Calculs de domaines fondamentaux de groupes arithmétiques II

Aurel Page encadré par John Voight

8 décembre 2010

Rappel

Soit F un corps TR/ATR, B une algèbre de quaternions fuchsienne/kleinienne sur F et $\mathcal O$ un ordre dans B. Alors $\Gamma(\mathcal O)=\mathcal O_1^\times/\{\pm 1\}$ est un groupe fuchsien/kleinéen de coaire/covolume finie, cocompact ssi B est une algèbre à division. On cherche à calculer un domaine de Dirichlet dans $\mathcal H^2/\mathcal H^3$ et une présentation pour ce groupe.

La boule unité \mathcal{B} est la boule ouverte de centre 0 et de rayon 1 dans $\mathbb{R}^3\cong\mathbb{C}+\mathbb{R} j\subset\mathbb{H}$ muni de la métrique

$$ds^2 = \frac{4(dx^2 + dy^2 + dt^2)}{(1 - |w|^2)^2}$$

où
$$w = z + tj \in \mathcal{B}$$
, $z = x + iy$ and $|w|^2 = x^2 + y^2 + t^2 \le 1$.

Proposition

La boule unité est isométrique au demi-espace de Poincaré. On a une formule explicite pour l'action de $SL_2(\mathbb{C})$ sur \mathcal{B} et pour la distance entre deux éléments de \mathcal{B} .

<u>Dé</u>finition

La boule unité \mathcal{B} est la boule ouverte de centre 0 et de rayon 1 dans $\mathbb{R}^3 \cong \mathbb{C} + \mathbb{R} j \subset \mathbb{H}$ muni de la métrique

$$ds^2 = \frac{4(dx^2 + dy^2 + dt^2)}{(1 - |w|^2)^2}$$

où
$$w = z + tj \in \mathcal{B}$$
, $z = x + iy$ and $|w|^2 = x^2 + y^2 + t^2 \le 1$.

Proposition

La boule unité est isométrique au demi-espace de Poincaré. On a une formule explicite pour l'action de $SL_2(\mathbb{C})$ sur \mathcal{B} et pour la distance entre deux éléments de \mathcal{B} .

Supposons que $g \in \mathsf{SL}_2(\mathbb{C})$ ne fixe pas 0 dans \mathcal{B} . On pose alors

- $l(g) = \{ w \in \mathcal{B} \mid d(w,0) = d(g \cdot w,0) \};$
- $\operatorname{Ext}(g) = \{ w \in \mathcal{B} \mid d(w,0) < d(g \cdot w,0) \};$
- $Int(g) = \{ w \in \mathcal{B} \mid d(w,0) > d(g \cdot w,0) \};$

I(g) est la sphère isometrique de g. Pour $S \subset SL_2(\mathbb{C})$ dont aucun élément ne fixe 0, le domaine extérieur de S est

$$\operatorname{Ext}(S) = \bigcap_{g \in S} \operatorname{Ext}(g)$$

Supposons que $g \in \mathsf{SL}_2(\mathbb{C})$ ne fixe pas 0 dans \mathcal{B} . On pose alors

- $l(g) = \{ w \in \mathcal{B} \mid d(w,0) = d(g \cdot w,0) \};$
- $\operatorname{Ext}(g) = \{ w \in \mathcal{B} \mid d(w,0) < d(g \cdot w,0) \};$
- $Int(g) = \{ w \in \mathcal{B} \mid d(w,0) > d(g \cdot w,0) \};$

I(g) est la sphère isometrique de g. Pour $S\subset \operatorname{SL}_2(\mathbb C)$ dont aucun élément ne fixe 0, le domaine extérieur de S est

$$\operatorname{Ext}(S) = \bigcap_{g \in S} \operatorname{Ext}(g).$$

Soit $g \in SL_2(\mathbb{C})$ qui ne fixe pas 0 dans \mathcal{B} . Alors I(g) (resp. Ext(g),Int(g)) est l'intersection avec \mathcal{B} d'une sphère euclidienne (resp. de l'extérieur, de l'intérieur de cette sphère). On a une formule explicite pour le centre et le rayon de cette sphère.

Remarque

Si 0 a un stabilisateur trivial dans le groupe Γ, alors on a

$$D_0(\Gamma) = \operatorname{Ext}(\Gamma \setminus \{1\}).$$

Quitte à conjuguer Γ , on peut supposer que 0 a un stabilisateur trivial.

Soit $g \in SL_2(\mathbb{C})$ qui ne fixe pas 0 dans \mathcal{B} . Alors I(g) (resp. Ext(g),Int(g)) est l'intersection avec \mathcal{B} d'une sphère euclidienne (resp. de l'extérieur, de l'intérieur de cette sphère). On a une formule explicite pour le centre et le rayon de cette sphère.

Remarque

Si 0 a un stabilisateur trivial dans le groupe Γ , alors on a

$$D_0(\Gamma) = \operatorname{Ext}(\Gamma \setminus \{1\}).$$

Quitte à conjuguer Γ , on peut supposer que 0 a un stabilisateur trivial.

Remarque

Il existe un ensemble fini S tel que $\operatorname{Ext}(S) = \operatorname{Ext}(\Gamma \setminus \{1\})$.

Algorithme

Énumérer les éléments de Γ dans un ensemble fini S jusqu'à avoir

$$Vol(Ext(S)) = Covol(\Gamma).$$

Remarque

Il existe un ensemble fini S tel que $\operatorname{Ext}(S) = \operatorname{Ext}(\Gamma \setminus \{1\})$.

Algorithme

Énumérer les éléments de Γ dans un ensemble fini S jusqu'à avoir

$$Vol(Ext(S)) = Covol(\Gamma)$$
.

Lemme

Soit $\gamma \in \Gamma$ et $\mathcal{F} = \operatorname{Ext}(\Gamma \setminus \{1\})$. Alors $\gamma \cdot I(\gamma) = I(\gamma^{-1})$, et $I(\gamma)$ contribue à la frontière de \mathcal{F} si et seulement si c'est le cas de $I(\gamma^{-1})$.

Remarque

Le couplage d'un domaine extérieur est donné par les sphères isométriques.

Lemme

Soit $\gamma \in \Gamma$ et $\mathcal{F} = \operatorname{Ext}(\Gamma \setminus \{1\})$. Alors $\gamma \cdot I(\gamma) = I(\gamma^{-1})$, et $I(\gamma)$ contribue à la frontière de \mathcal{F} si et seulement si c'est le cas de $I(\gamma^{-1})$.

Remarque

Le couplage d'un domaine extérieur est donné par les sphères isométriques.

Soit $P \subset \mathcal{H}^2$ un polygone à n sommets, et d'angles intérieurs à chaque sommet $\alpha_1, \ldots, \alpha_n$. Alors l'aire de P est donnée par

$$\mu(P) = (n-2)\pi - (\alpha_1 + \cdots + \alpha_n).$$

L'intégrale

$$-\int_0^{\theta} \ln|2\sin u| du$$

converge pour $\theta \in \mathbb{R} \setminus \pi \mathbb{Z}$ et admet un prolongement continu à \mathbb{R} qui est impair et π -périodique.

Définition

Cette extension est appelée la fonction de Lobachevski $\mathcal{L}(heta)$.

L'intégrale

$$-\int_0^{\theta} \ln|2\sin u| du$$

converge pour $\theta \in \mathbb{R} \setminus \pi \mathbb{Z}$ et admet un prolongement continu à \mathbb{R} qui est impair et π -périodique.

Définition

Cette extension est appelée la fonction de Lobachevski $\mathcal{L}(\theta)$.

La fonction de Lobachevski admet un développement en série entière

$$\mathcal{L}(\theta) = \theta \left(1 - \ln(2\theta) + \sum_{n=1}^{\infty} \frac{2^{2n} |B_{2n}|}{2n(2n+1)!} \theta^{2n} \right)$$

où les B_n sont les nombres de Bernoulli définis par

$$\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!} \cdot$$

Soit $T_{\alpha,\gamma}$ le tétraèdre de \mathcal{H}^3 qui possède un sommet en ∞ et les autres sommets A,B,C sur la demi-sphère unité, tels qu'ils se projettent verticalement dans \mathbb{C} sur A',B',C' avec A'=0, formant un triangle euclidien ayant pour angles $\frac{\pi}{2}$ en B' et α en A', et tel que l'angle le long de BC est γ . Alors $T_{\alpha,\gamma}$ est unique à isométrie près et on a

$$\mathsf{Vol}(\mathcal{T}_{\alpha,\gamma}) = \frac{1}{4} \left[\mathcal{L}(\alpha + \gamma) + \mathcal{L}(\alpha - \gamma) + 2\mathcal{L}\left(\frac{\pi}{2} - \alpha\right) \right].$$

Remarque

Tout polyèdre P peut être décomposé en une somme algébrique de tétraèdres $T_{\alpha,\alpha}$.

Soit $T_{\alpha,\gamma}$ le tétraèdre de \mathcal{H}^3 qui possède un sommet en ∞ et les autres sommets A,B,C sur la demi-sphère unité, tels qu'ils se projettent verticalement dans \mathbb{C} sur A',B',C' avec A'=0, formant un triangle euclidien ayant pour angles $\frac{\pi}{2}$ en B' et α en A', et tel que l'angle le long de BC est γ . Alors $T_{\alpha,\gamma}$ est unique à isométrie près et on a

$$\mathsf{Vol}(\mathcal{T}_{\alpha,\gamma}) = \frac{1}{4} \left[\mathcal{L}(\alpha + \gamma) + \mathcal{L}(\alpha - \gamma) + 2\mathcal{L}\left(\frac{\pi}{2} - \alpha\right) \right].$$

Remarque

Tout polyèdre P peut être décomposé en une somme algébrique de tétraèdres $T_{\alpha,\gamma}$.

Soit
$$m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, posons invrad $(m) = \left| c + \overline{b} \right|^2 + \left| d - \overline{a} \right|^2$.
Pour $\gamma \in \operatorname{SL}_2(\mathbb{C})$ tel que $\gamma \cdot 0 \neq 0$, soit $\operatorname{rad}(\gamma)$ le rayon de $\operatorname{I}(\gamma)$.

Proposition

Soit $\rho: \mathcal{O} \hookrightarrow \mathcal{M}_2(\mathbb{C})$ le plongement usuel. La norme réduite absolue $Q: B \to \mathbb{R}$ définie par

$$Q(x) = \operatorname{invrad}(\rho(x)) + \operatorname{tr}_{F/\mathbb{Q}}(\operatorname{nrd}(x))$$
 pour tout $x \in B$

donne à O une structure de réseau, et on a

pour tout
$$x \in \mathcal{O}_1^{\times}$$
, $Q(x) = \frac{4}{\mathsf{rad}(\rho(x))^2} + n$.

Soit
$$m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, posons invrad $(m) = \left| c + \overline{b} \right|^2 + \left| d - \overline{a} \right|^2$.
Pour $\gamma \in \operatorname{SL}_2(\mathbb{C})$ tel que $\gamma \cdot 0 \neq 0$, soit rad (γ) le rayon de $\operatorname{I}(\gamma)$.

Proposition

Soit $\rho: \mathcal{O} \hookrightarrow \mathcal{M}_2(\mathbb{C})$ le plongement usuel. La norme réduite absolue $Q: B \to \mathbb{R}$ définie par

$$Q(x) = \operatorname{invrad}(\rho(x)) + \operatorname{tr}_{F/\mathbb{Q}}(\operatorname{nrd}(x))$$
 pour tout $x \in B$

donne à O une structure de réseau, et on a

pour tout
$$x \in \mathcal{O}_1^{\times}$$
, $Q(x) = \frac{4}{\operatorname{rad}(\rho(x))^2} + n$.

Soit Γ un groupe fuchsien/kleinén et $S \subset \Gamma$. Un point $z \in \mathcal{B}$ est S-réduit si pour tout $g \in S$, on a $d(z,0) \leq d(g \cdot z,0)$, i.e. si $z \in \overline{\mathsf{Ext}(S)}$.

Algorithme

Entrée : $z \in \mathcal{B}$.

Soit z'=z. Si $d(g\cdot z',0)< d(z',0)$ pour un $g\in S$, alors

faire $z' = g \cdot z'$ et répéter.

Sortie : $z' \in \mathcal{B}$, S-réduit et $\delta \in \langle S \rangle$ t.q. $z' = \delta \cdot z$.

Soit Γ un groupe fuchsien/kleinén et $S \subset \Gamma$. Un point $z \in \mathcal{B}$ est S-réduit si pour tout $g \in S$, on a $d(z,0) \leq d(g \cdot z,0)$, i.e. si $z \in \overline{\mathsf{Ext}(S)}$.

Algorithme

Entrée : $z \in \mathcal{B}$.

Soit z' = z. Si $d(g \cdot z', 0) < d(z', 0)$ pour un $g \in S$, alors

faire $z' = g \cdot z'$ et répéter.

Sortie : $z' \in \mathcal{B}$, S-réduit et $\delta \in \langle S \rangle$ t.g. $z' = \delta \cdot z$.

Si un point z a un stabilisateur trivial, alors l'application orbitale $\gamma \mapsto \gamma \cdot z$ est une bijection.

Définition

Soit Γ un groupe fuchsien/kleinéen, $S \subset \Gamma$ et $z \in \mathcal{B}$. Un élément $\gamma \in \Gamma$ est (S,z)-réduit si $\gamma \cdot z$ est S-réduit, i.e. si $\gamma \cdot z \in \operatorname{Ext}(S)$. On note $\operatorname{Red}_S(\gamma;z)$ l'élément réduit calculé par l'algorithme précédent, et simplement $\operatorname{Red}_S(\gamma) = \operatorname{Red}_S(\gamma;0)$.

Proposition

Si un point z a un stabilisateur trivial, alors l'application orbitale $\gamma \mapsto \gamma \cdot z$ est une bijection.

Définition

Soit Γ un groupe fuchsien/kleinéen, $S \subset \Gamma$ et $z \in \mathcal{B}$. Un élément $\gamma \in \Gamma$ est (S,z)-réduit si $\gamma \cdot z$ est S-réduit, i.e. si $\gamma \cdot z \in \operatorname{Ext}(S)$. On note $\operatorname{Red}_S(\gamma;z)$ l'élément réduit calculé par l'algorithme précédent, et simplement $\operatorname{Red}_S(\gamma) = \operatorname{Red}_S(\gamma;0)$.

Proposition

Si un point z a un stabilisateur trivial, alors l'application orbitale $\gamma\mapsto\gamma\cdot z$ est une bijection.

Définition

Soit Γ un groupe fuchsien/kleinéen, $S \subset \Gamma$ et $z \in \mathcal{B}$. Un élément $\gamma \in \Gamma$ est (S,z)-réduit si $\gamma \cdot z$ est S-réduit, i.e. si $\gamma \cdot z \in \overline{\operatorname{Ext}(S)}$. On note $\operatorname{Red}_S(\gamma;z)$ l'élément réduit calculé par l'algorithme précédent, et simplement $\operatorname{Red}_S(\gamma) = \operatorname{Red}_S(\gamma;0)$.

Proposition

Si un point z a un stabilisateur trivial, alors l'application orbitale $\gamma \mapsto \gamma \cdot z$ est une bijection.

Définition

Soit Γ un groupe fuchsien/kleinéen, $S \subset \Gamma$ et $z \in \mathcal{B}$. Un élément $\gamma \in \Gamma$ est (S,z)-réduit si $\gamma \cdot z$ est S-réduit, i.e. si $\gamma \cdot z \in \overline{\operatorname{Ext}(S)}$. On note $\operatorname{Red}_S(\gamma;z)$ l'élément réduit calculé par l'algorithme précédent, et simplement $\operatorname{Red}_S(\gamma) = \operatorname{Red}_S(\gamma;0)$.

Proposition

faire

- Énumérer des éléments de Γ dans S
- (S,0)-réduire les éléments de S
- Pour tout $z \in I(\gamma)$ t.q. $\gamma \cdot z \notin \overline{Ext(S)}$, ajouter $Red_S(\gamma; z)$ à S

jusqu'à ce que Vol(Ext(S)) = Covol(Γ)

faire

- Énumérer des éléments de Γ dans S
- (S,0)-réduire les éléments de S
- Pour tout $z \in I(\gamma)$ t.q. $\gamma \cdot z \notin \overline{Ext(S)}$, ajouter $Red_S(\gamma; z)$ à S

jusqu'à ce que Vol(Ext(S)) = Covol(Γ)

faire

- Énumérer des éléments de Γ dans S
- (S,0)-réduire les éléments de S
- Pour tout $z \in I(\gamma)$ t.q. $\gamma \cdot z \notin \overline{Ext(S)}$, ajouter $Red_S(\gamma; z)$ à S

 $jusqu'à ce que Vol(Ext(S)) = Covol(\Gamma)$

faire

- Énumérer des éléments de Γ dans S
- (S,0)-réduire les éléments de S
- Pour tout $z \in I(\gamma)$ t.q. $\gamma \cdot z \notin \overline{Ext(S)}$, ajouter $Red_S(\gamma; z)$ à S

jusqu'à ce que $Vol(Ext(S)) = Covol(\Gamma)$

Algorithme modifié :

- ajout d'une étape technique;
- pas d'énumération;
- S initial donné en entrée;
- test de volume → test purement géometrique.

Proposition

Si l'algorithme modifié termine, alors la sortie est un domaine de Dirichlet pour $\langle S \rangle$. Si à une étape de l'algorithme modifié, $\operatorname{Ext}(S)$ est compact, alors l'algorithme modifié termine.

Algorithme modifié :

- ajout d'une étape technique;
- pas d'énumération;
- S initial donné en entrée;
- test de volume → test purement géometrique.

Proposition

Si l'algorithme modifié termine, alors la sortie est un domaine de Dirichlet pour $\langle S \rangle$. Si à une étape de l'algorithme modifié, Ext(S) est compact, alors l'algorithme modifié termine.

Algorithme modifié :

- ajout d'une étape technique;
- pas d'énumération;
- S initial donné en entrée;
- test de volume → test purement géometrique.

Proposition

Si l'algorithme modifié termine, alors la sortie est un domaine de Dirichlet pour $\langle S \rangle$. Si à une étape de l'algorithme modifié, $\operatorname{Ext}(S)$ est compact, alors l'algorithme modifié termine.

Algorithme modifié :

- ajout d'une étape technique;
- pas d'énumération;
- S initial donné en entrée;
- test de volume → test purement géometrique.

Proposition

Si l'algorithme modifié termine, alors la sortie est un domaine de Dirichlet pour $\langle S \rangle$. Si à une étape de l'algorithme modifié, $\operatorname{Ext}(S)$ est compact, alors l'algorithme modifié termine.

Application : calcul de groupes d'unités dans une algèbre de quaternions.

Par exemple pour $\mathcal O$ maximal on utilise

$$1 \longrightarrow \mathbb{Z}_{\textit{F}}\mathcal{O}_{1}^{\times} \longrightarrow \mathcal{O}^{\times} \xrightarrow{\mathsf{nrd}} \mathbb{Z}_{\textit{F},+}^{\times}/\mathbb{Z}_{\textit{F}}^{\times 2} \longrightarrow 1$$

où
$$\mathbb{Z}_{F,+}^{\times} = \{u \in \mathbb{Z}_F^{\times} \mid v(u) > 0 \text{ pour tout place } v \text{ réelle ramifiée}\}.$$

Applications du cas fuchsien :

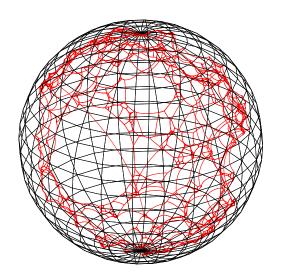
- Calcul du modèle complexe d'une variété de Shimura;
- Calcul de formes modulaires de Hilbert par correspondance de Jacquet-Langlands.

Applications du cas kleinéen :

- Expérimentation sur les variétés hyperboliques de dimension 3;
- Calcul de formes automorphes pour GL_2 sur des corps non totalement réels.

Soit $F=\mathbb{Q}(\sqrt[3]{11})$ de discriminant -3267, $\alpha=\sqrt[3]{11}$, $B=\left(\frac{-2,-4\alpha^2-\alpha-2}{F}\right)$, $\mathcal O$ un ordre maximal dans B. L'algèbre de quaternions B est ramifiée exactement à la place réelle de F et en $\mathfrak p_2$ où $N(\mathfrak p_2)=2$. Le groupe $\Gamma(\mathcal O)$ est de covolume fini $Covol(\Gamma)\approx 206.391784$, et Γ admet une présentation avec 17 générateurs et 32 relations.

Le polyèdre fondamental calculé a 647 faces et 1877 arêtes. Dans le réseau, 80 millions de vecteurs ont été énumérés, et 300 d'entre eux étaient de norme 1.



Merci!