Elliptic Curve Cryptography on Embedded Devices

Scalar Multiplication and Side-Channel Attacks

Vincent Verneuil^{1,2}

¹Inside Secure ²Institut de Mathématiques de Bordeaux

Séminaire Arithmétique et Théorie de l'Information Institut de Mathématiques de Luminy 01 / 2011

Outline

Elliptic Curve Cryptography

Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

Conclusion

Inside Secure in (very) short

イロト イ団ト イヨト イヨト

Inside Secure in (very) short

イロト イポト イヨト イヨト

Outline

Elliptic Curve Cryptography

Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

3 Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

4 Conclusion

Outline

1 Elliptic Curve Cryptography Generalities

> Protocols Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

3 Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

4 Conclusion

Elliptic Curve Equation

Elliptic Curve Equation

Elliptic Curve Equation

Considering a field \mathbb{F}_{ρ} , p > 3, the points (x, y) of $\mathcal{E}/\mathbb{F}_{\rho}$: $y^2 = x^3 + ax + b$ and the "point at infinity" *O* form a group.

Given a point *P* in $\mathcal{E}(\mathbb{F}_p)$ and an integer *k*, we fix $k \cdot P = \underbrace{P + P + \dots + P}_{k}$.

k times

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given *P* in $\mathcal{E}(\mathbb{F}_p)$ and $\alpha \cdot P$, $1 \leq \alpha \leq \# \mathcal{E}(\mathbb{F}_p)$, find α ?

Much harder than DLP on finite fields, or factoring.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given *P* in $\mathcal{E}(\mathbb{F}_p)$ and $\alpha \cdot P$, $1 \leq \alpha \leq \# \mathcal{E}(\mathbb{F}_p)$, find α ?

Much harder than DLP on finite fields, or factoring.

Security	2 ⁸⁰	2 ¹¹²	2 ¹²⁸	2 ¹⁹²
ElGamal p/q	160/1024	224/2048	256/3072	384/8192
RSA	1024	2048	3072	8192
ECC	160	224	256	384

Keylengths for roughly equivalent security

Two Levels Arithmetic

Points group of the elliptic curve

- £(F_p) : point set
- additive law
- point additions and doublings

Two Levels Arithmetic

Points group of the elliptic curve

- £(F_p) : point set
- additive law
- point additions and doublings

Base field

- \mathbb{F}_p : equivalence classes of integers modulo p
- additive and multiplicative laws
- modular additions and multiplications

Embedded Devices Constraints

Efficiency

- * ロ * * 個 * * 目 * * 目 * - 三 - うくぐ

Embedded Devices Constraints

Efficiency

Most transactions have to take less than 500 ms.

Embedded Devices Constraints

Efficiency

- Most transactions have to take less than 500 ms
- Small amount of RAM

Embedded Devices Constraints

Efficiency

- Most transactions have to take less than 500 ms
- Small amount of RAM
- · Very low power (then frequency) for contactless devices

Embedded Devices Constraints

Efficiency

- Most transactions have to take less than 500 ms
- Small amount of RAM
- · Very low power (then frequency) for contactless devices

Arithmetic optimizations

Embedded Devices Constraints

Efficiency

- Most transactions have to take less than 500 ms
- Small amount of RAM
- · Very low power (then frequency) for contactless devices

Arithmetic optimizations

· At the base field level (addition formulas, points representation)

Embedded Devices Constraints

Efficiency

- Most transactions have to take less than 500 ms
- Small amount of RAM
- · Very low power (then frequency) for contactless devices

Arithmetic optimizations

- · At the base field level (addition formulas, points representation)
- · At the points group level (scalar multiplication algorithm)

Fp Operations Theoretical Cost

Pp Operations Theoretical Cost

Expensive operations

Inversion (I)

Ep Operations Theoretical Cost

Expensive operations

Inversion (I)

Significant operations

- Multiplication (M)
- Squaring (S, S/M \approx 0.8)

Fp Operations Theoretical Cost

Expensive operations

Inversion (I)

Significant operations

- Multiplication (M)
- Squaring (S, S/M \approx 0.8)

Negligible operations

- Addition (A)
- Subtraction (S)
- Negation (N)

Fp Operations Theoretical Cost

Expensive operations

Inversion (I)

Significant operations

- Multiplication (M)
- Squaring (S, S/M \approx 0.8)

Negligible operations

- Addition (A) $A/M \approx 0.2$ on most smart cards
- Subtraction (S)
- Negation (N)

Outline

Elliptic Curve Cryptography

Generalities

Protocols

Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

3 Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

4 Conclusion

Elliptic Curve Digital Signature Algorithm (ECDSA)

```
Public : \mathcal{E}(a, b, p, n = \#\mathcal{E}), P \in \mathcal{E}(\mathbb{F}_p), H
```

INPUT : d and mOUTPUT : (r, s)

```
Choose at random k in [1, n-1]

P_1 \leftarrow k \cdot P

r \leftarrow x_{P_1} \mod n

If r \equiv 0 \mod n restart from the beginning

s \leftarrow k^{-1} (H(m) + dr) \mod n

If s \equiv 0 \mod n restart from the beginning

Return (r, s)
```

Elliptic Curve Digital Signature Algorithm (ECDSA)

```
Public : \mathcal{E}(a, b, p, n = \#\mathcal{E}), P \in \mathcal{E}(\mathbb{F}_p), H
```

INPUT : d and mOUTPUT : (r, s)

Choose at random k in [1, n-1]

 $P_1 \leftarrow k \cdot P$

 $r \leftarrow x_{P_1} \mod n$ If $r \equiv 0 \mod n$ restart from the beginning $s \leftarrow k^{-1} (H(m) + dr) \mod n$

If $s \equiv 0 \mod n$ restart from the beginning Return (r, s)

Elliptic Curve Digital Signature Algorithm (ECDSA)

```
Public : \mathcal{E}(a, b, p, n = \#\mathcal{E}), P \in \mathcal{E}(\mathbb{F}_p), H
```

INPUT : d and mOUTPUT : (r, s)

Choose at random k in [1, n-1] $P_1 \leftarrow k \cdot P$ $r \leftarrow x_{P_1} \mod n$ If $r \equiv 0 \mod n$ restart from the beginning $s \leftarrow k^{-1} (H(m) + dr) \mod n$ If $s \equiv 0 \mod n$ restart from the beginning Return (r, s)

 $d = \frac{s \cdot k - H(m)}{r} \mod n$

Elliptic Curve Diffie-Hellman (ECDH) Key Exchange

 $\mathfrak{E}(a, b, p, n), P \in \mathfrak{E}(\mathbb{F}_p)$

Alice

Choose at random $a \in [1, n-1]$

Bob
Choose at random
$$b \in [1, n-1]$$

Elliptic Curve Diffie-Hellman (ECDH) Key Exchange

 $\mathcal{E}(a, b, p, n), P \in \mathcal{E}(\mathbb{F}_p)$

Card

Terminal

Choose at random $a \in [1, n-1]$

Choose at random $b \in [1, n-1]$

Elliptic Curve Diffie-Hellman (ECDH) Key Exchange

 $\mathcal{E}(a, b, p, n), P \in \mathcal{E}(\mathbb{F}_p)$

Card

Terminal

Choose at random $a \in [1, n-1]$

Elliptic Curve Standards over \mathbb{F}_p

Elliptic Curve Standards over \mathbb{F}_p

NIST (U.S.)

Keylengths : 192, 224, 256, 384, and 521 bits.
イロト イ理ト イヨト イヨト

Elliptic Curve Standards over \mathbb{F}_p

NIST (U.S.)

Keylengths : 192, 224, 256, 384, and 521 bits.

Brainpool (BSI, Germany)

Keylengths : 160, 192, 224, 256, 320, 384, and 512 bits.

イロト イ理ト イヨト イヨト

Elliptic Curve Standards over \mathbb{F}_p

NIST (U.S.)

Keylengths : 192, 224, 256, 384, and 521 bits.

Brainpool (BSI, Germany)

Keylengths : 160, 192, 224, 256, 320, 384, and 512 bits.

Other standards (ANSI, ISO, IEEE, SECG) \rightarrow NIST curves

Elliptic Curve Cryptography

Generalities Protocols

Points Representation and Formulas

Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

3 Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

4 Conclusion

A point of the curve $\mathcal{E}: y^2 = x^3 + ax + b$ is represented as (x, y). No representation for O

Add. : 1I + 2M + 1S, Doubl. : 1I + 2M + 2S

A point of the curve $\mathcal{E}: y^2 = x^3 + ax + b$ is represented as (x, y). No representation for *O*

Add. : 11 + 2M + 1S, Doubl. : 11 + 2M + 2S

イロト イポト イヨト イヨト

Homogeneous Projective Representation

A point is represented by an equivalence class (X : Y : Z). (X : Y : Z) and $(\lambda X : \lambda Y : \lambda Z)$, $\lambda \neq 0$ represent the same point O = (0 : 1 : 0)

Homogeneous Projective Representation

A point is represented by an equivalence class (X : Y : Z). (X : Y : Z) and $(\lambda X : \lambda Y : \lambda Z)$, $\lambda \neq 0$ represent the same point O = (0 : 1 : 0)

> Aff. \rightarrow Hom. conversion : $(x, y) \rightarrow (x : y : 1)$

Hom. \rightarrow Aff. conversion : $(X : Y : Z \neq 0) \rightarrow (X/Z, Y/Z)$

Homogeneous Projective Representation

A point is represented by an equivalence class (X : Y : Z). (X : Y : Z) and $(\lambda X : \lambda Y : \lambda Z)$, $\lambda \neq 0$ represent the same point O = (0 : 1 : 0)

> Aff. \rightarrow Hom. conversion : $(x, y) \rightarrow (x : y : 1)$

Hom. \rightarrow Aff. conversion : (X : Y : Z \neq 0) \rightarrow (X/Z, Y/Z)

Add. : 12M + 2S, Doubl. : 6M + 6S

イロト イポト イヨト イヨト

Jacobian Projective Representation

A point is represented by an equivalence class (X : Y : Z). (X : Y : Z) and $(\lambda^2 X : \lambda^3 Y : \lambda Z)$, $\lambda \neq 0$ represent the same point O = (1 : 1 : 0)

イロト イ押ト イヨト イヨト

Jacobian Projective Representation

A point is represented by an equivalence class (X : Y : Z). (X : Y : Z) and $(\lambda^2 X : \lambda^3 Y : \lambda Z)$, $\lambda \neq 0$ represent the same point O = (1 : 1 : 0)

> Aff. \rightarrow Jac. conversion : (x,y) \rightarrow (x : y : 1)

Jac. \rightarrow Aff. conversion : $(X : Y : Z \neq 0) \rightarrow (X/Z^2, Y/Z^3)$

イロト イポト イヨト イヨト

Jacobian Projective Representation

A point is represented by an equivalence class (X : Y : Z). (X : Y : Z) and $(\lambda^2 X : \lambda^3 Y : \lambda Z)$, $\lambda \neq 0$ represent the same point O = (1 : 1 : 0)

> Aff. \rightarrow Jac. conversion : (x,y) \rightarrow (x : y : 1)

Jac. \rightarrow Aff. conversion : $(X : Y : Z \neq 0) \rightarrow (X/Z^2, Y/Z^3)$

Add. : 11M + 5S, Doubl. : 2M + 8S

イロト イポト イヨト イヨト

Modified Jacobian Projective Representation

Introduced in [Cohen, Miyaji & Ono, *Efficient elliptic curve exponentiation using mixed coordinates*, Asiacrypt 1998].

Modified Jacobian Projective Representation

Introduced in [Cohen, Miyaji & Ono, *Efficient elliptic curve exponentiation using mixed coordinates*, Asiacrypt 1998].

Based on the Jacobian projective representation. Plus an extra coordinate $(X : Y : Z : aZ^4)$.

Modified Jacobian Projective Representation

Introduced in [Cohen, Miyaji & Ono, *Efficient elliptic curve exponentiation using mixed coordinates*, Asiacrypt 1998].

Based on the Jacobian projective representation. Plus an extra coordinate $(X : Y : Z : aZ^4)$.

Faster doubling than Jacobian projective : 3M + 5S But slower addition : 13M + 7S

Outline

Elliptic Curve Cryptography

Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

3 Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

4 Conclusion

イロト イ理ト イヨト イヨト

Double & Add Algorithm

Left-to-Right

INPUT : $P \in \mathcal{E}(\mathbb{F}_p),$ $k = (k_{\ell-1} \dots k_1 k_0)_2$ OUTPUT : $k \cdot P$

 $\textit{Q} \leftarrow \textit{O}$

For *i* from $\ell - 1$ to 0 do $Q \leftarrow 2Q$ If $k_i = 1$ then $Q \leftarrow Q + P$

Return Q

Double & Add Algorithm

Left-to-Right

 $\begin{array}{ll} \mathsf{INPUT}: & P \in \mathcal{E}(\mathbb{F}_p), \\ & k = (k_{\ell-1} \dots k_1 k_0)_2 \\ \mathsf{OUTPUT}: & k \cdot P \end{array}$

$\textit{Q} \leftarrow \textit{O}$

For *i* from $\ell - 1$ to 0 do $Q \leftarrow 2Q$ If $k_i = 1$ then $Q \leftarrow Q + P$

Return Q

On average :

$$\ell \cdot dbl + \frac{\ell}{2} \cdot add$$

イロト イ団ト イヨト イヨト

イロト イ押ト イヨト イヨト

Signed binary representation. Minimize the number of non-zero digits (1/3 vs 1/2).

$$\label{eq:Example:187} \begin{split} \text{Example}: \\ 187 = 10111011^{(2)} = 10\bar{1}000\bar{1}0\bar{1}^{(\text{NAF})} \end{split}$$

イロト イポト イヨト イヨト

Signed binary representation. Minimize the number of non-zero digits (1/3 vs 1/2).

$$\label{eq:Example:187} \begin{split} \text{Example}: \\ 187 = 10111011^{(2)} = 10\bar{1}000\bar{1}0\bar{1}^{(\text{NAF})} \end{split}$$

Interest

- Minimize the number of additions
- $P \rightarrow -P$ is cheap : $(X : Y : Z) \rightarrow (X : -Y : Z)$

イロト イ団ト イヨト イヨト

NAF Multiplication

Right-to-Left

```
INPUT : P \in \mathcal{E}(\mathbb{F}_p),

k = (k_{\ell-1} \dots k_1 k_0)_{NAF}

OUTPUT : k \cdot P

Q \leftarrow O

R \leftarrow P

Example 1 and 2
```

```
For i from 0 to \ell - 1 do

If k_i = 1 then

Q \leftarrow Q + R

If k_i = -1 then

Q \leftarrow Q + (-R)

R \leftarrow 2R
```

Return Q

イロト イ団ト イヨト イヨト

NAF Multiplication

Right-to-Left

```
INPUT : P \in \mathcal{E}(\mathbb{F}_{p}),

k = (k_{\ell-1} \dots k_1 k_0)_{NAF} <u>Cost :</u>

OUTPUT : k \cdot P

Q \leftarrow O

R \leftarrow P
```

For *i* from 0 to
$$\ell - 1$$
 do
If $k_i = 1$ then
 $Q \leftarrow Q + R$
If $k_i = -1$ then
 $Q \leftarrow Q + (-R)$
 $R \leftarrow 2R$

Return Q

NAF Multiplication

Right-to-Left

```
\begin{array}{ll} \mathsf{INPUT} : & P \in \mathcal{E}(\mathbb{F}_p), \\ & k = (k_{\ell-1} \dots k_1 k_0)_{\mathsf{NAF}} \\ \mathsf{OUTPUT} : & k \cdot P \\ & Q \leftarrow O \\ & R \leftarrow P \end{array}
```

For *i* from 0 to
$$\ell - 1$$
 do
If $k_i = 1$ then
 $Q \leftarrow Q + R$
If $k_i = -1$ then
 $Q \leftarrow Q + (-R)$
 $R \leftarrow 2R$

 $\frac{\text{Cost :}}{\ell \cdot \text{dbl} + \frac{\ell}{3} \cdot \text{add}}$

Variant introduced in [Joye, *Fast point multiplication on elliptic curves without precomputation*, WAIFI 2008] :

イロト イ押ト イヨト イヨト

NAF Multiplication

Right-to-Left

```
INPUT : P \in \mathcal{E}(\mathbb{F}_p),

k = (k_{\ell-1} \dots k_1 k_0)_{NAF}

OUTPUT : k \cdot P

Q \leftarrow O

R \leftarrow P
```

For *i* from 0 to
$$\ell - 1$$
 do
If $k_i = 1$ then
 $Q \leftarrow Q + R$
If $k_i = -1$ then
 $Q \leftarrow Q + (-R)$
 $R \leftarrow 2R$

Return Q

$$\frac{\text{Cost :}}{\ell \cdot \text{dbl} + \frac{\ell}{3} \cdot \text{adc}}$$

Variant introduced in [Joye, *Fast point multiplication on elliptic curves without precomputation*, WAIFI 2008] :

• Q in Jacobian coordinates

NAF Multiplication

Right-to-Left

```
INPUT : P \in \mathcal{E}(\mathbb{F}_p),

k = (k_{\ell-1} \dots k_1 k_0)_{NAF}

OUTPUT : k \cdot P

Q \leftarrow O

R \leftarrow P
```

For *i* from 0 to
$$\ell - 1$$
 do
If $k_i = 1$ then
 $Q \leftarrow Q + R$
If $k_i = -1$ then
 $Q \leftarrow Q + (-R)$
 $R \leftarrow 2R$

Return Q

 $\frac{\text{Cost:}}{\ell \cdot \text{dbl} + \frac{\ell}{3} \cdot \text{add}}$

Variant introduced in [Joye, *Fast point multiplication on elliptic curves without precomputation*, WAIFI 2008] :

- Q in Jacobian coordinates
- *R* in modified Jacobian coordinates

Sliding window algorithms

Precompute $3P, 5P, \ldots$ to process several scalar bits at a time. Can be combined with the NAF method.

Sliding window algorithms

Precompute $3P, 5P, \ldots$ to process several scalar bits at a time. Can be combined with the NAF method.

DBNS, multibase NAF...

Heavy precomputations.

Too expensive for the ECDSA in the embedded context.

Sliding window algorithms

Precompute $3P, 5P, \ldots$ to process several scalar bits at a time. Can be combined with the NAF method.

DBNS, multibase NAF...

Heavy precomputations. Too expensive for the ECDSA in the embedded context.

Co-Z Addition

Euclidean Addition Chains [Meloni, WAIFI 2007] Co-Z binary ladder [Goundar, Joye & Miyaji, CHES 2010]

Outline

Elliptic Curve Cryptograph

Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms

Side-Channel Analysis Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

3 Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

4 Conclusion

Outline

Elliptic Curve Cryptograph

Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis Introduction

Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

3 Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

4 Conclusion

A chip in details

イロト イポト イヨト イヨト

2

A chip in details

Attack Bench Non Invasive Attacks

Computer

イロト イロト イヨト イヨト

Introduction SPA DPA FA

Simple Analyse Example

Leakage on Performed Operations.

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 ─ のへで

Introduction SPA DPA FA

Simple Analyse Example

Leakage on Manipulated Data

イロト イポト イヨト イヨト

Milestones

- Timing Attacks [Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems, Crypto 1996]
- Fault Attacks [Boneh et al., On the Importance of Checking Cryptographic Protocols for Faults, Eurocrypt 1997]
- SPA and DPA [Kocher et al., Differential Power Analysis, Crypto 1999]

イロト イポト イヨト イヨト
Milestones

- Timing Attacks [Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems, Crypto 1996]
- Fault Attacks [Boneh et al., On the Importance of Checking Cryptographic Protocols for Faults, Eurocrypt 1997]
- SPA and DPA [Kocher et al., Differential Power Analysis, Crypto 1999]
- DFA on ECC [Biehl et al., *Differential Fault Attacks on Elliptic Curve Cryptosystems*, Crypto 2000]
- DPA on RSA [den Boer et al., *A DPA Attack Against the Modular Reduction within a CRT Implementation of RSA*, CHES 2002]

Milestones

- Timing Attacks [Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems, Crypto 1996]
- Fault Attacks [Boneh et al., *On the Importance of Checking Cryptographic Protocols for Faults*, Eurocrypt 1997]
- SPA and DPA [Kocher et al., Differential Power Analysis, Crypto 1999]
- DFA on ECC [Biehl et al., *Differential Fault Attacks on Elliptic Curve Cryptosystems*, Crypto 2000]
- DPA on RSA [den Boer et al., *A DPA Attack Against the Modular Reduction within a CRT Implementation of RSA*, CHES 2002]
- CPA [Brier et al., *Correlation Power Analysis with a Leakage Model*, CHES 2004]
- CPA on PK [Amiel et al., *Power Analysis for Secret Recovering and Reverse Engineering of Public Key Algorithms*, SAC 2007]

Outline

Elliptic Curve Cryptograph

Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

3 Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

4 Conclusion

Simple Analysis Principle

Measure one side-channel leakage *s* function of *t* and consider the curve s(t).

- イロト イロト イヨト イヨト ヨー のくぐ

Simple Analysis Principle

Measure one side-channel leakage *s* function of *t* and consider the curve s(t).

а аныныраныйлашаларыныраларыныланынан

イロト イ団ト イヨト イヨト

Simple Analysis Principle

Measure one side-channel leakage *s* function of *t* and consider the curve s(t).

и аналарынданынарынарынарыналынары

SPA/SEMA

V. Verneuil Elliptic Curve Cryptography on Embedded Devices

Simple Analysis Principle

Measure one side-channel leakage *s* function of *t* and consider the curve s(t).

и ананиястиянның каларынан аларынан алары

SPA/SEMA

 depicts the behavior of the chip depending on the performed operations / manipulated data

イロト イ理ト イヨト イヨト

Simple Analysis Principle

Measure one side-channel leakage *s* function of *t* and consider the curve s(t).

и ананаранайчаларанананананананананананан

SPA/SEMA

- depicts the behavior of the chip depending on the performed operations / manipulated data
- each measure enables direct reading

Left-to-Right Double & add Algorithm Analysis

$Q \leftarrow O$

For *i* from $\ell - 1$ to 0 do $Q \leftarrow 2Q$ If $k_i = 1$ then $Q \leftarrow Q + P$

Return Q

Left-to-Right Double & add Algorithm Analysis

$oldsymbol{Q} \leftarrow \mathcal{O}$

For *i* from $\ell - 1$ to 0 do $Q \leftarrow 2Q$ If $k_i = 1$ then $Q \leftarrow Q + P$

Return Q

Outline

Elliptic Curve Cryptograph

Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

3 Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

4 Conclusion

Measure *n* times a side-channel leakage *s* function of *t* and consider the curves $s_1(t), s_2(t), \dots, s_n(t)$.

Measure *n* times a side-channel leakage *s* function of *t* and consider the curves $s_1(t), s_2(t), \dots, s_n(t)$.

 targets a same operation on all curves but involving different data

Measure *n* times a side-channel leakage *s* function of *t* and consider the curves $s_1(t), s_2(t), \dots, s_n(t)$.

- targets a same operation on all curves but involving different data
- align vertically the curves on the targeted operation

j.							
Ń							
Ŵ	райны <mark>ла</mark> рыйчайрыйрактарыкакананай.						
Ń	ранна <mark>н</mark> тайчалартартендикалыктанда						
	1 :						
 หมายสารสารสารสารสารสารสารสารสารสารสารสารสารส							

Measure *n* times a side-channel leakage *s* function of *t* and consider the curves $s_1(t), s_2(t), \dots, s_n(t)$.

- targets a same operation on all curves but involving different data
- align vertically the curves on the targeted operation
- process the curves with statistical treatment

Statistical Treatment

Depending on some known and variable input of the algorithm and of a few bits of the secret input.

Statistical Treatment

Depending on some known and variable input of the algorithm and of a few bits of the secret input.

イロト イポト イヨト イヨト

Statistical Treatment

Depending on some known and variable input of the algorithm and of a few bits of the secret input.

イロト イポト イヨト イヨト

Original DPA/DEMA

• For each possible value (guess) :

Statistical Treatment

Depending on some known and variable input of the algorithm and of a few bits of the secret input.

- For each possible value (guess) :
 - $\,\,$ sort the curves into two sets S_0 and S_1 depending of some intermediate result

Statistical Treatment

Depending on some known and variable input of the algorithm and of a few bits of the secret input.

- For each possible value (guess) :
 - sort the curves into two sets S_0 and S_1 depending of some intermediate result
 - average and subtract : $< S_0 > < S_1 >$, and look for peaks

Statistical Treatment

Depending on some known and variable input of the algorithm and of a few bits of the secret input.

- For each possible value (guess) :
 - $\,\,$ sort the curves into two sets S_0 and S_1 depending of some intermediate result
 - average and subtract : $< S_0 > < S_1 >$, and look for peaks
- Iterate until peaks are found

Statistical Treatment

Example

イロト イロト イヨト イヨト

3

Introduction SPA DPA FA

Differential Analysis

Statistical Treatment

Example

イロト イロト イヨト イヨト 1

イロト イロト イヨト イヨト

3

Differential Analysis

Statistical Treatment

Example

C1 C2	P ₁ P ₂
÷	÷
C_N	P_N

Introduction SPA DPA FA

イロト イ団ト イヨト イヨトー

1

Differential Analysis

Statistical Treatment

Example

Guess : $k_i = 0$

 $\begin{array}{cc} C_1 & P_1 \\ C_2 & P_2 \end{array}$ \vdots \vdots C_N P_N

<ロト <回 > < 回 > < 回 > .

3

Differential Analysis

Statistical Treatment

Example

	Gues	ss : k _i =	= 0
C_1 C_2	P ₁ P ₂	$egin{array}{c} Q_1^i \ Q_2^i \ Q_2^i \end{array}$	
: 2 _N	: <i>P</i> N	: QNN	

Statistical Treatment

Example

 $\begin{array}{cccc} \operatorname{Guess}: k_{i} = 0 \\ C_{1} & P_{1} & Q_{1}^{i} & \rightarrow & S_{0} \\ C_{2} & P_{2} & Q_{2}^{i} & \rightarrow & S_{0} \\ \vdots & \vdots & \vdots & & \vdots \\ C_{N} & P_{N} & Q_{N}^{i} & \rightarrow & S_{1} \end{array}$

イロト イ団ト イヨト イヨトー

1

Statistical Treatment

Example

 $\begin{array}{cccc} \text{Guess}: k_i = 0 \\ C_1 & P_1 & Q_1^i & \rightarrow & S_0 \\ C_2 & P_2 & Q_2^i & \rightarrow & S_0 \\ \vdots & \vdots & \vdots & & \vdots \\ C_N & P_N & Q_N^i & \rightarrow & S_1 \end{array}$

Compute $< S_0 > - < S_1 > :$

イロト イ団ト イヨト イヨト 二日

Statistical Treatment

Example

$$\begin{array}{cccc} \text{Guess} & : k_{i} = 0 \\ C_{1} & P_{1} & Q_{1}^{i} & \rightarrow & S_{0} \\ C_{2} & P_{2} & Q_{2}^{i} & \rightarrow & S_{0} \\ \vdots & \vdots & \vdots & & \vdots \\ C_{N} & P_{N} & Q_{N}^{i} & \rightarrow & S_{1} \end{array}$$

$Compute < S_0 > - < S_1 > :$

イロト イポト イヨト イヨト

<ロト <回 > < 回 > < 回 > .

3

Differential Analysis

Statistical Treatment

Example

Guess : $k_i =$					
C ₁ C ₂	P ₁ P ₂	$egin{array}{c} Q_1^i \ Q_2^i \end{array}$			
: 2 _N	: P _N	: Q _N			

Statistical Treatment

Example

 $\begin{array}{cccc} \text{Guess}: k_i = 1 \\ C_1 & P_1 & Q_1^i & \rightarrow & S_1 \\ C_2 & P_2 & Q_2^i & \rightarrow & S_0 \\ \vdots & \vdots & \vdots & & \vdots \\ C_N & P_N & Q_N^i & \rightarrow & S_0 \end{array}$

イロト イ団ト イヨト イヨトー

1

Statistical Treatment

Example

イロト イ団ト イヨト イヨトー

1

Statistical Treatment

Example

イロト イ団ト イヨト イヨトー 1

Statistical Treatment

Depending on some known and variable input of the algorithm and of a few bits of the secret input (as DPA).

イロト イポト イヨト イヨト

CPA/CEMA

Statistical Treatment

Depending on some known and variable input of the algorithm and of a few bits of the secret input (as DPA).

イロト イ押ト イヨト イヨト

CPA/CEMA

• For each possible value (guess) :

Statistical Treatment

Depending on some known and variable input of the algorithm and of a few bits of the secret input (as DPA).

CPA/CEMA

- For each possible value (guess) :
 - compute correlation curves between s_i and HW of some intermediate result depending on the guess

イロト イポト イヨト イヨト
Differential Analysis

Statistical Treatment

Depending on some known and variable input of the algorithm and of a few bits of the secret input (as DPA).

CPA/CEMA

- For each possible value (guess) :
 - compute correlation curves between s_i and HW of some intermediate result depending on the guess

- average the correlation curves and apply a threshold
- Iterate until the threshold is reached

Outline

Elliptic Curve Cryptograph

Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

3 Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

4 Conclusion

Introduction SPA DPA FA

Fault Attacks on Scalar Multiplication

Introduction SPA DPA FA

Fault Attacks on Scalar Multiplication

• Inject a fault : $x_P \leftarrow x_{P'}$

- Inject a fault : $x_P \leftarrow x_{P'}$
- Since *b* is not involved in the scalar multiplication, $P' \in \mathcal{E}'(\mathbb{F}_p)$, with $\mathcal{E}' : y^2 = x^3 + ax + b'$ and $b' = y_P^2 - x'_P^3 - ax'_P$

- Inject a fault : $x_P \leftarrow x_{P'}$
- Since *b* is not involved in the scalar multiplication, $P' \in \mathcal{E}'(\mathbb{F}_p)$, with $\mathcal{E}' : y^2 = x^3 + ax + b'$ and $b' = y_P^2 - x'_P^3 - ax'_P$

イロト イポト イヨト イヨト

• Then the scalar multiplication $Q' = k \cdot P'$ takes place on \mathcal{E}'

- Inject a fault : $x_P \leftarrow x_{P'}$
- Since *b* is not involved in the scalar multiplication, $P' \in \mathcal{E}'(\mathbb{F}_p)$, with $\mathcal{E}' : y^2 = x^3 + ax + b'$ and $b' = y_P^2 - x'_P^3 - ax'_P$
- Then the scalar multiplication $Q' = k \cdot P'$ takes place on \mathcal{E}'
- DLP for $Q' = k \cdot P'$ is easy to solve if $\operatorname{ord}_{\mathcal{E}'}(P')$ is small

- Inject a fault : $x_P \leftarrow x_{P'}$
- Since *b* is not involved in the scalar multiplication, $P' \in \mathcal{E}'(\mathbb{F}_p)$, with $\mathcal{E}' : y^2 = x^3 + ax + b'$ and $b' = y_P^2 - x'_P^3 - ax'_P$
- Then the scalar multiplication $Q' = k \cdot P'$ takes place on \mathcal{E}'
- DLP for $Q' = k \cdot P'$ is easy to solve if $\operatorname{ord}_{\mathcal{E}'}(P')$ is small
- Iterate and apply the chinese reminder theorem to recover *k*.

Outline

Elliptic Curve Cryptograph

Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

Outline

Elliptic Curve Cryptograph

Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

Countermeasures SSCA Countermeasures

DSCA Countermeasures FA Countermeasures

4 Conclusion

SSCA DSCA FA

Regular algorithms

- Regular algorithms
 - · Dummy curve operations : Double and Add Always [Coron, 1999]

- Regular algorithms
 - Dummy curve operations : Double and Add Always [Coron, 1999]

イロト イポト イヨト イヨト

Highly regular : Montgomery ladder [Montgomery, 1987]

- Regular algorithms
 - Dummy curve operations : Double and Add Always [Coron, 1999]

- Highly regular : Montgomery ladder [Montgomery, 1987]
- Unified formulas

- Regular algorithms
 - Dummy curve operations : Double and Add Always [Coron, 1999]

- Highly regular : Montgomery ladder [Montgomery, 1987]
- Unified formulas
 - · Homogeneous projective coordinates [Brier & Joye, 2002]

- Regular algorithms
 - Dummy curve operations : Double and Add Always [Coron, 1999]

- Highly regular : Montgomery ladder [Montgomery, 1987]
- Unified formulas
 - · Homogeneous projective coordinates [Brier & Joye, 2002]
 - · Specific curves formulas (Hessian, Edwards, etc.)

- Regular algorithms
 - Dummy curve operations : Double and Add Always [Coron, 1999]

- Highly regular : Montgomery ladder [Montgomery, 1987]
- Unified formulas
 - · Homogeneous projective coordinates [Brier & Joye, 2002]
 - · Specific curves formulas (Hessian, Edwards, etc.)
- Atomicity

- Regular algorithms
 - Dummy curve operations : Double and Add Always [Coron, 1999]

- Highly regular : Montgomery ladder [Montgomery, 1987]
- Unified formulas
 - · Homogeneous projective coordinates [Brier & Joye, 2002]
 - · Specific curves formulas (Hessian, Edwards, etc.)
- Atomicity
 - · Original ECC pattern [Chevallier et al., 2003]

- Regular algorithms
 - Dummy curve operations : Double and Add Always [Coron, 1999]

- Highly regular : Montgomery ladder [Montgomery, 1987]
- Unified formulas
 - · Homogeneous projective coordinates [Brier & Joye, 2002]
 - · Specific curves formulas (Hessian, Edwards, etc.)
- Atomicity
 - · Original ECC pattern [Chevallier et al., 2003]
 - Longa ECC patterns [Longa, 2007]

- Regular algorithms
 - Dummy curve operations : Double and Add Always [Coron, 1999]

- Highly regular : Montgomery ladder [Montgomery, 1987]
- Unified formulas
 - · Homogeneous projective coordinates [Brier & Joye, 2002]
 - · Specific curves formulas (Hessian, Edwards, etc.)
- Atomicity
 - Original ECC pattern [Chevallier et al., 2003]
 - · Longa ECC patterns [Longa, 2007]
 - Improved ECC pattern [Giraud and Verneuil, 2010]

イロト イポト イヨト イヨト

For *i* from $\ell - 1$ to 0 do $Q \leftarrow 2Q$ If $k_i = 1$ then $Q \leftarrow Q + P$ Else $T \leftarrow Q + P$

Return Q

 $\textit{Q},\textit{T} \leftarrow \textit{O}$

For *i* from $\ell - 1$ to 0 do $Q \leftarrow 2Q$ If $k_i = 1$ then $Q \leftarrow Q + P$ Else $T \leftarrow Q + P$

Return Q

 $\textit{Q},\textit{T} \leftarrow \textit{O}$

For *i* from $\ell - 1$ to 0 do $Q \leftarrow 2Q$ If $k_i = 1$ then $Q \leftarrow Q + P$ Else $T \leftarrow Q + P$

Return Q

On average :

 $\ell \cdot dbl + \ell \cdot add$

Double & add always

 $\boldsymbol{Q}, \boldsymbol{T} \leftarrow \boldsymbol{\mathcal{O}}$

For *i* from $\ell - 1$ to 0 do $Q \leftarrow 2Q$ If $k_i = 1$ then $Q \leftarrow Q + P$ Else $T \leftarrow Q + P$

Return Q

On average :

 $\ell \cdot dbl + \ell \cdot add$

Prone to safe errors.

Montgomery ladder

 $\begin{array}{l} Q_1 \leftarrow P\\ Q_2 \leftarrow 2P\\ \text{For } i \text{ from } I-2 \text{ to } 0 \text{ do}\\ Q_{1-k_i} \leftarrow Q_1+Q_2\\ Q_{k_i} \leftarrow 2Q_i\\ \text{Return } Q_1 \end{array}$

Montgomery ladder

 $\begin{array}{l} Q_1 \leftarrow P \\ Q_2 \leftarrow 2P \\ \text{For } i \text{ from } I-2 \text{ to } 0 \text{ do} \\ Q_{1-k_i} \leftarrow Q_1 + Q_2 \\ Q_{k_i} \leftarrow 2Q_i \end{array}$

Return Q1

Trick :

 Y_1 and Y_2 computation can be avoided.

- Brier & Joye, PKC 2002
- Izu & Takagi, PKC 2002
- Fischer et al., ePrint 2002

Homogeneous projective coordinates : 12M + 6S

- Homogeneous projective coordinates : 12M + 6S
- Edwards curves : 10M + 1S

- Homogeneous projective coordinates : 12M + 6S
- Edwards curves : 10M + 1S in \mathbb{F}_{p^6} with standard curves :(

- Homogeneous projective coordinates : 12M + 6S
- Edwards curves : 10M + 1S in \mathbb{F}_{p^6} with standard curves :(
- Twisted Edwards curves : 9M + 1S

- Homogeneous projective coordinates : 12M + 6S
- Edwards curves : 10M + 1S in \mathbb{F}_{p^6} with standard curves :(
- Twisted Edwards curves : 9M + 1S in \mathbb{F}_{p^3} with standard curves :(

イロト イポト イヨト イヨト

Idea : always repeat the same pattern of operations

Idea : always repeat the same pattern of operations

Example : RSA (square & multiply)

• S, M, S, S, S, M, S, S, M, S, M, ...

Idea : always repeat the same pattern of operations

Example : RSA (square & multiply)

- S, M, S, S, S, M, S, S, M, S, M, ...
- M, ...

Idea : always repeat the same pattern of operations

Example : RSA (square & multiply)

- S, M, S, S, S, M, S, S, M, S, M, ...
- M, ...

 $\rightarrow \text{Cost}$

SSCA DSCA FA

Atomicity for Elliptic Curves

SSCA DSCA FA

Atomicity for Elliptic Curves

Principle

イロト イロト イヨト イヨト

1

V. Verneuil Elliptic Curve Cryptography on Embedded Devices

Principle

Always repeat the same pattern :

Principle

Always repeat the same pattern :

Multiplication
Addition
Negation
Addition

イロト イ理ト イヨト イヨト

Principle

Always repeat the same pattern :

- Multiplication
- Addition
- ► Negation
- Addition
- Multiplication

イロト イポト イヨト イヨト

- ► Addition
- NegationAddition

Principle

Always repeat the same pattern :

- Multiplication
- Addition
- ► Negation
- Addition
- Multiplication
- Addition
- ► Negation
- Addition

. . .

イロト イポト イヨト イヨト

SSCA DSCA FA

Atomicity for Elliptic Curves

Principle

Always repeat the same pattern :

- Multiplication
- Addition
- Negation
- Addition
- Multiplication
- ► Addition
- NegationAddition

No more squarings :(

イロト イポト イヨト イヨト

. . .

Principle

Always repeat the same pattern :

- Multiplication
- AdditionNegation
- Addition
- Multiplication
- ► Addition
- NegationAddition

No more squarings :(Many dummy additions/negations :(

イロト イ理ト イヨト イヨト

. . .

V. Verneuil Elliptic Curve Cryptography on Embedded Devices

V. Verneuil

イロト イロト イヨト イヨト

3

Other patterns

In [Longa, Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems over Prime Fields, 2007] are proposed 2 new patterns :

イロト イポト イヨト イヨト

Other patterns

In [Longa, Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems over Prime Fields, 2007] are proposed 2 new patterns :

イロト イポト イヨト イヨト

- Multiplication
- ► Negation
- Addition
- Multiplication
- ► Negation
- Addition
- Addition

Other patterns

In [Longa, Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems over Prime Fields, 2007] are proposed 2 new patterns :

- Multiplication
- ► Negation
- Addition
- Multiplication
- ► Negation
- Addition
- Addition

- ► Squaring
- Negation
- Addition
- Multiplication
- Negation
- Addition
- Addition

Full paper : [Giraud & Verneuil, *Atomicity Improvement for Elliptic Curve* Scalar Multiplication, CARDIS 2010]

Full paper : [Giraud & Verneuil, *Atomicity Improvement for Elliptic Curve* Scalar Multiplication, CARDIS 2010]

イロト イ理ト イヨト イヨト

Two steps

Full paper : [Giraud & Verneuil, *Atomicity Improvement for Elliptic Curve* Scalar Multiplication, CARDIS 2010]

イロト イ理ト イヨト イヨト

Two steps

· First define the largest atomic pattern possible

Full paper : [Giraud & Verneuil, *Atomicity Improvement for Elliptic Curve* Scalar Multiplication, CARDIS 2010]

イロト イポト イヨト イヨト

Two steps

- · First define the largest atomic pattern possible
- Then remove as many possible dummy operations

Full paper : [Giraud & Verneuil, *Atomicity Improvement for Elliptic Curve* Scalar Multiplication, CARDIS 2010]

イロト 不同 トイヨト イヨト

Two steps

- · First define the largest atomic pattern possible
- Then remove as many possible dummy operations

Advantages

Full paper : [Giraud & Verneuil, *Atomicity Improvement for Elliptic Curve* Scalar Multiplication, CARDIS 2010]

Two steps

- · First define the largest atomic pattern possible
- Then remove as many possible dummy operations

Advantages

Potentially applicable to every algorithm (no curve restriction)

イロト 不同 トイヨト イヨト

Full paper : [Giraud & Verneuil, *Atomicity Improvement for Elliptic Curve* Scalar Multiplication, CARDIS 2010]

Two steps

- First define the largest atomic pattern possible
- Then remove as many possible dummy operations

Advantages

- · Potentially applicable to every algorithm (no curve restriction)
- · Prevents from the SPA at a lower cost than classical atomicity

SSCA DSCA FA

Atomic Joye's Multiplication

Best pattern

	Add. 1	Add. 2	Dbl.
Sq.	$\begin{bmatrix} R_1 \leftarrow Z_2^2 \end{bmatrix}$	$\begin{bmatrix} R_1 \leftarrow R_6^2 \end{bmatrix}$	$\begin{bmatrix} R_1 \leftarrow X_1^2 \end{bmatrix}$
Add.	*	*	$R_2 \leftarrow Y_1 + Y_1$
Mult.	$R_2 \leftarrow Y_1 \cdot Z_2$	$R_4 \leftarrow R_5 \cdot R_1$	$Z_2 \leftarrow R_2 \cdot Z_1$
Add.	*	*	$R_{\overline{4}} \leftarrow R_{\overline{1}} + R_{1}$
Mult.	$R_5 \leftarrow Y_2 \cdot Z_1$	$R_5 \leftarrow R_1 \cdot R_6$	$R_3 \leftarrow R_2 \cdot Y_1$
Add.	*	*	$R_6 \leftarrow R_3 + R_3$
Mult.	$R_3 \leftarrow R_1 \cdot R_2$	$R_1 \leftarrow Z_1 \cdot R_6$	$R_2 \leftarrow R_6 \cdot R_3$
Add.	*	*	$R_1 \leftarrow R_4 + R_1$
Add.	*	*	$R_1 \leftarrow R_1 + W_1$
Sq.	$B_4 \leftarrow Z_1^2$	$R_6 \leftarrow R_2^2$	$R_2 \leftarrow R_1^2$
Mult.	$R_2 \leftarrow R_5 \cdot R_4$	$Z_2 \leftarrow R_1 \cdot Z_2$	$B_{A} \leftarrow B_{G} \cdot X_{1}$
Add.	* 3 *	$B_1 \leftarrow B_4 + B_4$	$B_5 \leftarrow W_1 + W_1$
Sub.	$R_2 \leftarrow R_2 - R_2$	$R_6 \leftarrow R_6 - R_1$	$B_2 \leftarrow B_2 - B_4$
Mult.	$R_{5} \leftarrow R_{1} \cdot X_{1}$	$B_1 \leftarrow B_5 \cdot B_2$	$W_2 \leftarrow B_2 \cdot B_5$
Sub.	*	$X_2 \leftarrow B_6 - B_5$	$X_2 \leftarrow B_2 - B_4$
Sub.	*	$B_A \leftarrow B_A - X_2$	$Be \leftarrow B_A - X_2$
Mult.	$R_6 \leftarrow X_2 \cdot R_4$	$B_2 \leftarrow B_4 B_2$	$B_4 \leftarrow B_6 \cdot B_1$
Sub.	$R_6 \leftarrow R_6 - R_5$	$Y_3 \leftarrow R_3 - R_1$	$Y_2 \leftarrow R_4 - R_2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Elliptic Curve Cryptograph

Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

Countermeasures

SSCA Countermeasures DSCA Countermeasures FA Countermeasures

4 Conclusion

イロト イ団ト イヨト イヨト

• Scalar blinding : $k' = k + r \# \mathcal{E}(\mathbb{F}_p)$

- Scalar blinding : $k' = k + r \# \mathcal{E}(\mathbb{F}_p)$
- Point coordinates blinding : $(X : Y : Z) = (r^2 X : r^3 Y : rZ), r \neq 0$

イロト イ押ト イヨト イヨト

DPA/DEMA Protection

Classical countermeasures :

- Scalar blinding : $k' = k + r \# \mathcal{E}(\mathbb{F}_p)$
- Point coordinates blinding : $(X : Y : Z) = (r^2 X : r^3 Y : rZ), r \neq 0$

イロト イ押ト イヨト イヨト

• Random curve isomorphism :

$$a' \leftarrow r^{4}a$$

$$b' \leftarrow r^{6}b$$

$$P' \leftarrow (r^{2}X_{P}, r^{3}Y_{P}, rZ_{P})$$

$$Q \leftarrow (x_{Q'}/r^{2}, y_{Q'}/r^{3})$$

Outline

Elliptic Curve Cryptograph

Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms

2 Side-Channel Analysis

Introduction Simple Side-Channel Analysis Differential Side-Channel Analysis Fault Analysis

Countermeasures

SSCA Countermeasures DSCA Countermeasures

FA Countermeasures

4 Conclusion

イロト イヨト イヨト イヨト

イロト イポト イヨト イヨト

Redundancy, verification...

- Redundancy, verification...
- Verify that $P, Q \in \mathcal{E}(\mathbb{F}_p)$.
Outline

- Elliptic Curve Cryptograph
 - Generalities Protocols Points Representation and Formulas Scalar Multiplication Algorithms
- Side-Channel Analysis Introduction Simple Side-Channel Analysis
 - Differential Side-Channel Analys Fault Analysis
- 3 Countermeasures
 - SSCA Countermeasures DSCA Countermeasures FA Countermeasures

· Scalar multuplication efficiency has been extensively studied.

イロト イ団ト イヨト イヨト

- Scalar multuplication efficiency has been extensively studied.
- Edwards curve standardization ?

- · Scalar multuplication efficiency has been extensively studied.
- Edwards curve standardization?
- Research on side-channel attacks keeps progressing.

- · Scalar multuplication efficiency has been extensively studied.
- Edwards curve standardization?
- Research on side-channel attacks keeps progressing.
- · Using security models for proving the resistance against attacks?

Thank you for your attention !

Contact : vverneuil@insidefr.com www.math.u-bordeaux1.fr/~vverneui/

Additions Cost on a Chip

A/M \approx 0.2, S = A, and N/M \approx 0.1