Weaknesses in Ring-LWE

joint with
(Yara Elias, Kristin E. Lauter, and Ekin Ozman) and
(Hao Chen and Kristin E. Lauter)

ECC, September 29th, 2015

Lattice-Based Cryptography

- Post-quantum cryptography
- Ajtai-Dwork: public-key crypto based on a shortest vector problem (1997)
- Hoffstein-Pipher-Silverman: NTRU working in $\mathbb{Z}[X] /\left(X^{N}-1\right)$ (1998) - now standardized
- Gentry: Homomorphic encryption using ideal lattices (2009): perform ring operations on encrypted ring elements, to obtain correct encrypted result, without key:

1. Medical records
2. Machine learning
3. Genomic computation

Hard problems in lattices

Setting: A lattice in \mathbb{R}^{n} with norm. A lattice is given by a (potentially very bad) basis.

- Shortest Vector Problem (SVP): find shortest vector or a vector within factor γ of shortest.
- Gap Shortest Vector Problem (GapSVP): differentiate lattices where shortest vector is of length $<\gamma$ or $>\beta \gamma$.
- Closest Vector Problem (CVP): find vector closest to given vector
- Bounded Distance Decoding (BDD): find closest vector, knowing distance is bounded (unique solution)
- Learning with Errors (Regev, 2005)

Learning with errors

Problem: Find a secret $s \in \mathbb{F}_{q}^{n}$ given a linear system that s approximately solves.

- Gaussian elimination amplifies the 'errors', fails to solve the problem.

In other words, find $s \in \mathbb{F}_{q}^{n}$ given multiple samples
$(a,\langle a, s\rangle+e) \in \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}$ where

- q prime, n a positive integer
- e chosen from error distribution χ

Origins: attacks on hardness of other lattice problems, e.g. an LWE oracle of modulus q gives base q digits of solution to Bounded Distance Decoding.

Ideal Lattice Cryptography

Ideal Lattices:

- lattices generated by an ideal of a number field
- extra symmetries
- saves space
- speeds computations

Ring Learning with Errors (Ring-LWE)

Search Ring-LWE (Lyubashevsky-Peikert-Regev, Brakerski-Vaikuntanathan):

- $R=\mathbb{Z}[x] /(f), f$ monic irreducible over \mathbb{Z}
- $R_{q}=\mathbb{F}_{q}[x] /(f), q$ prime
- χ an error distribution on R_{q}
- Given a series of samples $(a, a s+e) \in R_{q}^{2}$ where

1. $a \in R_{q}$ uniformly,
2. $e \in R_{q}$ according to χ,
find s.
Decision Ring-LWE:

- Given samples (a, b), determine if they are LWE-samples or uniform $(a, b) \in R_{q}^{2}$.
Currently proposed: R the ring of integers of a cyclotomic field (particularly 2-power-cyclotomics).

A simple public-key cryptosystem (think El Gamal)

Public: q, n, f forming R_{q}, error χ, plus $k \in \mathbb{Z}$ moderately large Alice: Secret small $s \in R_{q}$
Bob: Message $0<m<q / k$, random small $r \in R_{q}$ Protocol:

Alice
$\longleftarrow \underset{\left(v=a r+e_{2}, w=b r+e_{3}+k m\right)}{\text { ciphertext }} \longleftarrow$
Decryption: $w-v s=k m+r e_{1}+s e_{2}+e_{3}$, round to nearest multiple of k.

Generic attacks on LWE problem

- Time $2^{\mathrm{O}(n \log n)}$
- maximum likelihood, or;
- waiting for a to be a standard basis vector often enough
- Time 2^{O} (n)
- Blum, Kalai, Wasserman
- engineer a to be a standard basis vector by linear combinations
- Distinguishing attack (decision) and Decoding attack (search)
- > polynomial time
- relying on BKZ algorithm
- used for setting parameters

These apply to Ring-LWE.

Polynomial embedding: practical

Polynomial embedding: Think of R as a lattice via

$$
R \hookrightarrow \mathbb{Z}^{n} \hookrightarrow \mathbb{R}^{n}, \quad a_{n} x^{n}+\ldots+a_{0} \mapsto\left(a_{n}, \ldots, a_{0}\right) .
$$

Note: multiplication is 'mixing' on coefficients. Actually work modulo q :

$$
R_{q} \hookrightarrow \mathbb{F}_{q}^{n}, \quad a_{n} x^{n}+\ldots+a_{0} \mapsto\left(a_{n} \bmod q, \ldots, a_{0} \bmod q\right) .
$$

Naive sampling: Sample each coordinate as a one-dimensional discretized Gaussian. This leads to a discrete approximation to an n-dimensional Gaussian.

Minkowski embedding: theoretical

Minkowski embedding: A number field K of degree n can be embedded into \mathbb{C}^{n} so that multiplication and addition are componentwise:

$$
K \mapsto \mathbb{C}^{n}, \quad \alpha \mapsto\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)
$$

where α_{i} are the n Galois conjugates of α. Massage into \mathbb{R}^{n} :

$$
\phi: R \hookrightarrow \mathbb{R}^{n}, \quad(\underbrace{\alpha_{1}, \ldots, \alpha_{r}}_{\text {real }}, \underbrace{\Re\left(\alpha_{r+1}\right), \Im\left(\alpha_{r+1}\right), \ldots}_{\text {complex }}) .
$$

As usual, then we work modulo q (modulo prime above q). Sampling: Discretize a Gaussian, spherical in \mathbb{R}^{n} under the usual inner product.
Relation to LWE: Each Ring-LWE sample $(a, a s+e) \in R_{q}^{2}$ is really n LWE samples $\left(a_{i} \mathbf{e}_{i},\left\langle a_{i} \mathbf{e}_{i}, s\right\rangle+e_{i}\right) \in(\mathbb{Z} / q \mathbb{Z})^{n+1}$

Distortion of the error distribution

Distortion: A spherical Gaussian in Minkowski embedding is not spherical in polynomial embedding. Linear transformation:

$$
\mathbb{Z}[X] / f(X) \rightarrow \phi(R)
$$

Spectral norm: The radius of the smallest ball containing the image of the unit ball.

Setting parameters

- n, dimension
- q, prime
- q polynomial in n (security, usability)
- f or a lattice of algebraic integers
- χ, error distribution
- Poly-LWE in practice
- Ring-LWE in theory
- Poly-LWE = Ring-LWE for 2-power cyclotomics
- Gaussian with small standard deviation σ

Example: $n \approx 2^{10}, \quad q \approx 2^{31}, \quad \sigma \approx 8$

Decision Poly-LWE Attack of Eisenträger, Hallgren and Lauter

Potential weakness: $f(1) \equiv 0 \bmod q$.

$(a, b=a s+e) \longmapsto(a(1), b(1)=a(1) s(1)+e(1))$
Guess $s(1)=g$, graph supposed errors $b(1)-a(1) g$:

Incorrect

Correct

Implementation: root of small order

Conditions: $f(\alpha) \equiv 0(\bmod q)$ where

- $\alpha= \pm 1$ and $8 \sigma \sqrt{n}<q$; or
- α small order $r \geq 3$, and $8 \sigma \sqrt{n\left(\alpha^{r 2}-1\right)} / \sqrt{r\left(\alpha^{2}-1\right)}<q$

Attack:

- Loop through residues $g \in \mathbb{Z} / q \mathbb{Z}$
- Loop through ℓ samples:
- Assume $\boldsymbol{s}(\alpha)=g$, derive assumptive $\boldsymbol{e}(\alpha)$.
- If $e(\alpha)$ not within $q / 4$ of 0 , throw out guess g, move to next g

Proposition (Elias-Lauter-Ozman-S.)
Runtime is $\tilde{O}(\ell q)$ with absolute implied constant.

- If algorithm keeps no guesses, samples are not PLWE.
- Otherwise, valid PLWE samples with probability $1-(1 / 2)^{\ell}$.

Note: Similar implementation by enumerating and sorting possible error residues.

Desired properties for search Ring-LWE attack

For Poly-LWE attack

- f has root of small order

For moving the attack to Ring-LWE

- spectral norm is small

For search-to-decision reduction

- Galois fields

Condition for weak Ring-LWE instances

- $\sigma=$ parameter for the Gaussian in Minkowski embedding
- $M=$ change of basis matrix from Minkowski embedding of R to its polynomial basis.

Theorem (Elias-Lauter-Ozman-S.)
Let K be a number field with ring of integers $\cong \mathbb{Z}[x] /(f(x))$ where $f(1) \equiv 0(\bmod q)$. Suppose the spectral norm $\rho(M)$ satisfies

$$
\rho<\frac{q}{4 \sqrt{2 \pi} \sigma n}
$$

Then Ring-LWE decision can be solved in time $\widetilde{O}(\ell q)$ with probability $1-2^{-\ell}$ using ℓ samples.

Provably weak Ring-LWE family

Theorem (Elias-Lauter-Ozman-S.)
Under various technical conditions, members of the family

$$
f(x)=x^{n}+q-1
$$

with prime q, are weak.

Successful attacks (Elias-Lauter-Ozman-S.)

Thinkpad X220 laptop, Sage Mathematics Software

case	f	q	w	sampls per run	successful runs	time per run
PLWE	$x^{1024}+2^{31}-2$	$2^{31}-1$	3.192	40	1 of 1	13.5 h
Ring	$x^{128}+524288 x$ +524285	524287	8.00	20	8 of 10	24 s
Ring	$x^{192}+4092$	4093	8.87	20	1 of 10	25 s
Ring	$x^{256}+8190$	8191	8.35	20	2 of 10	44 s

Search-to-decision

$$
R / q R \rightarrow R / q R
$$

- Our attacks recover $s(1)$, i.e., the secret modulo \mathfrak{q}. That is, it solves Search-RLWE-q.

Proposition (Eisenträger-Hallgren-Lauter, Chen-Lauter-S.)
Suppose K / \mathbb{Q} is Galois of degree n, and \mathfrak{q} a prime of residual degree f. Suppose there is an oracle which solves Search-RLWE-q. Then by n / f calls to the oracle, it is possible to solve Search-RLWE.
This implies a regular Search-to-Decision reduction.

Abstracting the key idea

If \mathfrak{q} is a prime above (q), then we have a ring homomorphism

$$
\phi: R_{q}=R /(q) \rightarrow R / \mathfrak{q} \cong \mathbb{F}_{q^{t}} .
$$

This preserves the structure of samples:

$$
(a, a s+e) \mapsto(\phi(a), \phi(a) \phi(s)+\phi(e))
$$

Possibly weak if

1. image space is small enough to search
2. error distribution is non-uniform after ϕ

Attacking

If \mathfrak{q} is a prime above (q), then we have a ring homomorphism

$$
\phi: R_{q}=R /(q) \rightarrow R / \mathfrak{q} \cong \mathbb{F}_{q^{f}}
$$

Suppose

1. image space is small enough to search
2. error distribution is non-uniform after ϕ

Attack:

1. Loop through $g \in \mathbb{F}_{q^{k}}$ for putative $\phi(s)$
2. Test distribution of $\phi(b)-\phi(a) g$ (putative $\phi(e))$ on available samples.

Chi-square test for uniform distribution

Consider samples y_{1}, \ldots, y_{M} from a finite set

$$
S=\bigsqcup_{j=1}^{r} S_{j}
$$

- Expected number of samples in S_{j} is $c_{j}=\frac{\left|S_{j}\right| M}{|S|}$.
- Actual number: t_{j}.
- χ^{2} statistic:

$$
\chi^{2}(S, y)=\sum_{j=1}^{r} \frac{\left(t_{j}-c_{j}\right)^{2}}{c_{j}}
$$

Follows a known distribution.

Implementation: chi-square attack (Chen-Lauter-S.)

Setup:

- Homomorphism: $R_{q} \rightarrow R / q$.
- Error distribution is distinguishable from uniform on R / q. Search-RLWE-q Attack:
- Loop through residues $g \in R / q$.
- Assume $\phi(s)=g$, derive assumptive $\phi(e)$ for all samples
- Compute χ^{2} statistic on the collection
- If looks uniform, throw out guess g
- If no g remain, samples were not RLWE.
- If ≥ 2 possible g remain, need more samples.
- If exactly one g remains, it is the secret modulo \mathfrak{q}.

Search-RLWE Attack:

- Run the Search RLWE-q attack on each galois conjugate image of s.
- Combine using Chinese Remainder Theorem.

Security of an instance of Ring-LWE

- Fixing R and q, there is a finite list of homomorphisms.
- Therefore, to be assured of immunity of an instance of RLWE to this family of attacks, need only check that finitely many distributions look uniform!

Galois examples (Chen-Lauter-S.)

We have no galois examples of residue degree 1. But in residue degree 2 (slower but still feasible), there are examples:

m	n	q	f	σ_{0}	no. samples	runtime (in hours)
2805	40	67	2	1	22445	3.49
15015	60	43	2	1	11094	1.05
15015	60	617	2	1.25	8000	228.41 (estimated) ${ }^{1}$
90321	80	67	2	1	26934	4.81
255255	90	2003	2	1.25	15000	1114.44 (estimated)
285285	96	521	2	1.1	5000	75.41 (estimated)
$1468005 Z$	100	683	2	1.1	5000	276.01 (estimated)
1468005	144	139	2	1	4000	5.72

Found by search through fixed fields of subgroups of galois group of cyclotomic extensions.

Reasons for non-uniform distribution

- almost always uniform
- Reason 1 for non-uniformity (Elias-Lauter-Ozman-S.):
- residue degree 1
- there is a short basis whose elements coincide frequently modulo \mathfrak{q}.
- example, root of small order
- Reason 2 for non-uniformity (Chen-Lauter-S.):
- residue degree 2
- there is a short basis whose elements are in a subfield frequently modulo \mathfrak{q}.

There's no reason there shouldn't be galois examples with Reason 1, but they are very rare. Reason 2 is easier, and galois examples have been found.

Cyclotomic vulnerability

Under other error distributions (Elias-Lauter-Ozman-S.):

- Use f the minimal polynomial of $\zeta_{2^{k}}+1$.
- Example: $k=11, q=45592577 \approx 2^{32}$
- Galois,
- q splits completely,
- has root -1 modulo q,
- spectral norm is unmanageably large.

If one uses the ramified prime (Chen-Lauter-S.):

- Here, $f(1) \equiv 0(\bmod q)$
- Attack verified in practice

Cyclotomic invulnerability

- Unramified primes, standard Ring-LWE distribution.
- To Reason 1 (Elias-Lauter-Ozman-S.): The roots of the m-th cyclotomic polynomial have order m modulo every split prime q.
- To Reason 2 (Chen-Lauter-S.): A very good short basis for the field is formed by the roots of unity; these never lie in subfields modulo \mathfrak{q}.
- In practice: Computed distributions modulo unramified \mathfrak{q} look uniform.

In conclusion

- The structure inherent in rings is exploitable
- The vulnerability has sensitive dependence on parameters
- properties of the ring
- properties of q (not just size)
- properties of the error distribution

