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Lattice-Based Cryptography

• Post-quantum cryptography
• Ajtai-Dwork: public-key crypto based on a shortest vector

problem (1997)
• Hoffstein-Pipher-Silverman: NTRU working in
Z[X ]/(X N − 1) (1998) – now standardized

• Gentry: Homomorphic encryption using ideal lattices
(2009): perform ring operations on encrypted ring
elements, to obtain correct encrypted result, without key:

1. Medical records
2. Machine learning
3. Genomic computation



Hard problems in lattices

Setting: A lattice in Rn with norm. A lattice is given by a
(potentially very bad) basis.
• Shortest Vector Problem (SVP): find shortest vector or a

vector within factor γ of shortest.
• Gap Shortest Vector Problem (GapSVP): differentiate

lattices where shortest vector is of length < γ or > βγ.
• Closest Vector Problem (CVP): find vector closest to

given vector
• Bounded Distance Decoding (BDD): find closest vector,

knowing distance is bounded (unique solution)
• Learning with Errors (Regev, 2005)



Learning with errors

Problem: Find a secret s ∈ Fn
q given a linear system that s

approximately solves.

• Gaussian elimination amplifies the ‘errors’, fails to solve
the problem.

In other words, find s ∈ Fn
q given multiple samples

(a, 〈a, s〉+ e) ∈ Fn
q × Fq where

• q prime, n a positive integer
• e chosen from error distribution χ

Origins: attacks on hardness of other lattice problems, e.g. an
LWE oracle of modulus q gives base q digits of solution to
Bounded Distance Decoding.



Ideal Lattice Cryptography

Ideal Lattices:
• lattices generated by an ideal of a number field
• extra symmetries

• saves space
• speeds computations



Ring Learning with Errors (Ring-LWE)

Search Ring-LWE (Lyubashevsky-Peikert-Regev,
Brakerski-Vaikuntanathan):
• R = Z[x ]/(f ), f monic irreducible over Z
• Rq = Fq[x ]/(f ), q prime
• χ an error distribution on Rq

• Given a series of samples (a,as + e) ∈ R2
q where

1. a ∈ Rq uniformly,
2. e ∈ Rq according to χ,

find s.
Decision Ring-LWE:
• Given samples (a,b), determine if they are LWE-samples

or uniform (a,b) ∈ R2
q .

Currently proposed: R the ring of integers of a cyclotomic
field (particularly 2-power-cyclotomics).



A simple public-key cryptosystem (think El Gamal)

Public: q, n, f forming Rq, error χ, plus k ∈ Z moderately large
Alice: Secret small s ∈ Rq
Bob: Message 0 < m < q/k , random small r ∈ Rq
Protocol:

Alice
−→ public key

(a,b=as+e1)
−→

←− ciphertext
(v=ar+e2,w=br+e3+km)

←−

Bob

Decryption: w − vs = km + re1 + se2 + e3, round to nearest
multiple of k .



Generic attacks on LWE problem

• Time 2O(n log n)

• maximum likelihood, or;
• waiting for a to be a standard basis vector often enough

• Time 2O(n)

• Blum, Kalai, Wasserman
• engineer a to be a standard basis vector by linear

combinations
• Distinguishing attack (decision) and Decoding attack

(search)
• > polynomial time
• relying on BKZ algorithm
• used for setting parameters

These apply to Ring-LWE.



Polynomial embedding: practical

Polynomial embedding: Think of R as a lattice via

R ↪→ Zn ↪→ Rn, anxn + . . .+ a0 7→ (an, . . . ,a0).

Note: multiplication is ‘mixing’ on coefficients.
Actually work modulo q:

Rq ↪→ Fn
q, anxn + . . .+ a0 7→ (an mod q, . . . ,a0 mod q).

Naive sampling: Sample each coordinate as a
one-dimensional discretized Gaussian. This leads to a discrete
approximation to an n-dimensional Gaussian.



Minkowski embedding: theoretical

Minkowski embedding: A number field K of degree n can be
embedded into Cn so that multiplication and addition are
componentwise:

K 7→ Cn, α 7→ (α1, α2, . . . , αn)

where αi are the n Galois conjugates of α. Massage into Rn:

φ : R ↪→ Rn, (α1, . . . , αr ,︸ ︷︷ ︸
real

<(αr+1),=(αr+1), . . .︸ ︷︷ ︸
complex

).

As usual, then we work modulo q (modulo prime above q).
Sampling: Discretize a Gaussian, spherical in Rn under the
usual inner product.
Relation to LWE: Each Ring-LWE sample (a,as + e) ∈ R2

q is
really n LWE samples (aiei , 〈aiei , s〉+ ei) ∈ (Z/qZ)n+1



Distortion of the error distribution

Distortion: A spherical Gaussian in Minkowski embedding is
not spherical in polynomial embedding.
Linear transformation:

Z[X ]/f (X )→ φ(R)

Spectral norm: The radius of the smallest ball containing the
image of the unit ball.



Setting parameters

• n, dimension
• q, prime

• q polynomial in n (security, usability)

• f or a lattice of algebraic integers
• χ, error distribution

• Poly-LWE in practice
• Ring-LWE in theory
• Poly-LWE = Ring-LWE for 2-power cyclotomics
• Gaussian with small standard deviation σ

Example: n ≈ 210, q ≈ 231, σ ≈ 8



Decision Poly-LWE Attack
of Eisenträger, Hallgren and Lauter

Potential weakness: f (1) ≡ 0 mod q.

Rq
evaluation at 1

ring homomorphism
// Fq

(a,b = as + e) � // (a(1),b(1) = a(1)s(1) + e(1))

Guess s(1) = g, graph supposed errors b(1)− a(1)g:

Incorrect Correct



Implementation: root of small order
Conditions: f (α) ≡ 0 (mod q) where
• α = ±1 and 8σ

√
n < q; or

• α small order r ≥ 3, and 8σ
√

n(αr2 − 1)/
√

r(α2 − 1) < q

Attack:
• Loop through residues g ∈ Z/qZ

• Loop through ` samples:
• Assume s(α) = g, derive assumptive e(α).
• If e(α) not within q/4 of 0, throw out guess g, move to next g

Proposition (Elias-Lauter-Ozman-S.)
Runtime is Õ(`q) with absolute implied constant.
• If algorithm keeps no guesses, samples are not PLWE.
• Otherwise, valid PLWE samples with probability 1− (1/2)`.

Note: Similar implementation by enumerating and sorting
possible error residues.



Desired properties for search Ring-LWE attack

For Poly-LWE attack
• f has root of small order

For moving the attack to Ring-LWE
• spectral norm is small

For search-to-decision reduction
• Galois fields



Condition for weak Ring-LWE instances

• σ = parameter for the Gaussian in Minkowski embedding
• M = change of basis matrix from Minkowski embedding of

R to its polynomial basis.

Theorem (Elias-Lauter-Ozman-S.)
Let K be a number field with ring of integers ∼= Z[x ]/(f (x))
where f (1) ≡ 0 (mod q). Suppose the spectral norm ρ(M)
satisfies

ρ <
q

4
√

2πσn

Then Ring-LWE decision can be solved in time Õ(`q) with
probability 1− 2−` using ` samples.



Provably weak Ring-LWE family

Theorem (Elias-Lauter-Ozman-S.)
Under various technical conditions, members of the family

f (x) = xn + q − 1

with prime q, are weak.



Successful attacks (Elias-Lauter-Ozman-S.)

Thinkpad X220 laptop, Sage Mathematics Software

case f q w sampls
per run

successful
runs

time
per run

PLWE x1024 + 231 − 2 231 − 1 3.192 40 1 of 1 13.5 h

Ring x128+524288x
+524285 524287 8.00 20 8 of 10 24 s

Ring x192 + 4092 4093 8.87 20 1 of 10 25 s

Ring x256 + 8190 8191 8.35 20 2 of 10 44 s



Search-to-decision

K
n

R q1 · · · qg = qR R/qR ∼= Fqf

f
Q Z q Z/qZ ∼= Fq

R/qR → R/qR

• Our attacks recover s(1), i.e., the secret modulo q. That is,
it solves Search-RLWE-q.

Proposition (Eisenträger-Hallgren-Lauter, Chen-Lauter-S.)
Suppose K/Q is Galois of degree n, and q a prime of residual
degree f . Suppose there is an oracle which solves
Search-RLWE-q. Then by n/f calls to the oracle, it is possible
to solve Search-RLWE.
This implies a regular Search-to-Decision reduction.



Abstracting the key idea

If q is a prime above (q), then we have a ring homomorphism

φ : Rq = R/(q)→ R/q ∼= Fqf .

This preserves the structure of samples:

(a,as + e) 7→ (φ(a), φ(a)φ(s) + φ(e))

Possibly weak if
1. image space is small enough to search
2. error distribution is non-uniform after φ



Attacking

If q is a prime above (q), then we have a ring homomorphism

φ : Rq = R/(q)→ R/q ∼= Fqf .

Suppose
1. image space is small enough to search
2. error distribution is non-uniform after φ

Attack:
1. Loop through g ∈ Fqk for putative φ(s)
2. Test distribution of φ(b)− φ(a)g (putative φ(e)) on

available samples.



Chi-square test for uniform distribution

Consider samples y1, . . . , yM from a finite set

S =
r⊔

j=1

Sj

• Expected number of samples in Sj is cj =
|Sj |M
|S| .

• Actual number: tj .
• χ2 statistic:

χ2(S, y) =
r∑

j=1

(tj − cj)
2

cj
.

Follows a known distribution.



Implementation: chi-square attack (Chen-Lauter-S.)
Setup:
• Homomorphism: Rq → R/q.
• Error distribution is distinguishable from uniform on R/q.

Search-RLWE-q Attack:
• Loop through residues g ∈ R/q.

• Assume φ(s) = g, derive assumptive φ(e) for all samples
• Compute χ2 statistic on the collection
• If looks uniform, throw out guess g

• If no g remain, samples were not RLWE.
• If ≥ 2 possible g remain, need more samples.
• If exactly one g remains, it is the secret modulo q.

Search-RLWE Attack:
• Run the Search RLWE-q attack on each galois conjugate

image of s.
• Combine using Chinese Remainder Theorem.



Security of an instance of Ring-LWE

• Fixing R and q, there is a finite list of homomorphisms.
• Therefore, to be assured of immunity of an instance of

RLWE to this family of attacks, need only check that finitely
many distributions look uniform!



Galois examples (Chen-Lauter-S.)
We have no galois examples of residue degree 1. But in
residue degree 2 (slower but still feasible), there are examples:

m n q f σ0 no. samples runtime (in hours)

2805 40 67 2 1 22445 3.49

15015 60 43 2 1 11094 1.05

15015 60 617 2 1.25 8000 228.41 (estimated) 1

90321 80 67 2 1 26934 4.81

255255 90 2003 2 1.25 15000 1114.44 (estimated)

285285 96 521 2 1.1 5000 75.41 (estimated)

1468005Z 100 683 2 1.1 5000 276.01 (estimated)

1468005 144 139 2 1 4000 5.72

Found by search through fixed fields of subgroups of galois group of
cyclotomic extensions.



Reasons for non-uniform distribution

• almost always uniform
• Reason 1 for non-uniformity (Elias-Lauter-Ozman-S.):

• residue degree 1
• there is a short basis whose elements coincide frequently

modulo q.
• example, root of small order

• Reason 2 for non-uniformity (Chen-Lauter-S.):
• residue degree 2
• there is a short basis whose elements are in a subfield

frequently modulo q.

There’s no reason there shouldn’t be galois examples with
Reason 1, but they are very rare. Reason 2 is easier, and
galois examples have been found.



Cyclotomic vulnerability

Under other error distributions (Elias-Lauter-Ozman-S.):

• Use f the minimal polynomial of ζ2k + 1.
• Example: k = 11, q = 45592577 ≈ 232

• Galois,
• q splits completely,
• has root −1 modulo q,
• spectral norm is unmanageably large.

If one uses the ramified prime (Chen-Lauter-S.):

• Here, f (1) ≡ 0 (mod q)
• Attack verified in practice



Cyclotomic invulnerability

• Unramified primes, standard Ring-LWE distribution.
• To Reason 1 (Elias-Lauter-Ozman-S.):

The roots of the m-th cyclotomic polynomial have order m
modulo every split prime q.

• To Reason 2 (Chen-Lauter-S.):
A very good short basis for the field is formed by the roots
of unity; these never lie in subfields modulo q.

• In practice: Computed distributions modulo unramified q
look uniform.



In conclusion

• The structure inherent in rings is exploitable
• The vulnerability has sensitive dependence on

parameters
• properties of the ring
• properties of q (not just size)
• properties of the error distribution


