks, need only check that finitely many distributions look uniform!

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Galois examples (Chen-Lauter-S.)

We have no galois examples of residue degree 1. But in residue degree 2 (slower but still feasible), there are examples:

т	n	q	f	σ_0	no. samples	runtime (in hours)
2805	40	67	2	1	22445	3.49
15015	60	43	2	1	11094	1.05
15015	60	617	2	1.25	8000	228.41 (estimated) ¹
90321	80	67	2	1	26934	4.81
255255	90	2003	2	1.25	15000	1114.44 (estimated)
285285	96	521	2	1.1	5000	75.41 (estimated)
1468005Z	100	683	2	1.1	5000	276.01 (estimated)
1468005	144	139	2	1	4000	5.72

Found by search through fixed fields of subgroups of galois group of cyclotomic extensions.

Reasons for non-uniform distribution

- almost always uniform
- Reason 1 for non-uniformity (Elias-Lauter-Ozman-S.):
 - residue degree 1
 - there is a short basis whose elements coincide frequently modulo q.
 - example, root of small order
- Reason 2 for non-uniformity (Chen-Lauter-S.):
 - residue degree 2
 - there is a short basis whose elements are in a subfield frequently modulo q.

There's no reason there shouldn't be galois examples with Reason 1, but they are very rare. Reason 2 is easier, and galois examples **have been found**.

Cyclotomic vulnerability

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Under other error distributions (Elias-Lauter-Ozman-S.):

- Use *f* the minimal polynomial of $\zeta_{2^k} + 1$.
- Example: k = 11, q = 45592577 ≈ 2³²
 - Galois,
 - q splits completely,
 - has root -1 modulo q,
 - spectral norm is unmanageably large.

If one uses the ramified prime (Chen-Lauter-S.):

- Here, $f(1) \equiv 0 \pmod{q}$
- Attack verified in practice

Cyclotomic invulnerability

- Unramified primes, standard Ring-LWE distribution.
- **To Reason 1** (Elias-Lauter-Ozman-S.): The roots of the *m*-th cyclotomic polynomial have order *m* modulo every split prime *q*.
- To Reason 2 (Chen-Lauter-S.): A very good short basis for the field is formed by the roots of unity; these never lie in subfields modulo q.
- In practice: Computed distributions modulo unramified q look uniform.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

In conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The structure inherent in rings is exploitable
- The vulnerability has **sensitive dependence** on parameters
 - properties of the ring
 - properties of q (not just size)
 - properties of the error distribution