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RSA (Rivest-Shamir-Adleman)

A Method for Obtaining Digital
Signatures and Public-Key

Cryptosystems, 1978.

Key generation

I pick at random two primes p and q,
and compute n = p×q

I choose e and compute d such that:
e×d ≡ 1 mod (p−1)(q−1)

Public key
= {n,e}

Private key
= {p,q,d}
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RSA (Rivest-Shamir-Adleman)

Encryption / Decryption

To encrypt a message m:
c = me mod n

To decrypt c:
m = cd mod n

Security assumption

Given = {n,e}, how to recover d = e−1 mod (p−1)(q−1) ?

Factorize n to recover p and q !
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Elliptic Curve Cryptography

Independently introduced by Koblitz and Miller in 1985.
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Elliptic Curve Equation

Let K be a field, and E /K an elliptic curve.
Then the set of K-rational points E (K)⊂ P2(K)
is an abelian group, with neutral element O.

On a field K= Fp, p > 3, it has an affine equation:

y2 = x3 +ax +b
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Elliptic Curve Group Law

Let P1 = (x1,y1) and P2 = (x2,y2),
P1,P2 6= O.

P3 = P1 +P2 is given by:{
x3 = m2−x1−x2
y3 = m (x1−x3)−y1

•
P1

•
P2

•−P3

•P3

O

•
P1 = P2 •

−P3

•P3

O

K= R
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Scalar Multiplication

Given a point P in E (K) and a positive integer d ,
we denote dP = P +P + · · ·+P︸ ︷︷ ︸

d times

.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given P in E (K) and dP, 1≤ d ≤#E (K),
find d ?

Much harder than or factoring (which can be solved
in subexponential time).
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Cryptosystems Comparison

Estimated equivalent key lengths for ECC and RSA:

Security level 80 112 128 192 256
ECC 160 224 256 384 512
RSA 1024 2048 3072 8192 15360

z Very interesting in embedded devices having limited resources.
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Embedded Devices Constraints

Efficiency

I Most transactions have to take less than 500 ms
I Small amount of RAM
I Very low power (hence low frequency) for contactless devices

Arithmetic optimizations

I Exponentiation / scalar multiplication
I Group operations and point representation
I Modular arithmetic
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Fp Operations Theoretical Cost

Expensive operations

I Inversion (I)

Significant operations

I Multiplication (M)
I Squaring (S, S/M ≈ 0.8)

Negligible operations

I Addition (A)
I Subtraction (A)
I Negation (N)

For ECC keylengths,
A/M ≈ 0.2 and N/M ≈ 0.1
on most smart cards.
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Exponentiation Algorithms
Square and multiply

Left-to-right Right-to-left

md = md0 ×
(

md1 ×
(
. . .
(
md`−1

)2
. . .
)2
)2

md = md`−12`−1 ×md`−22`−2 × . . .×md0

Input: m,n,d ∈ N
Output: md mod n
a← 1
for i = `−1 to 0 do

a← a2 mod n
if di = 1 then

a← a×m mod n
return a

Input: m,n,d ∈ N
Output: md mod n
a← 1 ; b←m
for i = 0 to `−1 do

if di = 1 then
a← a×b mod n

b← b2 mod n
return a
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Scalar Multiplication Algorithms
Double and add

Left-to-right Right-to-left

dP = d0P + 2(d1P + 2(. . .+ 2(d`−1P) . . .)) dP = d`−12`−1P + d`−22`−2P + . . .+ d0P

Input: P ∈ E (K),d ∈ N
Output: dP
R← O
for i = `−1 to 0 do

R← 2R
if di = 1 then

R← R+P
return R

Input: P ∈ E (K),d ∈ N
Output: dP
R← O ; Q← P
for i = 0 to `−1 do

if di = 1 then
R← R+Q

Q← 2Q
return R
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Refined Algorithms

Non-Adjacent Form (NAF)

Signed representation minimizing the number of non-zero digits (1/3
vs 1/2).
Hence minimize the number of additions.

Sliding window algorithms

Precompute 3P,5P, . . . to process several scalar bits at a time.
Can be combined with the NAF method.

Co-Z Addition

Euclidean Addition Chains [Meloni, WAIFI 2007]
Co-Z binary ladder [Goundar, Joye & Miyaji, CHES 2010]
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Side-Channel Analysis Framework

Device

Outputs

Cryptographic
operation

Inputs

Outputs

Secret
key

leakages
Measurements

Model &
assumptions

Information on
secret key
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Simple Side-Channel Analysis (SSCA)
Left-to-right square & multiply

Side-channel leakage: power, EM, etc.

The whole exponent may be recovered using a single trace.
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Regular Exponentiation
Left-to-right algorithms

Square & multiply:

. . .

Square & multiply always:

. . .

Montgomery ladder:

. . .

V. Verneuil - Elliptic Curve Cryptography and Security of Embedded Devices 17 / 64



Regular Exponentiation
Left-to-right algorithms

Square & multiply:

. . .

Square & multiply always:

. . .

Montgomery ladder:

. . .

V. Verneuil - Elliptic Curve Cryptography and Security of Embedded Devices 17 / 64



Regular Exponentiation
Left-to-right algorithms

Square & multiply:

. . .

Square & multiply always:

. . .

Montgomery ladder:

. . .

V. Verneuil - Elliptic Curve Cryptography and Security of Embedded Devices 17 / 64



Regular Exponentiation Algorithms

Left-to-right

“Montgomery ladder”

Input: m,n,d ∈ N
Output: md mod n

1: R0← 1
2: R1←m
3: for i = `−1 to 0 do
4: R1−di ← R0×R1 mod n
5: Rdi ← Rdi

2 mod n

6: return R0

Right-to-left

“Joye ladder”

Input: m,n,d ∈ N
Output: md mod n

1: R0← 1
2: R1←m
3: for i = 0 to `−1 do
4: R1−di ← R1−di

2 mod n
5: R1−di ← R1−di ×Rdi mod n

6: return R0
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Regular Scalar Multiplication
Left-to-right algorithms

Double & add:
. . .

Double & add always:

. . .

Montgomery ladders:

. . .
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Regular Scalar Multiplication Algorithms

Left-to-right

“Montgomery ladder”

Input: P ∈ E (K),d ∈ N
Output: dP

1: R0← O
2: R1← P
3: for i = `−1 to 0 do
4: R1−di ← R0 +R1
5: Rdi ← 2Rdi

6: return R0

Right-to-left

“Joye ladder”

Input: P ∈ E (K),d ∈ N
Output: dP

1: R0← O
2: R1← P
3: for i = 0 to `−1 do
4: R1−di ← 2R1−di
5: R1−di ← R1−di +Rdi

6: return R0
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Regular Atomic Exponentiation

Square & multiply:

. . .

Atomic multiply always:

. . .
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Regular Atomic Scalar Multiplication

Double & add:
. . .

Atomic add always (with a unified group addition):

. . .

Atomic scalar multiplication using a smaller pattern:

. . .

Dbl. Dbl. Add. Dbl. Add. . . .
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Leakage on Manipulated Data

Noise is generally too high to exploit this leakage directly /

z Many acquisitions are used to reduce noise influence
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Differential Analysis Principle

Measure N times a side-channel
leakage with different data involved
and consider the traces
T 1,T 2, . . . ,T n.

I align vertically the traces on
the targeted operation using
signal processing tools

I perform statistical treatment
between traces, known inputs
or outputs and a guess on a
few key bits

z Validate the guess or not

T 1

t t + ω

T 2

t t + ω...

T N

t t + ω
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Differential Side-Channel Analysis

Original method introduced in [Kocher, Jaffe & Jun, CRYPTO’99]
I Hamming weight leakage model
I Difference of means as a distinguisher

Correlation analysis introduced in [Brier, Clavier & Olivier, CHES
2004]
I Hamming weight/distance leakage model
I Pearson correlation factor as a distinguisher
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Countermeasures for RSA
Exponentiation

I Exponent blinding d ′ = d + r(p−1)(q−1)

I Message/ciphertext additive blinding m′ = m+ rn mod cn, r < c

I Message/ciphertext multiplicative blinding m′ = rem mod n,
result recovered as r−1(m′)d mod n
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Countermeasures for Scalar
Multiplication

From [Coron, CHES’99]:

I Scalar blinding d ′ = d + r#E (Fp)

I Base point projective coordinates blinding (r2X : r3Y : rZ )

I Input point blinding Q = d(P +R), result recovered as Q−S with
S = dR
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Our Contribution

I New atomic pattern for right-to-left scalar multiplication implementation

I Fastest implementation for standard curves considering addition cost
A/M ≥ 0.1

Theoretical comparison (S/M = 0.8, A/M = 0.2)

Previous right-to-left NAF atomic scalar multiplication: - 20 % (M/bit)

Best previous scalar multiplication (Co-Z Montgomery ladder (X :Z )-only):
- 3.6 % (M/bit)
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Atomic Right-to-Left Scalar Multiplication
Mixed coordinates

�


IMultiplication
I Addition
I Negation
I Addition

�


I Squaring
I Addition
I Negation
I Addition

Operations expression using the atomic pattern

Addition : ���������������� [11M+5S]
Doubling : �������� [3M+5S]

Extended pattern : ��������
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Atomic Right-to-Left Scalar Multiplication

Add. 1 Add. 2 Dbl.

ISq.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
ISq.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.



R1 ← Z2
2

?
?
?

R2 ← X1 ·R1
?
?
?

R1 ← R1 ·Z2
?
?
?

R3 ← Y1 ·R1
?
?
?

R1 ← Z1
2

?
?
?

R4 ← R1 ·X2
?

R4 ←−R4
R4 ← R2 + R4
R1 ← Z1 ·R1
?
?
?

R1 ← R1 ·Y2
?

R1 ←−R1
R1 ← R3 + R1



R6 ← R4
2

?
?
?

R5 ← Z1 ·Z2
?
?
?

Z3 ← R5 ·R4
?
?
?

R2 ← R2 ·R6
?

R1 ←−R1
?

R5 ← R1
2

?
R3 ←−R3
?

R4 ← R4 ·R6
R6 ← R5 + R4
R2 ←−R2
R6 ← R6 + R2
R3 ← R3 ·R4
X3 ← R2 + R6
?

R2 ← X3 + R2
R1 ← R1 ·R2
Y3 ← R3 + R1
?
?



R1 ← X1
2

R2 ← Y1 + Y1
?
?

Z2 ← R2 ·Z1
R4 ← R1 + R1
?
?

R3 ← R2 ·Y1
R6 ← R3 + R3
?
?

R2 ← R6 ·R3
R1 ← R4 + R1
?

R1 ← R1 + W1
R3 ← R1

2

?
?
?

R4 ← R6 ·X1
R5 ←W1 + W1
R4 ←−R4
R3 ← R3 + R4
W2 ← R2 ·R5
X2 ← R3 + R4
R2 ←−R2
R6 ← R4 + X2
R4 ← R6 ·R1
?

R4 ←−R4
Y2 ← R4 + R2
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Atomic Right-to-Left Scalar Multiplication
Add. 1 Add. 2

Dbl.

ISq.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
ISq.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.



R1 ← Z2
2

?
?
?

R2 ← X1 ·R1
?
?
?

R1 ← R1 ·Z2
?
?
?

R3 ← Y1 ·R1
?
?
?

R1 ← Z1
2

?
?
?

R4 ← R1 ·X2
?

R4 ←−R4
R4 ← R2 + R4
R1 ← Z1 ·R1
?
?
?

R1 ← R1 ·Y2
?

R1 ←−R1
R1 ← R3 + R1



R6 ← R4
2

?
?
?

R5 ← Z1 ·Z2
?
?
?

Z3 ← R5 ·R4
?
?
?

R2 ← R2 ·R6
?

R1 ←−R1
?

R5 ← R1
2

?
R3 ←−R3
?

R4 ← R4 ·R6
R6 ← R5 + R4
R2 ←−R2
R6 ← R6 + R2
R3 ← R3 ·R4
X3 ← R2 + R6
?

R2 ← X3 + R2
R1 ← R1 ·R2
Y3 ← R3 + R1
?
?



R1 ← X1
2

R2 ← Y1 + Y1
?
?

Z2 ← R2 ·Z1
R4 ← R1 + R1
?
?

R3 ← R2 ·Y1
R6 ← R3 + R3
?
?

R2 ← R6 ·R3
R1 ← R4 + R1
?

R1 ← R1 + W1
R3 ← R1

2

?
?
?

R4 ← R6 ·X1
R5 ←W1 + W1
R4 ←−R4
R3 ← R3 + R4
W2 ← R2 ·R5
X2 ← R3 + R4
R2 ←−R2
R6 ← R4 + X2
R4 ← R6 ·R1
?

R4 ←−R4
Y2 ← R4 + R2
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Atomic Right-to-Left Scalar Multiplication
Add. 1 Add. 2 Dbl.

ISq.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
ISq.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.



R1 ← Z2
2

?
?
?

R2 ← X1 ·R1
?
?
?

R1 ← R1 ·Z2
?
?
?

R3 ← Y1 ·R1
?
?
?

R1 ← Z1
2

?
?
?

R4 ← R1 ·X2
?

R4 ←−R4
R4 ← R2 + R4
R1 ← Z1 ·R1
?
?
?

R1 ← R1 ·Y2
?

R1 ←−R1
R1 ← R3 + R1



R6 ← R4
2

?
?
?

R5 ← Z1 ·Z2
?
?
?

Z3 ← R5 ·R4
?
?
?

R2 ← R2 ·R6
?

R1 ←−R1
?

R5 ← R1
2

?
R3 ←−R3
?

R4 ← R4 ·R6
R6 ← R5 + R4
R2 ←−R2
R6 ← R6 + R2
R3 ← R3 ·R4
X3 ← R2 + R6
?

R2 ← X3 + R2
R1 ← R1 ·R2
Y3 ← R3 + R1
?
?



R1 ← X1
2

R2 ← Y1 + Y1
?
?

Z2 ← R2 ·Z1
R4 ← R1 + R1
?
?

R3 ← R2 ·Y1
R6 ← R3 + R3
?
?

R2 ← R6 ·R3
R1 ← R4 + R1
?

R1 ← R1 + W1
R3 ← R1

2

?
?
?

R4 ← R6 ·X1
R5 ←W1 + W1
R4 ←−R4
R3 ← R3 + R4
W2 ← R2 ·R5
X2 ← R3 + R4
R2 ←−R2
R6 ← R4 + X2
R4 ← R6 ·R1
?

R4 ←−R4
Y2 ← R4 + R2
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Atomic Right-to-Left Scalar Multiplication
Add. 1 Add. 2 Dbl.

ISq.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
ISq.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.



R1 ← Z2
2

?
?
?

R2 ← X1 ·R1
?
?
?

R1 ← R1 ·Z2
?
?
?

R3 ← Y1 ·R1
?
?
?

R1 ← Z1
2

?
?
?

R4 ← R1 ·X2
?

R4 ←−R4
R4 ← R2 + R4
R1 ← Z1 ·R1
?
?
?

R1 ← R1 ·Y2
?

R1 ←−R1
R1 ← R3 + R1



R6 ← R4
2

?
?
?

R5 ← Z1 ·Z2
?
?
?

Z3 ← R5 ·R4
?
?
?

R2 ← R2 ·R6
?

R1 ←−R1
?

R5 ← R1
2

?
R3 ←−R3
?

R4 ← R4 ·R6
R6 ← R5 + R4
R2 ←−R2
R6 ← R6 + R2
R3 ← R3 ·R4
X3 ← R2 + R6
?

R2 ← X3 + R2
R1 ← R1 ·R2
Y3 ← R3 + R1
?
?



R1 ← X1
2

R2 ← Y1 + Y1
?
?

Z2 ← R2 ·Z1
R4 ← R1 + R1
?
?

R3 ← R2 ·Y1
R6 ← R3 + R3
?
?

R2 ← R6 ·R3
R1 ← R4 + R1
?

R1 ← R1 + W1
R3 ← R1

2

?
?
?

R4 ← R6 ·X1
R5 ←W1 + W1
R4 ←−R4
R3 ← R3 + R4
W2 ← R2 ·R5
X2 ← R3 + R4
R2 ←−R2
R6 ← R4 + X2
R4 ← R6 ·R1
?

R4 ←−R4
Y2 ← R4 + R2
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Atomic Right-to-Left Scalar Multiplication
Add. 1 Add. 2 Dbl.

ISq.
IAdd.

INeg.
IAdd.

IMult.
IAdd.

INeg.
IAdd.

IMult.
IAdd.

INeg.
IAdd.

IMult.
IAdd.
INeg.
IAdd.
ISq.

IAdd.

INeg.

IAdd.

IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.
IMult.
IAdd.
INeg.
IAdd.



R1 ← Z2
2

?

R2 ← X1 ·R1
?

R1 ← R1 ·Z2
?

R3 ← Y1 ·R1
?
?
?

R1 ← Z1
2

?

R4 ← R1 ·X2
?

R4 ←−R4
R4 ← R2 + R4
R1 ← Z1 ·R1
?
?
?

R1 ← R1 ·Y2
?

R1 ←−R1
R1 ← R3 + R1



R6 ← R4
2

?

R5 ← Z1 ·Z2
?

Z3 ← R5 ·R4
?

R2 ← R2 ·R6
?

R1 ←−R1
?

R5 ← R1
2

R3 ←−R3

R4 ← R4 ·R6
R6 ← R5 + R4
R2 ←−R2
R6 ← R6 + R2
R3 ← R3 ·R4
X3 ← R2 + R6
?

R2 ← X3 + R2
R1 ← R1 ·R2
Y3 ← R3 + R1
?
?



R1 ← X1
2

R2 ← Y1 + Y1

Z2 ← R2 ·Z1
R4 ← R1 + R1

R3 ← R2 ·Y1
R6 ← R3 + R3

R2 ← R6 ·R3
R1 ← R4 + R1
?

R1 ← R1 + W1
R3 ← R1

2

?

R4 ← R6 ·X1
R5 ←W1 + W1
R4 ←−R4
R3 ← R3 + R4
W2 ← R2 ·R5
X2 ← R3 + R4
R2 ←−R2
R6 ← R4 + X2
R4 ← R6 ·R1
?

R4 ←−R4
Y2 ← R4 + R2
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Atomic Right-to-Left Scalar Multiplication

Add. 1 Add. 2 Dbl.
Sq.
Add.
Mult.
Add.
Mult.
Add.
Mult.
Add.
Add.
Sq.
Mult.
Add.
Sub.
Mult.
Sub.
Sub.
Mult.
Sub.



R1 ← Z2
2

?
R2 ← Y1 ·Z2
?

R5 ← Y2 ·Z1
?

R3 ← R1 ·R2
?
?

R4 ← Z1
2

R2 ← R5 ·R4
?

R2 ← R2 −R3
R5 ← R1 ·X1
?
?

R6 ← X2 ·R4
R6 ← R6 −R5



R1 ← R6
2

?
R4 ← R5 ·R1
?

R5 ← R1 ·R6
?

R1 ← Z1 ·R6
?
?

R6 ← R2
2

Z3 ← R1 ·Z2
R1 ← R4 + R4
R6 ← R6 −R1
R1 ← R5 ·R3
X3 ← R6 −R5
R4 ← R4 −X3
R3 ← R4 ·R2
Y3 ← R3 −R1



R1 ← X1
2

R2 ← Y1 + Y1
Z2 ← R2 ·Z1
R4 ← R1 + R1
R3 ← R2 ·Y1
R6 ← R3 + R3
R2 ← R6 ·R3
R1 ← R4 + R1
R1 ← R1 + W1
R3 ← R1

2

R4 ← R6 ·X1
R5 ←W1 + W1
R3 ← R3 −R4
W2 ← R2 ·R5
X2 ← R3 −R4
R6 ← R4 −X2
R4 ← R6 ·R1
Y2 ← R4 −R2

8 multiplications→ 6 multiplications + 2 squarings

16 additions→ 6 additions + 4 subtractions

8 negations→ 0
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Atomic Right-to-Left Scalar Multiplication

Add. 1 Add. 2 Dbl.
Sq.
Add.
Mult.
Add.
Mult.
Add.
Mult.
Add.
Add.
Sq.
Mult.
Add.
Sub.
Mult.
Sub.
Sub.
Mult.
Sub.



R1 ← Z2
2

?
R2 ← Y1 ·Z2
?

R5 ← Y2 ·Z1
?

R3 ← R1 ·R2
?
?

R4 ← Z1
2

R2 ← R5 ·R4
?

R2 ← R2 −R3
R5 ← R1 ·X1
?
?

R6 ← X2 ·R4
R6 ← R6 −R5



R1 ← R6
2

?
R4 ← R5 ·R1
?

R5 ← R1 ·R6
?

R1 ← Z1 ·R6
?
?

R6 ← R2
2

Z3 ← R1 ·Z2
R1 ← R4 + R4
R6 ← R6 −R1
R1 ← R5 ·R3
X3 ← R6 −R5
R4 ← R4 −X3
R3 ← R4 ·R2
Y3 ← R3 −R1



R1 ← X1
2

R2 ← Y1 + Y1
Z2 ← R2 ·Z1
R4 ← R1 + R1
R3 ← R2 ·Y1
R6 ← R3 + R3
R2 ← R6 ·R3
R1 ← R4 + R1
R1 ← R1 + W1
R3 ← R1

2

R4 ← R6 ·X1
R5 ←W1 + W1
R3 ← R3 −R4
W2 ← R2 ·R5
X2 ← R3 −R4
R6 ← R4 −X2
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Atomic Right-to-Left Scalar Multiplication

Add. 1 Add. 2 Dbl.
Sq.
Add.
Mult.
Add.
Mult.
Add.
Mult.
Add.
Add.
Sq.
Mult.
Add.
Sub.
Mult.
Sub.
Sub.
Mult.
Sub.



R1 ← Z2
2

?
R2 ← Y1 ·Z2
?

R5 ← Y2 ·Z1
?

R3 ← R1 ·R2
?
?

R4 ← Z1
2

R2 ← R5 ·R4
?

R2 ← R2 −R3
R5 ← R1 ·X1
?
?

R6 ← X2 ·R4
R6 ← R6 −R5



R1 ← R6
2

?
R4 ← R5 ·R1
?

R5 ← R1 ·R6
?

R1 ← Z1 ·R6
?
?

R6 ← R2
2

Z3 ← R1 ·Z2
R1 ← R4 + R4
R6 ← R6 −R1
R1 ← R5 ·R3
X3 ← R6 −R5
R4 ← R4 −X3
R3 ← R4 ·R2
Y3 ← R3 −R1



R1 ← X1
2

R2 ← Y1 + Y1
Z2 ← R2 ·Z1
R4 ← R1 + R1
R3 ← R2 ·Y1
R6 ← R3 + R3
R2 ← R6 ·R3
R1 ← R4 + R1
R1 ← R1 + W1
R3 ← R1

2

R4 ← R6 ·X1
R5 ←W1 + W1
R3 ← R3 −R4
W2 ← R2 ·R5
X2 ← R3 −R4
R6 ← R4 −X2
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Atomic Right-to-Left Scalar Multiplication

Add. 1 Add. 2 Dbl.
Sq.
Add.
Mult.
Add.
Mult.
Add.
Mult.
Add.
Add.
Sq.
Mult.
Add.
Sub.
Mult.
Sub.
Sub.
Mult.
Sub.



R1 ← Z2
2

?
R2 ← Y1 ·Z2
?

R5 ← Y2 ·Z1
?

R3 ← R1 ·R2
?
?

R4 ← Z1
2

R2 ← R5 ·R4
?

R2 ← R2 −R3
R5 ← R1 ·X1
?
?

R6 ← X2 ·R4
R6 ← R6 −R5



R1 ← R6
2

?
R4 ← R5 ·R1
?

R5 ← R1 ·R6
?

R1 ← Z1 ·R6
?
?

R6 ← R2
2

Z3 ← R1 ·Z2
R1 ← R4 + R4
R6 ← R6 −R1
R1 ← R5 ·R3
X3 ← R6 −R5
R4 ← R4 −X3
R3 ← R4 ·R2
Y3 ← R3 −R1



R1 ← X1
2

R2 ← Y1 + Y1
Z2 ← R2 ·Z1
R4 ← R1 + R1
R3 ← R2 ·Y1
R6 ← R3 + R3
R2 ← R6 ·R3
R1 ← R4 + R1
R1 ← R1 + W1
R3 ← R1

2

R4 ← R6 ·X1
R5 ←W1 + W1
R3 ← R3 −R4
W2 ← R2 ·R5
X2 ← R3 −R4
R6 ← R4 −X2
R4 ← R6 ·R1
Y2 ← R4 −R2

8 multiplications→ 6 multiplications + 2 squarings

16 additions→ 6 additions + 4 subtractions

8 negations→ 0
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Implementation

192 bits ECDSA @ 30 MHz (CPU) & 50 MHz (CC)

Original : 35 ms, Improved : 30 ms (- 14.5 %)
Comparable RAM (≈ 500 Bytes) and Code size (≈ 3 KB)
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Outline

Introduction
RSA and Elliptic Curve Cryptography
Scalar Multiplication Implementation
Side-Channel Analysis

Improved Atomic Pattern for Scalar Multiplication

Square Always Exponentiation

Horizontal Correlation Analysis

Long-Integer Multiplication Blinding and Shuffling

Collision-Correlation Analysis on AES

Conclusion
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Our Contribution

I New atomic algorithms using squarings only

I Immune to attacks distinguishing squarings from multiplications

I Better efficiency than regular ladders

I Exponentiation algorithms for parallelized squarings with best
performances to our knowledge
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Exponentiation Cost Summary

Algorithm Cost / bit S/M = 1 S/M = .8 # reg
Square & multiply 1,2,3 0.5M +1S 1.5M 1.3M 2
Multiply always 2,3 1.5M 1.5M 1.5M 2
Regular ladders 1M +1S 2M 1.8M 2

1 algorithm unprotected towards the SPA
2 algorithm sensitive to S – M discrimination
3 possible sliding window optimization
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Replacing Multiplications by Squarings

x×y =
(x +y)2−x2−y2

2
(1)

x×y =

(
x +y

2

)2

−
(

x−y
2

)2

(2)

V. Verneuil - Elliptic Curve Cryptography and Security of Embedded Devices 35 / 64



Regular Atomic Exponentiation

Square & multiply:

. . .

Atomic Multiply always:

. . .

Atomic Square always:

. . .
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Regular Atomic Exponentiation

Square & multiply:

. . .

Atomic Multiply always:

. . .

Atomic Square always:

. . .
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Atomic Left-to-Right Algorithm

Input: m,n,d ∈ N
Output: md mod n

1: R0← 1 ; R1←m ; R2← 1
2: R3←m2/2 mod n
3: j ← 0 ; i ← k −1
4: while i ≥ 0 do
5: RMj ,0

← RMj ,1
+RMj ,2

mod n

6: RMj ,3
← RMj ,3

2 mod n
7: RMj ,4

← RMj ,5
/2 mod n

8: RMj ,6
← RMj ,7

−RMj ,8
mod n

9: j ← di (1+(j mod 3))
10: i ← i−Mj ,9

11: return R0

j = 0 j = 1

j = 2j = 3

1 bit

0 bit 1 bit

0 bit

M =


1 1 1 0 2 1 1 1 2 1
2 0 1 2 2 2 2 2 3 0
1 1 3 0 0 0 0 2 0 0
3 3 3 0 3 3 1 1 3 1
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Atomic Right-to-Left Algorithm

Input: m,n,d ∈ N
Output: md mod n

1: R0←m ; R1← 1 ; R2← 1
2: i ← 0 ; j ← 0
3: while i ≤ k −1 do
4: j ← di (1+(j mod 3))
5: RMj ,0

← RMj ,1
+R0 mod n

6: RMj ,2
← RMj ,3

/2 mod n
7: RMj ,4

← RMj ,5
−RMj ,6

mod n

8: RMj ,3
← RMj ,3

2 mod n
9: i ← i +Mj ,7

10: return R1

j = 0 j = 1

j = 2j = 3

1 bit

0 bit 1 bit

0 bit

M =


0 0 2 0 0 0 2 1
2 1 2 2 1 0 1 0
0 2 1 1 0 0 2 0
0 0 0 0 1 2 1 1



V. Verneuil - Elliptic Curve Cryptography and Security of Embedded Devices 38 / 64



Cost Comparison

Algorithm Cost / bit S/M = 1 S/M = .8 # reg
Square & multiply 1,2,3 0.5M +1S 1.5M 1.3M 2
Multiply always 2,3 1.5M 1.5M 1.5M 2
Regular ladder 1M +1S 2M 1.8M 2
L.-to-r. square always3 2S 2M 1.6M 4
R.-to-l. square always3 2S 2M 1.6M 3

→ 11 % speed-up over Montgomery ladder

1 algorithm unprotected towards the SPA
2 algorithm sensitive to S – M discrimination
3 possible sliding window optimization
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Implementation

AT90SC chip @ 30MHz with AdvX arithmetic coprocessor:

Algorithm Key len. (b) Code (B) RAM (B) Timing (ms)

Mont. ladder
512 360 128 30

1024 360 256 200
2048 360 512 1840

Square Always
512 510 192 28

1024 510 384 190
2048 510 768 1740

→ 5 % practical speed-up obtained in practice
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Parallelization

Motivation:
I Many devices are equipped with multi-core processors
I Parallelized Montgomery ladder : 1M / bit
I Squarings are independent in equations (1) and (2)

We study how to optimize square always algorithms if two parallel
squarings are available using space/time trade-offs.
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Cost Summary

We demonstrate that the cost of our parallelized algorithm using λ extra
registers tends to: (

1+
1

4λ +2

)
S

Algorithm General cost S/M = 1 S/M = 0.8
Parallel Montgomery ladder 1M 1M 1M
Parallel square always λ = 1 7S/6 1.17M 0.93M
Parallel square always λ = 2 11S/10 1.10M 0.88M
Parallel square always λ = 3 15S/14 1.07M 0.86M

...
...

...
...

Parallel square always λ → ∞ 1S 1M 0.8M
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Our Contribution

I New differential analysis on exponentiation using a single trace

I Any exponentiation algorithm can be subject to this attack

I Circumvent the exponent blinding countermeasure

I Require the knowledge of underlying modular multiplication
implementation
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Modular Multiplication Implementation

Schoolbook long-integer multiplication x×y in base b with x ,y < bk

Input: x = (xk−1xk−2 . . .x0)b, y = (yk−1yk−2 . . .y0)b
Output: x×y
Uses: w = (w2k−1w2k−2 . . .w0)

1: w ← (00 . . .0)
2: for i = 0 to k −1 do
3: c← 0
4: for j = 0 to k −1 do
5: (uv)b← wi+j +xi ×yj +c
6: wi+j ← v
7: c← u
8: wi+k ← c
9: return w
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Modular Multiplication Implementation
Rows and columns

xk−1 . . . x2 x1 x0

× yk−1 . . . y2 y1 y0

+ x0yk−1 . . . x0y2 x0y1 x0y0

+ x1yk−1 x1yk−2 . . . x1y1 x1y0

+ x2yk−1 x2yk−2 x2yk−3 . . . x2y0

... . .
.

+ xk−2yk−1 . . . xk−2y2 xk−2y1 xk−2y0

+ xk−1yk−1 xk−1yk−2 . . . xk−1y1 xk−1y0

w2k−1 w2k−2 w2k−3 . . . w2 w1 w0
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Horizontal Correlation Analysis

Vertical: Horizontal:

...

. . . . . .

. . . . . . . . . . . .

• Uses N segments from different
traces.

• Uses k2 segments from a single
trace.
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Horizontal Side-Channel Analysis

T

T 1 T 2 T 3

. . .

T s T s+1 T s+2

. . .

T
s
0,0 T

s
0,2

. . .

T
s
1,0 T

s
1,2

. . .

T
s
1,k
−1

. . .

T
s
k−

1,0

T
s
k−

1,2

. . .

T
s
k−

1,k
−1

We target single-multiplication segments T s
i ,j of the s-th modular

multiplication inside a single leakage trace T .
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Horizontal Correlation Analysis

Considering an atomic multiply-always implementation:

Input: m,n,d ∈ N
Output: md mod n

1: R0← 1
2: R1←m
3: i ← `−1
4: t ← 0
5: while i ≥ 0 do
6: R0← R0×Rt mod n
7: t ← t⊕di
8: i ← i−1+ t
9: return R0

I Execute a single RSA signature
md mod n and collect the execution
power trace T .

I Assuming u most significant bits of d are
known by the attacker:

d = (d`−1 . . .d`−u d`−(u+1) . . .d1d0)

I Let R(u)
0 denote the value of R0 after

processing the u-th bit of d :
R(u)

0 = md`−1...d`−u mod n
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Horizontal Correlation Analysis

Let v = u+HW(d`−1 . . .d`−u) i.e. u-th bit ←→ multiplication T v

R(u)
0
��
�1

PPPq

d`−u−1= 1

d`−u−1= 0

R(u)
0 ×R(u)

0

R(u)
0 ×R(u)

0

- R(u)
0

2
×m

-d`−u−2= 0,1
R(u)

0
2
×R(u)

0
2
· · ·

· · ·

T v+1 T v+2

I Compute correlation between:
I trace segments T v+2

i ,j and values Dj = mj or

I trace segments T v+2
i ,j and values Di ,j = R(u)

0,i ×mj

I If correlation peak: d`−(u+1) = 1, or d`−(u+1) = 0 otherwise.
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Experimental Results

Correlation trace result on series of
traces T v+2

i ,j with Dj = mj

Correlation trace result on series of
segments T v+2

i ,j with Di ,j = R(u)
0,i ×mj
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Our Contribution

I New countermeasure against differential analysis for RSA and
ECC

I Designed to protect from horizontal analysis

I Implemented at the multi-precision multiplication level
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Long-Integer Multiplication
Shuffling rows and blinding columns

Let us shuffle the rows of the multiplication:

Choose at random a permutation
α of (0,1, . . . ,k −1) and compute:

(c,wα(i)+j )b = wα(i)+j +xα(i)×yj +c

xk−1 . . . x2 x1 x0

× yk−1 . . . y2 y1 y0

+ x0yk−1 . . . x0y2 x0y1 x0y0

+ x1yk−1 x1yk−2 . . . x1y1 x1y0

+ x2yk−1 x2yk−2 x2yk−3 . . . x2y0

... . .
.

+ xk−2yk−1 . . . xk−2y2 xk−2y1 xk−2y0

+ xk−1yk−1 xk−1yk−2 . . . xk−1y1 xk−1y0

w2k−1 w2k−2 w2k−3 . . . w2 w1 w0

Still necessary to blind columns:

For each row α(i), choose at random a word r ,
compute and store r ×xα(i),
blind each single-precision multiplication:

(c,wα(i)+j )b = wα(i)+j + xα(i)× (yj − r) + r ×xα(i) + c

z Provides k! different sequences of single-precision multiplications.

z Requires k extra multiplications and 3 extra words of storage.

z Saves k + 1 multiplications and 4k −1 words of storage compared to the full blinding
countermeasure.
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Long-Integer Multiplication
Shuffling rows and columns

Let us now shuffle the rows and the columns of the multiplication:

Choose at random two permutations α,β of (0,1, . . . ,k −1) and compute:

(cβ(j),wα(i)+β(j))b = wα(i)+β(j) +xα(i)×yβ(j)

Carry propagation is more complicated and requires a k -word array c.

z Provides (k !)2 different sequences of single-precision multiplications.

z Requires no extra multiplication but k extra words of storage.

z Saves k multiplications but uses additional storage compared to the
previous countermeasure.
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Long-Integer Multiplication

For instance, using a 32-bit multiplier:

bit length k ! (k !)2

256 ≈ 215 ≈ 230

512 ≈ 244 ≈ 288

1024 ≈ 2117 ≈ 2235

z Also compatible with interleaved multiplications and reductions.

z Studying the cost of these countermeasures for hardware implementations
requires further investigation.
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Our Contribution

I Improved collision-correlation techniques on AES defeating
some first-order protected implementations

I Need less than 1500 acquisitions in our experiments

I No need to establish a consumption model for correlation
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AES Overview

We focus on AES-128:
I message M = (m0 m1 . . . m15)

I key K = (k0 k1 . . . k15)

I ciphertext C = (c0 c1 . . . c15)

I for i ∈ [0,15] we denote xi = mi ⊕ki

Our attack targets the first round SubBytes

function

AES

message

key

SubBytes

ShiftRows

MixColumns

subkey 1

ciphertext
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Principle

Detect internal collisions between data processed in blinded S-Boxes in the
first AES round:

data1⊕mask = data2⊕mask

Two protections against first-order attacks are considered:

1. substitution table masking: S′(xi ⊕u) = S(xi )⊕v , with u 6= v
same masks u and v for all bytes

2. masked pseudo-inversion in F28 : I′(xi ⊕ui ) = I(xi )⊕ui , for 0≤ i ≤ 15
16 different masks but same input and output masks
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Collision-Correlation Analysis

I Encrypt N times the same message M

I Collect the power traces T n, 0≤ n≤N−1

I Consider two instructions whose
processing starts at times t0 and t1
l points are acquired per instruction
processing

I Construct the two series Θ0 = (T n
t0

)n and
Θ1 = (T n

t1
)n of power consumptions

segments

T 0

t0 t0 + l t1 t1 + l

T 1

t0 t0 + l t1 t1 + l

...

T N−1

t0 t0 + l t1 t1 + l

Θ0 Θ1

I Apply a statistical treatment to (Θ0,Θ1) to identify if same data was involved in T n
t0

and T n
t1

I We choose the Pearson correlation factor ρ̂Θ0,Θ1 (t) =
cov(Θ0(t),Θ1(t))

σΘ0(t)σΘ1(t)
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First Attack Description (1)

Principle: detect when two SubBytes inputs (and outputs) are equal
in first AES round

m4⊕k4⊕u m9⊕k9⊕u=

x ′0 x ′1 x ′2 x ′3 x ′4 x ′5 x ′6 x ′7 x ′8 x ′9 x ′10 x ′11 x ′12 x ′13 x ′14 x ′15

S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′ S′

y ′0 y ′1 y ′2 y ′3 y ′4 y ′5 y ′6 y ′7 y ′8 y ′9 y ′10 y ′11 y ′12 y ′13 y ′14 y ′15

k4⊕k9 = m4⊕m9

Result: provide a relation between two key bytes
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First Attack Description (2)

I Encrypt N times the same message M and collect the N traces of first
AES round

I For the 120 possible pairs (i1, i2) compute ρ̂Θi1 ,Θi2
(t)

I When a correlation peak appears a relation between ki1 and ki2 is found
I Repeat for several random messages M until enough relations are found

zOn average 59 messages are needed
Total number of traces = 59×N
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Experimental Results

Correlation traces obtained on real traces for N = 25
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Total number of acquisitions : 25×59≈ 1500
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Second Attack Description (1)

Previous attack cannot be applied to masked inversion if masks are different
for each byte

0⊕u3

x ′0 x ′1 x ′2 x ′3 x ′4 x ′15
. . .

I ′ I ′ I ′ I ′ I ′ I ′. . .

y ′0 y ′1 y ′2 y ′3 y ′4 y ′15
. . .

0⊕u3

or

1⊕u3

x ′0 x ′1 x ′2 x ′3 x ′4 x ′15
. . .

I ′ I ′ I ′ I ′ I ′ I ′. . .

y ′0 y ′1 y ′2 y ′3 y ′4 y ′15
. . .

1⊕u3

Collision between input and output reveals one key byte except one bit:

ki = mi or ki = mi ⊕1
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Practical Results

Correlation traces obtained on simulated traces for the
pseudo-inversion of the first byte in GF (28) with N = 16
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Conclusion

Concrete results of this thesis:
I 4 publications in international conferences (CHES, INDOCRYPT,

CARDIS, ICICS)
I 4 patent registrations

Personal benefits:
I Research with industrial constraints is motivating
I Both implementation and side-channel analysis covered in this

research
I Both high and low-level implementation studied
I Both public and private-key cryptography investigated
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