Elliptic Curve Cryptography and Security of Embedded Devices
 Ph.D. Defense

Vincent Verneuil

Institut de Mathématiques de Bordeaux
Inside Secure

June 13th, 2012

4R

Introduction

RSA and Elliptic Curve Cryptography Scalar Multiplication Implementation Side-Channel Analysis

Improved Atomic Pattern for Scalar Multiplication
Square Always Exponentiation
Horizontal Correlation Analysis
Long-Integer Multiplication Blinding and Shuffling
Collision-Correlation Analysis on AES
Conclusion

Introduction

RSA and Elliptic Curve Cryptography

 Scalar Multiplication Implementation Side-Channel AnalysisImproved Atomic Pattern for Scalar Multiplication
Square Always Exponentiation
Horizontal Correlation Analysis
Long-Integer Multiplication Blinding and Shuffling
Collision-Correlation Analysis on AES
Conclusion
Introduction
RSA and Elliptic Curve Cryptography
Scalar Multiplication Implementation Side-Channel Analysis
Improved Atomic Pattern for Scalar Multiplication
Square Always Exponentiation
Horizontal Correlation Analysis
Long-Integer Multiplication Blinding and Shuffling
Collision-Correlation Analysis on AES
Conclusion

RSA (Rivest-Shamir-Adleman)

A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, 1978.

RSA (Rivest-Shamir-Adleman)

Key generation

A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems, 1978.

- pick at random two primes p and q, and compute $n=p \times q$
- choose e and compute d such that: $e \times d \equiv 1 \bmod (p-1)(q-1)$

Public key

$Q_{\text {en }}=\{n, e\}$

Private key

$Q_{=}=\{p, q, d\}$

RSA (Rivest-Shamir-Adleman)

Encryption / Decryption

To encrypt a message m :

$$
c=m^{e} \bmod n
$$

To decrypt c :

$$
m=c^{d} \bmod n
$$

RSA (Rivest-Shamir-Adleman)

Encryption / Decryption

To encrypt a message m :

$$
c=m^{e} \bmod n
$$

To decrypt c :

$$
m=c^{d} \bmod n
$$

Security assumption

Given $Q_{=}=\{n, e\}$, how to recover $d=e^{-1} \bmod (p-1)(q-1) ?$
Factorize n to recover p and q !

Elliptic Curve Cryptography

Independently introduced by Koblitz and Miller in 1985.

Elliptic Curve Equation

Let \mathbb{K} be a field, and \mathscr{E} / \mathbb{K} an elliptic curve.
Then the set of \mathbb{K}-rational points $\mathscr{E}(\mathbb{K}) \subset \mathbb{P}^{2}(\mathbb{K})$ is an abelian group, with neutral element \mathscr{O}.

On a field $\mathbb{K}=\mathbb{F}_{p}, p>3$, it has an affine equation:

$$
y^{2}=x^{3}+a x+b
$$

Elliptic Curve Group Law

Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, $P_{1}, P_{2} \neq \mathscr{O}$.
$P_{3}=P_{1}+P_{2}$ is given by:

$$
\left\{\begin{array}{l}
x_{3}=m^{2}-x_{1}-x_{2} \\
y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}
\end{array}\right.
$$

Elliptic Curve Group Law

Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$,
$P_{1}, P_{2} \neq \mathscr{O}$.
$P_{3}=P_{1}+P_{2}$ is given by:

$$
\begin{gathered}
\left\{\begin{array}{l}
x_{3}=m^{2}-x_{1}-x_{2} \\
y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}
\end{array}\right. \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { if } P_{1} \neq \pm P_{2}
\end{gathered}
$$

Elliptic Curve Group Law

Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, $P_{1}, P_{2} \neq \mathscr{O}$.
$P_{3}=P_{1}+P_{2}$ is given by:

$$
\left\{\begin{array}{l}
x_{3}=m^{2}-x_{1}-x_{2} \\
y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}
\end{array}\right.
$$

Elliptic Curve Group Law

Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, $P_{1}, P_{2} \neq \mathscr{O}$.
$P_{3}=P_{1}+P_{2}$ is given by:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{3}=m^{2}-x_{1}-x_{2} \\
y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}
\end{array}\right. \\
& m=\frac{3 x_{1}{ }^{2}+a}{2 y_{1}} \text { if } P_{1}=P_{2}
\end{aligned}
$$

Scalar Multiplication

Given a point P in $\mathscr{E}(\mathbb{K})$ and a positive integer d, we denote $d P=\underbrace{P+P+\cdots+P}_{d \text { times }}$.

Scalar Multiplication

Given a point P in $\mathscr{E}(\mathbb{K})$ and a positive integer d, we denote $d P=\underbrace{P+P+\cdots+P}_{d \text { times }}$.

Elliptic Curve Discrete Logarithm Problem (ECDLP)

$$
\text { Given } P \text { in } \mathscr{E}(\mathbb{K}) \text { and } d P, 1 \leq d \leq \# \mathscr{E}(\mathbb{K}) \text {, }
$$ find d ?

Much harder than or factoring (which can be solved in subexponential time).

Cryptosystems Comparison

Estimated equivalent key lengths for ECC and RSA:

Security level	80	112	128	192	256
ECC	160	224	256	384	512
RSA	1024	2048	3072	8192	15360

- Very interesting in embedded devices having limited resources.

Outline

Introduction
RSA and Elliptic Curve Cryptography
Scalar Multiplication Implementation
Side-Channel Analysis
Improved Atomic Pattern for Scalar Multiplication
Square Always Exponentiation
Horizontal Correlation Analysis
Long-Integer Multiplication Blinding and Shuffling
Collision-Correlation Analysis on AES
Conclusion

Embedded Devices Constraints

Efficiency

- Most transactions have to take less than 500 ms
- Small amount of RAM
- Very low power (hence low frequency) for contactless devices

Embedded Devices Constraints

Efficiency

- Most transactions have to take less than 500 ms
- Small amount of RAM
- Very low power (hence low frequency) for contactless devices

Arithmetic optimizations

- Exponentiation / scalar multiplication
- Group operations and point representation
- Modular arithmetic

\mathbb{F}_{p} Operations Theoretical Cost

Expensive operations

Significant operations

Negligible operations

\mathbb{F}_{p} Operations Theoretical Cost

Expensive operations

- Inversion (I)

Significant operations

Negligible operations

\mathbb{F}_{p} Operations Theoretical Cost

Expensive operations

- Inversion (I)

Significant operations

- Multiplication (M)
- Squaring $(S, S / M \approx 0.8)$

Negligible operations

\mathbb{F}_{p} Operations Theoretical Cost

Expensive operations

- Inversion (I)

Significant operations

- Multiplication (M)
- Squaring ($S, S / M \approx 0.8$)

Negligible operations

- Addition (A)
- Subtraction (A)
- Negation (N)

\mathbb{F}_{p} Operations Theoretical Cost

Expensive operations

- Inversion (I)

Significant operations

- Multiplication (M)
- Squaring ($S, S / M \approx 0.8$)

Negligible operations

- Addition (A)
- Subtraction (A)
- Negation (N)

For ECC keylengths, $A / M \approx 0.2$ and $N / M \approx 0.1$
on most smart cards.

Exponentiation Algorithms

Square and multiply

Left-to-right

$$
m^{d}=m^{d_{0}} \times\left(m^{d_{1}} \times\left(\ldots\left(m^{d_{\ell-1}}\right)^{2} \ldots\right)^{2}\right)^{2}
$$

Input: $m, n, d \in \mathbb{N}$
Output: $m^{d} \bmod n$
$a \leftarrow 1$
for $i=\ell-1$ to 0 do
$a \leftarrow a^{2} \bmod n$
if $d_{i}=1$ then
$a \leftarrow a \times m \bmod n$
return a

Right-to-left

$$
m^{d}=m^{d_{\ell-1} 2^{\ell-1}} \times m^{d_{\ell-2} 2^{\ell-2}} \times \ldots \times m^{d_{0}}
$$

Input: $m, n, d \in \mathbb{N}$
Output: $m^{d} \bmod n$
$a \leftarrow 1 ; b \leftarrow m$
for $i=0$ to $\ell-1$ do
if $d_{i}=1$ then
$a \leftarrow a \times b \bmod n$ $b \leftarrow b^{2} \bmod n$
return a

Scalar Multiplication Algorithms

Left-to-right

$$
d P=d_{0} P+2\left(d_{1} P+2\left(\ldots+2\left(d_{\ell-1} P\right) \ldots\right)\right)
$$

Input: $P \in \mathscr{E}(\mathbb{K}), d \in \mathbb{N}$
Output: $d P$
$R \leftarrow \mathscr{O}$
for $i=\ell-1$ to 0 do
$R \leftarrow 2 R$
if $d_{i}=1$ then
$R \leftarrow R+P$
return R

Right-to-left
$d P=d_{\ell-1} 2^{\ell-1} P+d_{\ell-2} 2^{\ell-2} P+\ldots+d_{0} P$
Input: $P \in \mathscr{E}(\mathbb{K}), d \in \mathbb{N}$
Output: $d P$
$R \leftarrow \mathscr{O} ; Q \leftarrow P$
for $i=0$ to $\ell-1$ do
if $d_{i}=1$ then
$R \leftarrow R+Q$
$Q \leftarrow 2 Q$
return R

Refined Algorithms

Non-Adjacent Form (NAF)

Signed representation minimizing the number of non-zero digits (1/3 vs $1 / 2$).
Hence minimize the number of additions.

Refined Algorithms

Non-Adjacent Form (NAF)

Signed representation minimizing the number of non-zero digits (1/3 vs $1 / 2$).
Hence minimize the number of additions.

Sliding window algorithms

Precompute $3 P, 5 P, \ldots$ to process several scalar bits at a time. Can be combined with the NAF method.

Refined Algorithms

Non-Adjacent Form (NAF)

Signed representation minimizing the number of non-zero digits (1/3 vs $1 / 2$).
Hence minimize the number of additions.

Sliding window algorithms

Precompute $3 P, 5 P, \ldots$ to process several scalar bits at a time. Can be combined with the NAF method.

Co-Z Addition

Euclidean Addition Chains [Meloni, WAIFI 2007] Co-Z binary ladder [Goundar, Joye \& Miyaji, CHES 2010]

Introduction
 RSA and Elliptic Curve Cryptography Scalar Multiplication Implementation Side-Channel Analysis

Improved Atomic Pattern for Scalar Multiplication
Square Always Exponentiation
Horizontal Correlation Analysis
Long-Integer Multiplication Blinding and Shuffling
Collision-Correlation Änalysis on AES
Conclusion

Side-Channel Analysis Framework

Simple Side-Channel Analysis (SSCA)

Left-to-right square \& multiply

Side-channel leakage: power, EM, etc.

The whole exponent may be recovered using a single trace.

Regular Exponentiation

Left-to-right algorithms

Square \& multiply:

Regular Exponentiation

Left-to-right algorithms

Square \& multiply:

Square \& multiply always:

Regular Exponentiation

Left-to-right algorithms

Square \& multiply:

Square \& multiply always:

Montgomery ladder:

Regular Exponentiation Algorithms

Left-to-right

"Montgomery ladder"
Input: $m, n, d \in \mathbb{N}$
Output: $m^{d} \bmod n$
1: $R_{0} \leftarrow 1$
2: $R_{1} \leftarrow m$
3: for $i=\ell-1$ to 0 do
4: $\quad R_{1-d_{i}} \leftarrow R_{0} \times R_{1} \bmod n$
5: $\quad R_{d_{i}} \leftarrow R_{d_{i}}{ }^{2} \bmod n$
6: return R_{0}

Right-to-left
"Joye ladder"

Input: $m, n, d \in \mathbb{N}$
Output: $m^{d} \bmod n$
1: $R_{0} \leftarrow 1$
2: $R_{1} \leftarrow m$
3: for $i=0$ to $\ell-1$ do
4: $\quad R_{1-d_{i}} \leftarrow R_{1-d_{i}}{ }^{2} \bmod n$
5: $\quad R_{1-d_{i}} \leftarrow R_{1-d_{i}} \times R_{d_{i}} \bmod n$
6: return R_{0}

Regular Scalar Multiplication

Left-to-right algorithms

Double \& add:

Regular Scalar Multiplication

Left-to-right algorithms

Double \& add:

Double \& add always:

Regular Scalar Multiplication

Left-to-right algorithms

Double \& add:

Double \& add always:

Montgomery ladders:

Begular Scalar Multiplication Algorithms

Left-to-right

"Montgomery ladder"
Input: $P \in \mathscr{E}(\mathbb{K}), d \in \mathbb{N}$ Output: $d P$
1: $R_{0} \leftarrow \mathscr{O}$
2: $R_{1} \leftarrow P$
3: for $i=\ell-1$ to 0 do
4: $\quad R_{1-d_{i}} \leftarrow R_{0}+R_{1}$
5: $\quad R_{d_{i}} \leftarrow 2 R_{d_{i}}$
6: return R_{0}

Right-to-left
"Joye ladder"
Input: $P \in \mathscr{E}(\mathbb{K}), d \in \mathbb{N}$
Output: $d P$
1: $R_{0} \leftarrow \mathscr{O}$
2: $R_{1} \leftarrow P$
3: for $i=0$ to $\ell-1$ do
4: $\quad R_{1-d_{i}} \leftarrow 2 R_{1-d_{i}}$
5: $\quad R_{1-d_{i}} \leftarrow R_{1-d_{i}}+R_{d_{i}}$
6: return R_{0}

Regular Atomic Exponentiation

Square \& multiply:

Regular Atomic Exponentiation

Square \& multiply:

Atomic multiply always:

Regular Atomic Scalar Multiplication

Double \& add:

Regular Atomic Scalar Multiplication

Double \& add:

Atomic add always (with a unified group addition):

Regular Atomic Scalar Multiplication

Double \& add:

Atomic add always (with a unified group addition):

Atomic scalar multiplication using a smaller pattern:

Leakage on Manipulated Data

FIGURE 2. Number of Bit Transitions versus Power Consumption
These results show how the data effects the power levels. The nine overlayed waveforms correspond to the power traces of different data being accessed by an LDA instruction. These results were obtained by averaging the power signals across 500 samples in order to reduce the noise content. The difference in voltage between i transitions and $i+1$ transitions is about 6.5 mV .

Leakage on Manipulated Data

FIGURE 2. Number of Bit Transitions versus Power Consumption
These results show how the data effects the power levels. The nine overlayed waveforms correspond to the power traces of different data being accessed by an LDA instruction. These results were obtained by averaging the power signals across 500 samples in order to reduce the noise content. The difference in voltage between i transitions and $i+1$ transitions is about 6.5 mV .

Noise is generally too high to exploit this leakage directly

Leakage on Manipulated Data

FIGURE 2. Number of Bit Transitions versus Power Consumption
These results show how the data effects the power levels. The nine overlayed waveforms correspond to the power traces of different data being accessed by an LDA instruction. These results were obtained by averaging the power signals across 500 samples in order to reduce the noise content. The difference in voltage between i transitions and $i+1$ transitions is about 6.5 mV .

Noise is generally too high to exploit this leakage directly

- Many acquisitions are used to reduce noise influence

Differential Analysis Principle

Measure N times a side-channel leakage with different data involved and consider the traces
$T^{1}, T^{2}, \ldots, T^{n}$.

Differential Analysis Principle

Measure N times a side-channel leakage with different data involved and consider the traces
$T^{1}, T^{2}, \ldots, T^{n}$.

- align vertically the traces on the targeted operation using signal processing tools

Differential Analysis Principle

Measure N times a side-channel leakage with different data involved and consider the traces
$T^{1}, T^{2}, \ldots, T^{n}$.

- align vertically the traces on the targeted operation using signal processing tools
- perform statistical treatment between traces, known inputs or outputs and a guess on a few key bits

Differential Analysis Principle

Measure N times a side-channel leakage with different data involved and consider the traces
$T^{1}, T^{2}, \ldots, T^{n}$.

- align vertically the traces on the targeted operation using signal processing tools
- perform statistical treatment between traces, known inputs or outputs and a guess on a few key bits

Validate the guess or not

Differential Side-Channel Analysis

Original method introduced in [Kocher, Jaffe \& Jun, CRYPTO'99]

- Hamming weight leakage model
- Difference of means as a distinguisher

Differential Side-Channel Analysis

Original method introduced in [Kocher, Jaffe \& Jun, CRYPTO'99]

- Hamming weight leakage model
- Difference of means as a distinguisher

Correlation analysis introduced in [Brier, Clavier \& Olivier, CHES 2004]

- Hamming weight/distance leakage model
- Pearson correlation factor as a distinguisher

Countermeasures for RSA Exponentiation

- Exponent blinding $d^{\prime}=d+r(p-1)(q-1)$

Countermeasures for RSA Exponentiation

- Exponent blinding $d^{\prime}=d+r(p-1)(q-1)$
- Message/ciphertext additive blinding $m^{\prime}=m+r n \bmod c n, r<c$

Countermeasures for RSA Exponentiation

- Exponent blinding $d^{\prime}=d+r(p-1)(q-1)$
- Message/ciphertext additive blinding $m^{\prime}=m+r n \bmod c n, r<c$
- Message/ciphertext multiplicative blinding $m^{\prime}=r^{e} m \bmod n$, result recovered as $r^{-1}\left(m^{\prime}\right)^{d} \bmod n$

Countermeasures for Scalar Multiplication

From [Coron, CHES'99]:

- Scalar blinding $d^{\prime}=d+r \# \mathscr{E}\left(\mathbb{F}_{p}\right)$

Countermeasures for Scalar Multiplication

From [Coron, CHES'99]:

- Scalar blinding $d^{\prime}=d+r \# \mathscr{E}\left(\mathbb{F}_{p}\right)$
- Base point projective coordinates blinding $\left(r^{2} X: r^{3} Y: r Z\right)$

Countermeasures for Scalar Multiplication

From [Coron, CHES'99]:

- Scalar blinding $d^{\prime}=d+r \# \mathscr{E}\left(\mathbb{F}_{p}\right)$
- Base point projective coordinates blinding $\left(r^{2} X: r^{3} Y: r Z\right)$
- Input point blinding $Q=d(P+R)$, result recovered as $Q-S$ with $S=d R$

RSA and Elliptic Curve Cryptography
Scalar Multiplication Implementation Side-Channel Analysis

Improved Atomic Pattern for Scalar Multiplication

> Square Always Exponentiation
> Horizontal Correlation Analysis
> Long-I'nteger Multiplication Blinding and Shuffling
> Collision-Correlation Analysis on AES

Conciusion

Our Contribution

- New atomic pattern for right-to-left scalar multiplication implementation
- Fastest implementation for standard curves considering addition cost $A / M \geq 0.1$

Our Contribution

- New atomic pattern for right-to-left scalar multiplication implementation
- Fastest implementation for standard curves considering addition cost $A / M \geq 0.1$

Theoretical comparison ($S / M=0.8, A / M=0.2$)

Previous right-to-left NAF atomic scalar multiplication: - 20% (M/bit) Best previous scalar multiplication (Co-Z Montgomery ladder ($X: Z$)-only):

Atomic Right-to-Left Scalar Multiplication

Mixed coordinates

\author{

- Multiplication
 - Addition
 - Negation
 - Addition
}

Operations expression using the atomic pattern

Doubling: ■ாாாாா
[11M+5S]
[3M +5 S]

Atomic Right-to-Left Scalar Multiplication

Mixed coordinates
$\square\left[\begin{array}{l}\text { Multiplication } \\ - \text { Addition } \\ \text { Negation } \\ \rightarrow \text { Addition }\end{array} \quad \square\left[\begin{array}{l}\text { Squaring } \\ \text { Addition } \\ \text { Negation } \\ - \text { Addition }\end{array}\right.\right.$

Operations expression using the atomic pattern

Addition :

[11M+5S]
Doubling: ■ாாாாாா [3M +5 S]

Atomic Right-to-Left Scalar Multiplication

Mixed coordinates
$\square\left[\begin{array}{l}\text { Multiplication } \\ \text { Addition } \\ \text { Negation } \\ \rightarrow \text { Addition }\end{array} \quad \square\left[\begin{array}{l}\text { Squaring } \\ \text { Addition } \\ \text { Negation } \\ \text { Addition }\end{array}\right.\right.$

Operations expression using the atomic pattern

Addition : \square [11M+5S]
Doubling: ■ாாㅁㅁㅁ [3M+5S]

Atomic Right-to-Left Scalar Multiplication

Mixed coordinates
$\square\left[\begin{array}{l}\text { Multiplication } \\ - \text { Addition } \\ \text { Negation } \\ \rightarrow \text { Addition }\end{array} \quad \square\left[\begin{array}{l}\text { Squaring } \\ \text { Addition } \\ \text { Negation } \\ - \text { Addition }\end{array}\right.\right.$

Operations expression using the atomic pattern

Addition :		[11M+5S]
Doubling :	- - -	[3M+5S]

Extended pattern : ㅁாㅁㅁㅁ

Atomic Right-to-Left Scalar Multiplication

```
Sq.
Add.
Neg.
Add.
Mult.
-Add.
Neg.
-Add.
Mult.
-Add.
-Neg.
-Add.
Mult.
-Add.
Neg.
Add.
Sq.
Add.
Neg.
-Add.
Mult.
-Add.
Neg.
Add.
Mult.
Add.
Neg.
*Add.
Mult.
Add.
Neg.
Add.
```


Atomic Right-to-Left Scalar Multiplication

	Add. 1	Add. 2
-Sq.	$R_{1} \leftarrow z_{2}{ }^{2}$	$R_{6} \leftarrow R_{4}{ }^{2}$
- Add.	\star	\star
- Neg.	\star	*
- Add.	\star	*
- Mult.	$R_{2} \leftarrow X_{1} \cdot R_{1}$	$R_{5} \leftarrow Z_{1} \cdot Z_{2}$
- Add.	$\star \times$	
\rightarrow Neg.	*	*
- Add.		
- Mult.	$R_{1} \leftarrow R_{1} \cdot Z_{2}$	$Z_{3} \leftarrow R_{5} \cdot R_{4}$
- Add.	*	
- Neg.	*	*
- Add.	$\stackrel{\star}{*}$	*
- Mult.	$R_{3} \leftarrow Y_{1} \cdot R_{1}$	$R_{2} \leftarrow R_{2} \cdot R_{6}$
- Add.		
- Neg.	*	$R_{1} \leftarrow-R_{1}$
- Add.	*	
-Sq.	$R_{1} \leftarrow z_{1}{ }^{2}$	$R_{5} \leftarrow R_{1}{ }^{2}$
- Add.	${ }_{1}$	
Neg.	*	$R_{3} \leftarrow-R_{3}$
Add.		
- Mult.	$R_{4} \leftarrow R_{1} \cdot X_{2}$	
Add.		$R_{6} \leftarrow R_{5}+R_{4}$
Neg.	$R_{4} \leftarrow-R_{4}$	$R_{2} \leftarrow-R_{2}$
Add.	$R_{4} \leftarrow R_{2}+R_{4}$	$R_{6} \leftarrow R_{6}+R_{2}$
- Mult.	$R_{1} \leftarrow z_{1} \cdot R_{1}$	$R_{3} \leftarrow R_{3} \cdot R_{4}$
- Add.		$x_{3} \leftarrow R_{2}+R_{6}$
- Add.	*	
- Mult.	$R_{1} \leftarrow R_{1} \cdot Y_{2}$	$R_{2} \leftarrow X_{3}+R_{2}$
- Mdd.	$R_{1} \leftarrow R_{1} \cdot Y_{2}$	$R_{1} \leftarrow R_{1} \cdot R_{2}$
- Neg.	$\stackrel{\star}{R_{1}} \leftarrow-R_{1}$	$\underset{\star}{Y_{3}} \leftarrow R^{\text {¢ }}$
- Add.	$R_{1} \leftarrow R_{3}+R_{1}$	

Atomic Right-to-Left Scalar Multiplication

	Add. 1	Add. 2	Dbl.
-Sq.	$R_{1} \leftarrow z_{2}{ }^{2}$	$R_{6} \leftarrow R_{4}{ }^{2}$	$R_{1} \leftarrow X_{1}{ }^{2}$
- Add.	\star	\star	$R_{2} \leftarrow Y_{1}+Y_{1}$
- Neg.	*	*	
Add.	$\star{ }^{\star}$		
- Mult.	$R_{2} \leftarrow X_{1} \cdot R_{1}$	$R_{5} \leftarrow z_{1} \cdot z_{2}$	$z_{2} \leftarrow R_{2} \cdot z_{1}$
- Add.	$\star{ }_{\star}$	+	$R_{4} \leftarrow R_{1}+R_{1}$
- Neg.	*	*	
Add.			*
- Mult.	$R_{1} \leftarrow R_{1} \cdot Z_{2}$	$z_{3} \leftarrow R_{5} \cdot R_{4}$	$R_{3} \leftarrow R_{2} \cdot Y_{1}$
- Add.			$R_{6} \leftarrow R_{3}+R_{3}$
- Neg.	*	*	
- Add.	,		
- Mult.	$R_{3} \leftarrow Y_{1} \cdot R_{1}$	$R_{2} \leftarrow R_{2} \cdot R_{6}$	$R_{2} \leftarrow R_{6} \cdot R_{3}$
- Add.	${ }_{\star}$		$R_{1} \leftarrow R_{4}+R_{1}$
- Neg.	*	$R_{1} \leftarrow-R_{1}$	
- Add.			$R_{1} \leftarrow R_{1}+W_{1}$
Sq.	$R_{1} \leftarrow z_{1}{ }^{2}$	$R_{5} \leftarrow R_{1}{ }^{2}$	$R_{3} \leftarrow R_{1}{ }^{2}$
-Add.			\cdots
\rightarrow Neg.	*	$R_{3} \leftarrow-R_{3}$	\star
Add.		*	
-Mult.	$R_{4} \leftarrow R_{1} \cdot X_{2}$	$R_{4} \leftarrow R_{4} \cdot R_{6}$	$R_{4} \leftarrow R_{6} \cdot X_{1}$
-Add. \rightarrow Neg.	$\stackrel{\star}{R_{4}} \leftarrow-R_{4}$	$R_{6} \leftarrow R_{5}+R_{4}$	$R_{5} \leftarrow W_{1}+W_{1}$
\rightarrow Neg. -Add	$R_{4} \leftarrow-R_{4}$	$R_{2} \leftarrow-R_{2}$	$R_{4} \leftarrow-R_{4}$
-Mult.	$R_{4} \leftarrow R_{2}+R_{4}$ $R_{1} \leftarrow Z_{1} \cdot R_{1}$	$R_{6} \leftarrow R_{6}+R_{2}$ $R_{3} \leftarrow R_{3} \cdot R_{4}$	$R_{3} \leftarrow R_{3}+R_{4}$ $W_{2} \leftarrow R_{2} \cdot R_{5}$
Add.		$\chi_{3} \leftarrow R_{2}+R_{6}$	$\chi_{2} \leftarrow R_{3}+R_{4}$
- Neg.	*		$R_{2} \leftarrow-R_{2}$
\rightarrow Add.	${ }^{\star}{ }_{1}^{*} \leftarrow R_{1}, Y_{2}$	$R_{2} \leftarrow X_{3}+R_{2}$	$R_{6} \leftarrow R_{4}+X_{2}$
- Mult.	$R_{1} \leftarrow R_{1} \cdot Y_{2}$	$R_{1} \leftarrow R_{1} \cdot R_{2}$	$R_{4} \leftarrow R_{6} \cdot R_{1}$
-Add. \rightarrow Neg.		$Y_{3} \leftarrow R_{3}+R_{1}$	
- Add.	$\begin{aligned} & R_{1} \leftarrow-R_{1} \\ & R_{1} \leftarrow R_{3}+R_{1} \end{aligned}$	*	$\begin{aligned} & R_{4} \leftarrow-R_{4} \\ & Y_{2} \leftarrow R_{4}+R_{2} \end{aligned}$

Atomic Right-to-Left Scalar Multiplication

-Sq. -Add.	Add. 1 ${\underset{\star}{R_{1}} \leftarrow Z_{2}{ }^{2}}^{2}$	Add. 2 $R_{6} \leftarrow R_{4}^{2}$	Dbl. $\begin{aligned} & R_{1} \leftarrow X_{1}{ }^{2} \\ & R_{2} \leftarrow Y_{1}+Y_{1} \end{aligned}$
Neg.	\star	\star	\star
- Add.	\star	\star	\star
Mult.	$R_{2} \leftarrow X_{1} \cdot R_{1}$	$R_{5} \leftarrow Z_{1} \cdot Z_{2}$	$Z_{2} \leftarrow R_{2} \cdot Z_{1}$
- Add.	\star		$R_{4} \leftarrow R_{1}+R_{1}$
- Neg.	\star	*	*
- Add.	\star	\star	\star
- Mult.	$R_{1} \leftarrow R_{1} \cdot Z_{2}$	$Z_{3} \leftarrow R_{5} \cdot R_{4}$	$R_{3} \leftarrow R_{2} \cdot Y_{1}$
Add.	*		$R_{6} \leftarrow R_{3}+R_{3}$
- Neg.	\star	*	\star
- Add.	\star	\star	\star
Mult.	$R_{3} \leftarrow Y_{1} \cdot R_{1}$	$R_{2} \leftarrow R_{2} \cdot R_{6}$	$R_{2} \leftarrow R_{6} \cdot R_{3}$
Add.			$R_{1} \leftarrow R_{4}+R_{1}$
Neg.	\star	$R_{1} \leftarrow-R_{1}$	
Add.			$R_{1} \leftarrow R_{1}+W_{1}$
Sq.	$R_{1} \leftarrow z_{1}{ }^{2}$	$R_{5} \leftarrow R_{1}{ }^{2}$	$R_{3} \leftarrow R_{1}{ }^{2}$
- Add.	\star	\star	\star
Neg.	\star	$R_{3} \leftarrow-R_{3}$	\star
- Add.	\star	*	\star
- Mult.	$R_{4} \leftarrow R_{1} \cdot X_{2}$	$R_{4} \leftarrow R_{4} \cdot R_{6}$	$R_{4} \leftarrow R_{6} \cdot X_{1}$
Add.	$\star{ }^{\star}$	$R_{6} \leftarrow R_{5}+R_{4}$	$R_{5} \leftarrow W_{1}+W_{1}$
Neg.	$R_{4} \leftarrow-R_{4}$	$R_{2} \leftarrow-R_{2}$	$R_{4} \leftarrow-R_{4}$
	$R_{4} \leftarrow R_{2}+R_{4}$	$R_{6} \leftarrow R_{6}+R_{2}$	$R_{3} \leftarrow R_{3}+R_{4}$
- Mult.	$R_{1} \leftarrow Z_{1} \cdot R_{1}$	$R_{3} \leftarrow R_{3} \cdot R_{4}$	$W_{2} \leftarrow R_{2} \cdot R_{5}$
- Add.		$X_{3} \leftarrow R_{2}+R_{6}$	$X_{2} \leftarrow R_{3}+R_{4}$
Neg.	\star		$R_{2} \leftarrow-R_{2}$
\rightarrow Add.	${ }^{\star}$	$R_{2} \leftarrow X_{3}+R_{2}$	$R_{6} \leftarrow R_{4}+X_{2}$
- Mult.	$R_{1} \leftarrow R_{1} \cdot Y_{2}$	$R_{1} \leftarrow R_{1} \cdot R_{2}$	$R_{4} \leftarrow R_{6} \cdot R_{1}$
Add.		$Y_{3} \leftarrow R_{3}+R_{1}$	
Neg.	$R_{1} \leftarrow-R_{1}$	\star *	$R_{4} \leftarrow-R_{4}$
-Add.	$\left[R_{1} \leftarrow R_{3}+R_{1}\right.$	*	$Y_{2} \leftarrow R_{4}+R_{2}$

Atomic Right-to-Left Scalar Multiplication

- Sq. -Add.	Add. 1 $R_{1} \leftarrow z_{2}^{2}$	$\begin{array}{r} \text { Add. } 2 \\ R_{6} \leftarrow R_{4}{ }^{2} \end{array}$	Dbl. $\begin{aligned} & R_{1} \leftarrow X_{1}^{2} \\ & R_{2} \leftarrow Y_{1}+Y_{1} \end{aligned}$
- Mult. -Add.	$\underset{\star}{R_{2}} \leftarrow X_{1} \cdot R_{1}$	$R_{5} \leftarrow z_{1} \cdot z_{2}$	$\begin{aligned} & Z_{2} \leftarrow R_{2} \cdot Z_{1} \\ & R_{4} \leftarrow R_{1}+R_{1} \end{aligned}$
-Mult. \rightarrow Add.	$R_{1} \leftarrow R_{1} \cdot Z_{2}$	$z_{3} \leftarrow R_{5} \cdot R_{4}$	$\begin{aligned} & R_{3} \leftarrow R_{2} \cdot Y_{1} \\ & R_{6} \leftarrow R_{3}+R_{3} \end{aligned}$
- Mult. -Add. \rightarrow Neg. -Add. -Sq.	$\begin{aligned} & R_{3} \leftarrow Y_{1} \cdot R_{1} \\ & \star \\ & \stackrel{\star}{\star} \\ & R_{1} \leftarrow Z_{1}{ }^{2} \end{aligned}$	$\begin{aligned} & R_{2} \leftarrow R_{2} \cdot R_{6} \\ & \stackrel{\star}{*} \\ & R_{1} \leftarrow-R_{1} \\ & \stackrel{\star}{*} \\ & R_{5} \leftarrow R_{1}{ }^{2} \end{aligned}$	$\begin{aligned} & R_{2} \leftarrow R_{6} \cdot R_{3} \\ & R_{1} \leftarrow R_{4}+R_{1} \\ & \star \\ & R_{1} \leftarrow R_{1}+W_{1} \\ & R_{3} \leftarrow R_{1}{ }^{2} \end{aligned}$
- Neg.	\star	$R_{3} \leftarrow-R_{3}$	\star
- Mult. -Add. - Neg. -Add. -Mult. -Add. \rightarrow Neg. -Add. - Mult. -Add. - Neg. -Add.	$\begin{aligned} & R_{4} \leftarrow R_{1} \cdot X_{2} \\ & \stackrel{\star}{R_{4}} \leftarrow-R_{4} \\ & R_{4} \leftarrow R_{2}+R_{4} \\ & R_{1} \leftarrow Z_{1} \cdot R_{1} \\ & \star \\ & \star \\ & \star \\ & \stackrel{\star}{R_{1}} \leftarrow R_{1} \cdot Y_{2} \\ & \star \\ & \stackrel{\star}{R_{1}} \leftarrow-R_{1} \\ & R_{1} \leftarrow R_{3}+R_{1} \end{aligned}$	$\begin{aligned} & R_{4} \leftarrow R_{4} \cdot R_{6} \\ & R_{6} \leftarrow R_{5}+R_{4} \\ & R_{2} \leftarrow-R_{2} \\ & R_{6} \leftarrow R_{6}+R_{2} \\ & R_{3} \leftarrow R_{3} \cdot R_{4} \\ & X_{3} \leftarrow R_{2}+R_{6} \\ & \star \\ & R_{2} \leftarrow X_{3}+R_{2} \\ & R_{1} \leftarrow R_{1} \cdot R_{2} \\ & Y_{3} \leftarrow R_{3}+R_{1} \end{aligned}$	$\begin{aligned} & R_{4} \leftarrow R_{6} \cdot X_{1} \\ & R_{5} \leftarrow W_{1}+W_{1} \\ & R_{4} \leftarrow-R_{4} \\ & R_{3} \leftarrow R_{3}+R_{4} \\ & W_{2} \leftarrow R_{2} \cdot R_{5} \\ & X_{2} \leftarrow R_{3}+R_{4} \\ & R_{2} \leftarrow-R_{2} \\ & R_{6} \leftarrow R_{4}+X_{2} \\ & R_{4} \leftarrow R_{6} \cdot R_{1} \\ & \star \\ & R_{4} \leftarrow-R_{4} \\ & Y_{2} \leftarrow R_{4}+R_{2} \end{aligned}$

Atomic Right-to-Left Scalar Multiplication

	Add. 1	Add. 2	Dbl.
Sq.	$R_{1} \leftarrow z_{2}{ }^{2}$	$R_{1} \leftarrow R_{6}{ }^{2}$	$R_{1} \leftarrow X_{1}{ }^{2}$
Add.			$R_{2} \leftarrow Y_{1}+Y_{1}$
Mult.	$R_{2} \leftarrow Y_{1} \cdot Z_{2}$	$R_{4} \leftarrow R_{5} \cdot R_{1}$	$Z_{2} \leftarrow R_{2} \cdot Z_{1}$
Add.			$R_{4} \leftarrow R_{1}+R_{1}$
Mult.	$R_{5} \leftarrow Y_{2} \cdot Z_{1}$	$R_{5} \leftarrow R_{1} \cdot R_{6}$	$R_{3} \leftarrow R_{2} \cdot Y_{1}$
Add.			$R_{6} \leftarrow R_{3}+R_{3}$
Mult.	$R_{3} \leftarrow R_{1} \cdot R_{2}$	$R_{1} \leftarrow z_{1} \cdot R_{6}$	$R_{2} \leftarrow R_{6} \cdot R_{3}$
Add.	${ }^{+}$	${ }^{+}$	$R_{1} \leftarrow R_{4}+R_{1}$
Add.	\star	\star	$R_{1} \leftarrow R_{1}+W_{1}$
Sq.	$R_{4} \leftarrow z_{1}{ }^{2}$	$R_{6} \leftarrow R_{2}{ }^{2}$	$R_{3} \leftarrow R_{1}{ }^{2}$
Mult.	$R_{2} \leftarrow R_{5} \cdot R_{4}$	$z_{3} \leftarrow R_{1} \cdot Z_{2}$	$R_{4} \leftarrow R_{6} \cdot X_{1}$
Add.	$\star{ }^{\star}$	$R_{1} \leftarrow R_{4}+R_{4}$	$R_{5} \leftarrow W_{1}+W_{1}$
Sub.	$R_{2} \leftarrow R_{2}-R_{3}$	$R_{6} \leftarrow R_{6}-R_{1}$	$R_{3} \leftarrow R_{3}-R_{4}$
Mult.	$R_{5} \leftarrow R_{1} \cdot X_{1}$	$R_{1} \leftarrow R_{5} \cdot R_{3}$	$W_{2} \leftarrow R_{2} \cdot R_{5}$
Sub.	${ }_{5}{ }_{1}{ }_{1}$	$\chi_{3} \leftarrow R_{6}-R_{5}$	$\chi_{2} \leftarrow R_{3}-R_{4}$
Sub.	* ${ }^{\text {* }}$	$R_{4} \leftarrow R_{4}-X_{3}$	$R_{6} \leftarrow R_{4}-X_{2}$
Mult.	$R_{6} \leftarrow X_{2} \cdot R_{4}$	$R_{3} \leftarrow R_{4} \cdot R_{2}$	$R_{4} \leftarrow R_{6} \cdot R_{1}$
Sub.	$R_{6} \leftarrow R_{6}-R_{5}$	$Y_{3} \leftarrow R_{3}-R_{1}$	$Y_{2} \leftarrow R_{4}-R_{2}$

Atomic Right-to-Left Scalar Multiplication

	Add. 1	Add. 2	Dbl.
Sq.	$R_{1} \leftarrow z_{2}{ }^{2}$	$R_{1} \leftarrow R_{6}{ }^{2}$	$R_{1} \leftarrow X_{1}{ }^{2}$
Add.			$R_{2} \leftarrow Y_{1}+Y_{1}$
Mult.	$R_{2} \leftarrow Y_{1} \cdot Z_{2}$	$R_{4} \leftarrow R_{5} \cdot R_{1}$	$Z_{2} \leftarrow R_{2} \cdot Z_{1}$
Add.			$R_{4} \leftarrow R_{1}+R_{1}$
Mult.	$R_{5} \leftarrow Y_{2} \cdot Z_{1}$	$R_{5} \leftarrow R_{1} \cdot R_{6}$	$R_{3} \leftarrow R_{2} \cdot Y_{1}$
Add.			$R_{6} \leftarrow R_{3}+R_{3}$
Mult.	$R_{3} \leftarrow R_{1} \cdot R_{2}$	$R_{1} \leftarrow Z_{1} \cdot R_{6}$	$R_{2} \leftarrow R_{6} \cdot R_{3}$
Add.	${ }^{+}$		$R_{1} \leftarrow R_{4}+R_{1}$
Add.	R^{2}	R^{2}	$R_{1} \leftarrow R_{1}+W_{1}$
Sq.	$R_{4} \leftarrow z_{1}{ }^{2}$	$R_{6} \leftarrow R_{2}{ }^{2}$	$R_{3} \leftarrow R_{1}{ }^{2}$
Mult.	$R_{2} \leftarrow R_{5} \cdot R_{4}$	$z_{3} \leftarrow R_{1} \cdot z_{2}$	$R_{4} \leftarrow R_{6} \cdot X_{1}$
Add.	$\star{ }^{*}{ }^{\text {a }}$	$R_{1} \leftarrow R_{4}+R_{4}$	$R_{5} \leftarrow W_{1}+W_{1}$
Sub.	$R_{2} \leftarrow R_{2}-R_{3}$	$R_{6} \leftarrow R_{6}-R_{1}$	$R_{3} \leftarrow R_{3}-R_{4}$
Mult.	$R_{5} \leftarrow R_{1} \cdot x_{1}$	$R_{1} \leftarrow R_{5} \cdot R_{3}$	$W_{2} \leftarrow R_{2} \cdot R_{5}$
Sub.	${ }_{\star}{ }^{\text {c }}$	$X_{3} \leftarrow R_{6}-R_{5}$	$X_{2} \leftarrow R_{3}-R_{4}$
Sub.		$R_{4} \leftarrow R_{4}-X_{3}$	$R_{6} \leftarrow R_{4}-X_{2}$
Mult.	$R_{6} \leftarrow X_{2} \cdot R_{4}$	$R_{3} \leftarrow R_{4} \cdot R_{2}$	$R_{4} \leftarrow R_{6} \cdot R_{1}$
Sub.	$R_{6} \leftarrow R_{6}-R_{5}$	$Y_{3} \leftarrow R_{3}-R_{1}$	$Y_{2} \leftarrow R_{4}-R_{2}$

8 multiplications $\rightarrow 6$ multiplications +2 squarings

Atomic Right-to-Left Scalar Multiplication

	Add. 1	Add. 2	Dbl.
Sq.	$R_{1} \leftarrow z_{2}{ }^{2}$	$R_{1} \leftarrow R_{6}{ }^{2}$	$R_{1} \leftarrow X_{1}{ }^{2}$
Add.			$R_{2} \leftarrow Y_{1}+Y_{1}$
Mult.	$R_{2} \leftarrow Y_{1} \cdot Z_{2}$	$R_{4} \leftarrow R_{5} \cdot R_{1}$	$Z_{2} \leftarrow R_{2} \cdot Z_{1}$
Add.			$R_{4} \leftarrow R_{1}+R_{1}$
Mult.	$R_{5} \leftarrow Y_{2} \cdot Z_{1}$	$R_{5} \leftarrow R_{1} \cdot R_{6}$	$R_{3} \leftarrow R_{2} \cdot Y_{1}$
Add.			$R_{6} \leftarrow R_{3}+R_{3}$
Mult.	$R_{3} \leftarrow R_{1} \cdot R_{2}$	$R_{1} \leftarrow Z_{1} \cdot R_{6}$	$R_{2} \leftarrow R_{6} \cdot R_{3}$
Add.	\cdots		$R_{1} \leftarrow R_{4}+R_{1}$
Add.	*	*	$R_{1} \leftarrow R_{1}+W_{1}$
Sq.	$R_{4} \leftarrow z_{1}{ }^{2}$	$R_{6} \leftarrow R_{2}{ }^{2}$	$R_{3} \leftarrow R_{1}{ }^{2}$
Mult.	$R_{2} \leftarrow R_{5} \cdot R_{4}$	$z_{3} \leftarrow R_{1} \cdot z_{2}$	$R_{4} \leftarrow R_{6} \cdot X_{1}$
Add.	$\star \quad 4$	$R_{1} \leftarrow R_{4}+R_{4}$	$R_{5} \leftarrow W_{1}+W_{1}$
Sub.	$R_{2} \leftarrow R_{2}-R_{3}$	$R_{6} \leftarrow R_{6}-R_{1}$	$R_{3} \leftarrow R_{3}-R_{4}$
Mult.	$R_{5} \leftarrow R_{1} \cdot X_{1}$	$R_{1} \leftarrow R_{5} \cdot R_{3}$	$W_{2} \leftarrow R_{2} \cdot R_{5}$
Sub.	${ }_{\star}{ }_{\star}$	$\chi_{3} \leftarrow R_{6}-R_{5}$	$\chi_{2} \leftarrow R_{3}-R_{4}$
Sub.	A	$R_{4} \leftarrow R_{4}-X_{3}$	$R_{6} \leftarrow R_{4}-X_{2}$
Mult.	$R_{6} \leftarrow X_{2} \cdot R_{4}$	$R_{3} \leftarrow R_{4} \cdot R_{2}$	$R_{4} \leftarrow R_{6} \cdot R_{1}$
Sub.	$R_{6} \leftarrow R_{6}-R_{5}$	$Y_{3} \leftarrow R_{3}-R_{1}$	$Y_{2} \leftarrow R_{4}-R_{2}$

8 multiplications $\rightarrow 6$ multiplications +2 squarings
16 additions $\rightarrow 6$ additions +4 subtractions

Atomic Right-to-Left Scalar Multiplication

	Add. 1	Add. 2	Dbl.
Sq.	$R_{1} \leftarrow z_{2}{ }^{2}$	$R_{1} \leftarrow R_{6}{ }^{2}$	$R_{1} \leftarrow X_{1}{ }^{2}$
Add.			$R_{2} \leftarrow Y_{1}+Y_{1}$
Mult.	$R_{2} \leftarrow Y_{1} \cdot Z_{2}$	$R_{4} \leftarrow R_{5} \cdot R_{1}$	$Z_{2} \leftarrow R_{2} \cdot Z_{1}$
Add.			$R_{4} \leftarrow R_{1}+R_{1}$
Mult.	$R_{5} \leftarrow Y_{2} \cdot Z_{1}$	$R_{5} \leftarrow R_{1} \cdot R_{6}$	$R_{3} \leftarrow R_{2} \cdot Y_{1}$
Add.			$R_{6} \leftarrow R_{3}+R_{3}$
Mult.	$R_{3} \leftarrow R_{1} \cdot R_{2}$	$R_{1} \leftarrow Z_{1} \cdot R_{6}$	$R_{2} \leftarrow R_{6} \cdot R_{3}$
Add.	\cdots		$R_{1} \leftarrow R_{4}+R_{1}$
Add.	*	*	$R_{1} \leftarrow R_{1}+W_{1}$
Sq.	$R_{4} \leftarrow z_{1}{ }^{2}$	$R_{6} \leftarrow R_{2}{ }^{2}$	$R_{3} \leftarrow R_{1}{ }^{2}$
Mult.	$R_{2} \leftarrow R_{5} \cdot R_{4}$	$z_{3} \leftarrow R_{1} \cdot z_{2}$	$R_{4} \leftarrow R_{6} \cdot X_{1}$
Add.	$\star \quad 4$	$R_{1} \leftarrow R_{4}+R_{4}$	$R_{5} \leftarrow W_{1}+W_{1}$
Sub.	$R_{2} \leftarrow R_{2}-R_{3}$	$R_{6} \leftarrow R_{6}-R_{1}$	$R_{3} \leftarrow R_{3}-R_{4}$
Mult.	$R_{5} \leftarrow R_{1} \cdot X_{1}$	$R_{1} \leftarrow R_{5} \cdot R_{3}$	$W_{2} \leftarrow R_{2} \cdot R_{5}$
Sub.	${ }_{\star}{ }_{\star}$	$\chi_{3} \leftarrow R_{6}-R_{5}$	$\chi_{2} \leftarrow R_{3}-R_{4}$
Sub.	A	$R_{4} \leftarrow R_{4}-X_{3}$	$R_{6} \leftarrow R_{4}-X_{2}$
Mult.	$R_{6} \leftarrow X_{2} \cdot R_{4}$	$R_{3} \leftarrow R_{4} \cdot R_{2}$	$R_{4} \leftarrow R_{6} \cdot R_{1}$
Sub.	$R_{6} \leftarrow R_{6}-R_{5}$	$Y_{3} \leftarrow R_{3}-R_{1}$	$Y_{2} \leftarrow R_{4}-R_{2}$

8 multiplications $\rightarrow 6$ multiplications +2 squarings 16 additions $\rightarrow 6$ additions +4 subtractions 8 negations $\rightarrow 0$

Implementation

192 bits ECDSA @ 30 MHz (CPU) \& 50 MHz (CC) Original : 35 ms , Improved : 30 ms (-14.5\%) Comparable RAM (≈ 500 Bytes) and Code size ($\approx 3 \mathrm{~KB}$)

introduction

RSA and Elliptic Curve Cryptography Scalar Multiplication Implementation Side-Channel Analysis

Improved Atomic Pattern for Scalar Multiplication

Square Always Exponentiation

> Horizontal Correlation Analysis

> Long-Integer Multiplication Blinding and Shuffling Collision-Correlation Änalysis on AES
Conclusion

Our Contribution

- New atomic algorithms using squarings only
- Immune to attacks distinguishing squarings from multiplications
- Better efficiency than regular ladders
- Exponentiation algorithms for parallelized squarings with best performances to our knowledge

Exponentiation Cost Summary

Algorithm	Cost / bit	$S / M=1$	$S / M=.8$	\# reg
Square \& multiply ${ }^{1,2,3}$	$0.5 M+1 S$	$1.5 M$	$1.3 M$	2
Multiply always	$1.5 M$	$1.5 M$	$1.5 M$	2
Regular ladders	$1 M+1 S$	$2 M$	$1.8 M$	2

[^0]
Replacing Multiplications by Squarings

$$
\begin{gather*}
x \times y=\frac{(x+y)^{2}-x^{2}-y^{2}}{2} \tag{1}\\
x \times y=\left(\frac{x+y}{2}\right)^{2}-\left(\frac{x-y}{2}\right)^{2} \tag{2}
\end{gather*}
$$

Regular Atomic Exponentiation

Square \& multiply:

Atomic Multiply always:

Regular Atomic Exponentiation

Square \& multiply:

Atomic Multiply always:

Atomic Square always:

Atomic Left-to-Right Algorithm

Input: $m, n, d \in \mathbb{N}$
Output: $m^{d} \bmod n$
1: $R_{0} \leftarrow 1 ; R_{1} \leftarrow m ; R_{2} \leftarrow 1$
2: $R_{3} \leftarrow m^{2} / 2 \bmod n$
3: $j \leftarrow 0 ; i \leftarrow k-1$
4: while $i \geq 0$ do
5: $\quad R_{M_{j, 0}} \leftarrow R_{M_{j, 1}}+R_{M_{j, 2}} \bmod n$
6: $\quad R_{M_{j, 3}} \leftarrow R_{M_{j, 3}}{ }^{2} \bmod n$
7: $\quad R_{M_{j, 4}} \leftarrow R_{M_{j, 5}} / 2 \bmod n$
8: $\quad R_{M_{j, 6}} \leftarrow R_{M_{j, 7}}-R_{M_{j, 8}} \bmod n$
9: $\quad j \leftarrow d_{i}(1+(j \bmod 3))$
10: $\quad i \leftarrow i-M_{j, 9}$
11: return R_{0}

$$
M=\left(\begin{array}{llllllllll}
1 & 1 & 1 & 0 & 2 & 1 & 1 & 1 & 2 & 1 \\
2 & 0 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 0 \\
1 & 1 & 3 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
3 & 3 & 3 & 0 & 3 & 3 & 1 & 1 & 3 & 1
\end{array}\right)
$$

Atomic Right-to-Left Algorithm

Input: $m, n, d \in \mathbb{N}$
Output: $m^{d} \bmod n$
1: $R_{0} \leftarrow m ; R_{1} \leftarrow 1 ; R_{2} \leftarrow 1$
2: $i \leftarrow 0 ; j \leftarrow 0$
3: while $i \leq k-1$ do
4: $\quad j \leftarrow d_{i}(1+(j \bmod 3))$
5: $\quad R_{M_{j, 0}} \leftarrow R_{M_{j, 1}}+R_{0} \bmod n$
6: $\quad R_{M_{j, 2}} \leftarrow R_{M_{j, 3}} / 2 \bmod n$
7: $\quad R_{M_{j, 4}} \leftarrow R_{M_{j, 5}}-R_{M_{j, 6}} \bmod n$
8: $\quad R_{M_{j, 3}} \leftarrow R_{M_{j, 3}}{ }^{2} \bmod n$
9: $\quad i \leftarrow i+M_{j, 7}$

10: return R_{1}

$$
M=\left(\begin{array}{llllllll}
0 & 0 & 2 & 0 & 0 & 0 & 2 & 1 \\
2 & 1 & 2 & 2 & 1 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 1 & 1
\end{array}\right)
$$

Cost Comparison

Algorithm	Cost / bit	$S / M=1$	$S / M=.8$	\# reg
Square \& multiply $1,2,3$	$0.5 M+1 S$	$1.5 M$	$1.3 M$	2
Multiply always 2,3	$1.5 M$	$1.5 M$	$1.5 M$	2
Regular ladder $^{\text {L.-to-r. square always }}{ }^{3}$	$1 M+1 S$	$2 M$	$1.8 M$	2
R.-to-l. square always 3	$2 S$	$2 M$	$\mathbf{1 . 6 M}$	4

$\rightarrow \mathbf{1 1} \%$ speed-up over Montgomery ladder

[^1]
Implementation

AT90SC chip @ 30MHz with AdvX arithmetic coprocessor:

Algorithm	Key len. (b)	Code (B)	RAM (B)	Timing (ms)
Mont. ladder	512	360	128	30
	1024	360	256	200
	2048	360	512	1840
Square Always	512	510	192	28
	1024	510	384	190
	2048	510	768	1740

$\rightarrow \mathbf{5} \%$ practical speed-up obtained in practice

Parallelization

Motivation:

- Many devices are equipped with multi-core processors
- Parallelized Montgomery ladder : $1 \mathrm{M} /$ bit
- Squarings are independent in equations (1) and (2)

Parallelization

Motivation:

- Many devices are equipped with multi-core processors
- Parallelized Montgomery ladder : $1 \mathrm{M} /$ bit
- Squarings are independent in equations (1) and (2)

We study how to optimize square always algorithms if two parallel squarings are available using space/time trade-offs.

Cost Summary

We demonstrate that the cost of our parallelized algorithm using λ extra registers tends to:

$$
\left(1+\frac{1}{4 \lambda+2}\right) S
$$

Algorithm	General cost	$S / M=1$	$S / M=0.8$
Parallel Montgomery ladder	$1 M$	$1 M$	$1 M$
Parallel square always $\lambda=1$	$7 S / 6$	$1.17 M$	$\mathbf{0 . 9 3 M}$
Parallel square always $\lambda=2$	$11 S / 10$	$1.10 M$	$\mathbf{0 . 8 8 M}$
Parallel square always $\lambda=3$	$15 S / 14$	$1.07 M$	$\mathbf{0 . 8 6 M}$
\vdots	\vdots	\vdots	\vdots
Parallel square always $\lambda \rightarrow \infty$	$1 S$	$1 M$	$\mathbf{0 . 8 M}$

mitroduction

RSA and Elliptic Curve Cryptography Scalar Multiplication Implementation Side-Channel Analysis

Improved Atomic Pattern for Scalar Multiplication
Square Always Exponentiation
Horizontal Correlation Analysis
Long-Integer Multiplication Blinding and Shuffling
Collision-Correlation Analysis on AES
Conclusion

Our Contribution

- New differential analysis on exponentiation using a single trace
- Any exponentiation algorithm can be subject to this attack
- Circumvent the exponent blinding countermeasure
- Require the knowledge of underlying modular multiplication implementation

Modular Multiplication Implementation

Schoolbook long-integer multiplication $x \times y$ in base b with $x, y<b^{k}$
Input: $x=\left(x_{k-1} x_{k-2} \ldots x_{0}\right)_{b}, y=\left(y_{k-1} y_{k-2} \ldots y_{0}\right)_{b}$
Output: $x \times y$
Uses: $w=\left(w_{2 k-1} w_{2 k-2} \ldots w_{0}\right)$
1: $w \leftarrow(00 \ldots 0)$
2: for $i=0$ to $k-1$ do
3:
$c \leftarrow 0$
4: \quad for $j=0$ to $k-1$ do
5: $\quad(u v)_{b} \leftarrow w_{i+j}+x_{i} \times y_{j}+c$
6: $\quad W_{i+j} \leftarrow V$
7: $\quad c \leftarrow u$
8: $\quad w_{i+k} \leftarrow C$
9: return w

Modular Multiplication Implementation

Rows and columns

| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \times | | | | | | | |

Horizontal Correlation Analysis

Vertical:

- Uses N segments from different traces.

Horizontal:

- Uses k^{2} segments from a single trace.

Horizontal Side-Channel Analysis

We target single-multiplication segments $T_{i, j}^{s}$ of the s-th modular multiplication inside a single leakage trace T.

Horizontal Correlation Analysis

Considering an atomic multiply-always implementation:

Input: $m, n, d \in \mathbb{N}$
Output: $m^{d} \bmod n$
1: $R_{0} \leftarrow 1$
2: $R_{1} \leftarrow m$
3: $i \leftarrow \ell-1$
4: $t \leftarrow 0$
5: while $i \geq 0$ do
6: $\quad R_{0} \leftarrow R_{0} \times R_{t} \bmod n$
7: $\quad t \leftarrow t \oplus d_{i}$
8: $\quad i \leftarrow i-1+t$
9: return R_{0}

Horizontal Correlation Analysis

Considering an atomic multiply-always implementation:

Input: $m, n, d \in \mathbb{N}$
Output: $m^{d} \bmod n$
1: $R_{0} \leftarrow 1$
2: $R_{1} \leftarrow m$
3: $i \leftarrow \ell-1$
4: $t \leftarrow 0$
5: while $i \geq 0$ do
6: $\quad R_{0} \leftarrow R_{0} \times R_{t} \bmod n$
7: $\quad t \leftarrow t \oplus d_{i}$
8: $\quad i \leftarrow i-1+t$
9: return R_{0}

- Execute a single RSA signature $m^{d} \bmod n$ and collect the execution power trace T.

Horizontal Correlation Analysis

Considering an atomic multiply-always implementation:

Input: $m, n, d \in \mathbb{N}$
Output: $m^{d} \bmod n$
1: $R_{0} \leftarrow 1$
2: $R_{1} \leftarrow m$
3: $i \leftarrow \ell-1$
4: $t \leftarrow 0$
5: while $i \geq 0$ do
6: $\quad R_{0} \leftarrow R_{0} \times R_{t} \bmod n$
7: $\quad t \leftarrow t \oplus d_{i}$
8: $\quad i \leftarrow i-1+t$
9: return R_{0}

- Execute a single RSA signature $m^{d} \bmod n$ and collect the execution power trace T.
- Assuming u most significant bits of d are known by the attacker:

$$
d=\left(d_{\ell-1} \ldots d_{\ell-u} d_{\ell-(u+1)} \ldots d_{1} d_{0}\right)
$$

Horizontal Correlation Analysis

Considering an atomic multiply-always implementation:

Input: $m, n, d \in \mathbb{N}$
Output: $m^{d} \bmod n$
1: $R_{0} \leftarrow 1$
2: $R_{1} \leftarrow m$
3: $i \leftarrow \ell-1$
4: $t \leftarrow 0$
5: while $i \geq 0$ do
6: $\quad R_{0} \leftarrow R_{0} \times R_{t} \bmod n$
7: $\quad t \leftarrow t \oplus d_{i}$
8: $\quad i \leftarrow i-1+t$
9: return R_{0}

- Execute a single RSA signature $m^{d} \bmod n$ and collect the execution power trace T.
- Assuming u most significant bits of d are known by the attacker:

$$
d=\left(d_{\ell-1} \ldots d_{\ell-u} d_{\ell-(u+1)} \ldots d_{1} d_{0}\right)
$$

- Let $R_{0}^{(u)}$ denote the value of R_{0} after processing the u-th bit of d :

$$
R_{0}^{(u)}=m^{d_{l-1} \ldots d_{l-u}} \bmod n
$$

Horizontal Correlation Analysis

$$
\text { Let } v=u+\operatorname{HW}\left(d_{\ell-1} \ldots d_{\ell-u}\right) \quad \text { i.e. } \quad u \text {-th bit } \longleftrightarrow \text { multiplication } T^{v}
$$

$T^{v+1} \quad T^{v+2}$

$$
\begin{aligned}
R_{0}^{(u)} \underbrace{d_{\ell-u-1}=1}_{d_{\ell-u-1}=0} & R_{0}^{(u)} \times R_{0}^{(u)} \longrightarrow R_{0}^{(u)^{2}} \times m
\end{aligned} \begin{aligned}
& \\
& R_{0}^{(u)} \times R_{0}^{(u)} \xrightarrow{d_{\ell-u-2}=0,1}
\end{aligned} R_{0}^{(u)^{2}} \times R_{0}^{(u)^{2}} \ldots .
$$

Horizontal Correlation Analysis

$$
\text { Let } v=u+\mathrm{HW}\left(d_{\ell-1} \ldots d_{\ell-u}\right) \quad \text { i.e. } \quad u \text {-th bit } \longleftrightarrow \text { multiplication } T^{v}
$$

$$
\begin{array}{|c}
T^{v+1} \\
R_{0}^{(u)} \underbrace{d_{\ell-u-1}=0}_{d_{\ell-u-1}=1}
\end{array} R_{0}^{(u)} \times R_{0}^{(u)} \longrightarrow R_{0}^{(u)^{2} \times m} \quad \ldots
$$

- Compute correlation between:
- trace segments $T_{i, j}^{v+2}$ and values $D_{j}=m_{j} \quad$ or
- trace segments $T_{i, j}^{v+2}$ and values $D_{i, j}=R_{0, i}^{(u)} \times m_{j}$

Horizontal Correlation Analysis

$$
\text { Let } v=u+\operatorname{HW}\left(d_{\ell-1} \ldots d_{\ell-u}\right) \quad \text { i.e. } \quad u \text {-th bit } \longleftrightarrow \text { multiplication } T^{v}
$$

$$
\begin{array}{|c}
T^{v+1} \\
R_{0}^{(u)} \underbrace{d_{\ell-u-1}=0}_{d_{\ell-u-1=1}}
\end{array} R^{v+2}
$$

- Compute correlation between:
- trace segments $T_{i, j}^{v+2}$ and values $D_{j}=m_{j} \quad$ or
- trace segments $T_{i, j}^{v+2}$ and values $D_{i, j}=R_{0, i}^{(u)} \times m_{j}$
- If correlation peak: $d_{\ell-(u+1)}=1$, or $d_{\ell-(u+1)}=0$ otherwise.

Experimental Results

Correlation trace result on series of traces $T_{i, j}^{V+2}$ with $D_{j}=m_{j}$

Correlation trace result on series of segments $T_{i, j}^{V+2}$ with $D_{i, j}=R_{0, i}^{(u)} \times m_{j}$

introduction

RSA and Elliptic Curve Cryptography Scalar Multiplication Implementation Side-Channel Analysis

Improved Atomic Pattern for Scalar Multiplication
Square Always Exponentiation
Horizontal Correlation Analysis
Long-Integer Multiplication Blinding and Shuffling

Collision-Correlation Analysis on AES
Conclusion

Our Contribution

- New countermeasure against differential analysis for RSA and ECC
- Designed to protect from horizontal analysis
- Implemented at the multi-precision multiplication level

Long-Integer Multiplication

Shuffling rows and blinding columns

Let us shuffle the rows of the multiplication:

Long-Integer Multiplication

Shuffling rows and blinding columns

Choose at random a permutation α of $(0,1, \ldots, k-1)$ and compute:

$\left(c, w_{\alpha(i)+j}\right)_{b}=w_{\alpha(i)+j}+x_{\alpha(i)} \times y_{j}+c$									
\times					$\begin{aligned} & x_{k-1} \\ & y_{k-1} \end{aligned}$		$\begin{aligned} & x_{2} \\ & y_{2} \end{aligned}$	$\begin{aligned} & x_{1} \\ & y_{1} \end{aligned}$	$\begin{aligned} & x_{0} \\ & y_{0} \end{aligned}$
+		$x_{k-2} y_{k-1} \ldots$	$x_{k-2} y_{2}$	$x_{k-2} y_{1}$	$x_{k-2} y_{0}$				
+					$x_{0} y_{k-1}$	\ldots	$x_{0} y_{2}$	$x_{0} y_{1}$	$x_{0} y_{0}$
+			$x_{2} y_{k-1}$	$x_{2} y_{k-2}$	$x_{2} y_{k-3}$	\ldots	$x_{2} y_{0}$		
\vdots				:					
+	$x_{k-1} y_{k-1}$	$x_{k-1} y_{k-2} \ldots$	$x_{k-1} y_{1}$	$x_{k-1} y_{0}$					
+				$x_{1} y_{k-1}$	$x_{1} y_{k-2}$	\ldots	$x_{1} y_{1}$	$x_{1} y_{0}$	
$w_{2 k-1}$	$W_{2 k-2}$	$W_{2 k-3}$		\ldots			W_{2}	w_{1}	w_{0}

Long-Integer Multiplication

Shuffling rows and blinding columns

Choose at random a permutation α of $(0,1, \ldots, k-1)$ and compute:

$$
\left(c, w_{\alpha(i)+j}\right)_{b}=w_{\alpha(i)+j}+x_{\alpha(i)} \times y_{j}+c
$$

Still necessary to blind columns:
For each row $\alpha(i)$, choose at random a word r, compute and store $r \times x_{\alpha(i)}$, blind each single-precision multiplication:

$$
\left(c, w_{\alpha(i)+j}\right)_{b}=w_{\alpha(i)+j}+x_{\alpha(i)} \times\left(y_{j}-r\right)+r \times x_{\alpha(i)}+c
$$

Long-Integer Multiplication

Shuffling rows and blinding columns

Choose at random a permutation α of $(0,1, \ldots, k-1)$ and compute:

$$
\left(c, w_{\alpha(i)+j}\right)_{b}=w_{\alpha(i)+j}+x_{\alpha(i)} \times y_{j}+c
$$

Still necessary to blind columns:
For each row $\alpha(i)$, choose at random a word r, compute and store $r \times x_{\alpha(i)}$, blind each single-precision multiplication:

$$
\left(c, w_{\alpha(i)+j}\right)_{b}=w_{\alpha(i)+j}+x_{\alpha(i)} \times\left(y_{j}-r\right)+r \times x_{\alpha(i)}+c
$$

- Provides k ! different sequences of single-precision multiplications.

Long-Integer Multiplication

Shuffling rows and blinding columns

Choose at random a permutation α of $(0,1, \ldots, k-1)$ and compute:

$$
\left(c, w_{\alpha(i)+j}\right)_{b}=w_{\alpha(i)+j}+x_{\alpha(i)} \times y_{j}+c
$$

Still necessary to blind columns:
For each row $\alpha(i)$, choose at random a word r, compute and store $r \times x_{\alpha(i)}$, blind each single-precision multiplication:

$$
\left(c, w_{\alpha(i)+j}\right)_{b}=w_{\alpha(i)+j}+x_{\alpha(i)} \times\left(y_{j}-r\right)+r \times x_{\alpha(i)}+c
$$

- Provides k ! different sequences of single-precision multiplications.
- Requires k extra multiplications and 3 extra words of storage.

Long-Integer Multiplication

Shuffling rows and blinding columns

Choose at random a permutation α of $(0,1, \ldots, k-1)$ and compute:

$$
\left(c, w_{\alpha(i)+j}\right)_{b}=w_{\alpha(i)+j}+x_{\alpha(i)} \times y_{j}+c
$$

Still necessary to blind columns:
For each row $\alpha(i)$, choose at random a word r, compute and store $r \times x_{\alpha(i)}$, blind each single-precision multiplication:

$$
\left(c, w_{\alpha(i)+j}\right)_{b}=w_{\alpha(i)+j}+x_{\alpha(i)} \times\left(y_{j}-r\right)+r \times x_{\alpha(i)}+c
$$

- Provides k ! different sequences of single-precision multiplications.
- Requires k extra multiplications and 3 extra words of storage.
- Saves $k+1$ multiplications and $4 k-1$ words of storage compared to the full blinding countermeasure.

Long-Integer Multiplication

Shuffling rows and columns

Let us now shuffle the rows and the columns of the multiplication:

Long-Integer Multiplication

Shuffling rows and columns

Let us now shuffle the rows and the columns of the multiplication:
Choose at random two permutations α, β of $(0,1, \ldots, k-1)$ and compute:

$$
\left(c_{\beta(j)}, w_{\alpha(i)+\beta(j)}\right)_{b}=w_{\alpha(i)+\beta(j)}+x_{\alpha(i)} \times y_{\beta(j)}
$$

Carry propagation is more complicated and requires a k-word array c.

Long-Integer Multiplication

Shuffling rows and columns

Let us now shuffle the rows and the columns of the multiplication:
Choose at random two permutations α, β of $(0,1, \ldots, k-1)$ and compute:

$$
\left(c_{\beta(j)}, w_{\alpha(i)+\beta(j)}\right)_{b}=w_{\alpha(i)+\beta(j)}+x_{\alpha(i)} \times y_{\beta(j)}
$$

Carry propagation is more complicated and requires a k-word array c.

- Provides $(k!)^{2}$ different sequences of single-precision multiplications.

Long-Integer Multiplication

Shuffling rows and columns

Let us now shuffle the rows and the columns of the multiplication:
Choose at random two permutations α, β of $(0,1, \ldots, k-1)$ and compute:

$$
\left(c_{\beta(j)}, w_{\alpha(i)+\beta(j)}\right)_{b}=w_{\alpha(i)+\beta(j)}+x_{\alpha(i)} \times y_{\beta(j)}
$$

Carry propagation is more complicated and requires a k-word array c.

- Provides $(k!)^{2}$ different sequences of single-precision multiplications.
- Requires no extra multiplication but k extra words of storage.

Long-Integer Multiplication

Shuffling rows and columns

Let us now shuffle the rows and the columns of the multiplication:
Choose at random two permutations α, β of $(0,1, \ldots, k-1)$ and compute:

$$
\left(c_{\beta(j)}, w_{\alpha(i)+\beta(j)}\right)_{b}=w_{\alpha(i)+\beta(j)}+x_{\alpha(i)} \times y_{\beta(j)}
$$

Carry propagation is more complicated and requires a k-word array c.

- Provides $(k!)^{2}$ different sequences of single-precision multiplications.
- Requires no extra multiplication but k extra words of storage.

Saves k multiplications but uses additional storage compared to the previous countermeasure.

Long-Integer Multiplication

For instance, using a 32-bit multiplier:

bit length	$k!$	$(k!)^{2}$
256	$\approx 2^{15}$	$\approx 2^{30}$
512	$\approx 2^{44}$	$\approx 2^{88}$
1024	$\approx 2^{117}$	$\approx 2^{235}$

Long-Integer Multiplication

For instance, using a 32-bit multiplier:

bit length	$k!$	$(k!)^{2}$
256	$\approx 2^{15}$	$\approx 2^{30}$
512	$\approx 2^{44}$	$\approx 2^{88}$
1024	$\approx 2^{117}$	$\approx 2^{235}$

- Also compatible with interleaved multiplications and reductions.

Long-Integer Multiplication

For instance, using a 32-bit multiplier:

bit length	$k!$	$(k!)^{2}$
256	$\approx 2^{15}$	$\approx 2^{30}$
512	$\approx 2^{44}$	$\approx 2^{88}$
1024	$\approx 2^{117}$	$\approx 2^{235}$

- Also compatible with interleaved multiplications and reductions.
- Studying the cost of these countermeasures for hardware implementations requires further investigation.
introduction
RSA and Elliptic Curve Cryptography Scalar Multiplication Implementation Side-Channel Analysis
Improved Atomic Pattern for Scalar Multiplication
Square Always Exponentiation
Horizontal Correlation Analysis
Long-Integer Multiplication Blinding and Shuffling
Collision-Correlation Analysis on AES

Conclusion

Our Contribution

- Improved collision-correlation techniques on AES defeating some first-order protected implementations
- Need less than 1500 acquisitions in our experiments
- No need to establish a consumption model for correlation

AES Overview

AES

We focus on AES-128:

- message $M=\left(m_{0} m_{1} \ldots m_{15}\right)$
- key $K=\left(k_{0} k_{1} \ldots k_{15}\right)$
- ciphertext $C=\left(c_{0} c_{1} \ldots c_{15}\right)$
- for $i \in[0,15]$ we denote $x_{i}=m_{i} \oplus k_{i}$

AES Overview

AES

We focus on AES-128:

- message $M=\left(m_{0} m_{1} \ldots m_{15}\right)$
- key $K=\left(k_{0} k_{1} \ldots k_{15}\right)$
- ciphertext $C=\left(c_{0} c_{1} \ldots c_{15}\right)$
- for $i \in[0,15]$ we denote $x_{i}=m_{i} \oplus k_{i}$

Our attack targets the first round SubBytes function

Principle

Detect internal collisions between data processed in blinded S-Boxes in the first AES round:

Principle

Detect internal collisions between data processed in blinded S-Boxes in the first AES round:

Two protections against first-order attacks are considered:

1. substitution table masking: $S^{\prime}\left(x_{i} \oplus u\right)=S\left(x_{i}\right) \oplus v$, with $u \neq v$ same masks u and v for all bytes
2. masked pseudo-inversion in $\mathbb{F}_{2^{8}}: I^{\prime}\left(x_{i} \oplus u_{i}\right)=I\left(x_{i}\right) \oplus u_{i}$, for $0 \leq i \leq 15$ 16 different masks but same input and output masks

Collision-Correlation Analysis

- Encrypt N times the same message M
- Collect the power traces $T^{n}, 0 \leq n \leq N-1$

Collision-Correlation Analysis

- Encrypt N times the same message M
- Collect the power traces $T^{n}, 0 \leq n \leq N-1$
- Consider two instructions whose processing starts at times t_{0} and t_{1} I points are acquired per instruction processing

Collision-Correlation Analysis

- Encrypt N times the same message M
- Collect the power traces $T^{n}, 0 \leq n \leq N-1$
- Consider two instructions whose processing starts at times t_{0} and t_{1} I points are acquired per instruction processing
- Construct the two series $\Theta_{0}=\left(T_{t_{0}}^{n}\right)_{n}$ and $\Theta_{1}=\left(T_{t_{1}}^{n}\right)_{n}$ of power consumptions segments

Collision-Correlation Analysis

- Encrypt N times the same message M
- Collect the power traces $T^{n}, 0 \leq n \leq N-1$
- Consider two instructions whose processing starts at times t_{0} and t_{1} I points are acquired per instruction processing
- Construct the two series $\Theta_{0}=\left(T_{t_{0}}^{n}\right)_{n}$ and $\Theta_{1}=\left(T_{t_{1}}^{n}\right)_{n}$ of power consumptions
 segments
- Apply a statistical treatment to $\left(\Theta_{0}, \Theta_{1}\right)$ to identify if same data was involved in $T_{t_{0}}^{n}$ and $T_{t_{1}}^{n}$
- We choose the Pearson correlation factor

$$
\hat{\rho}_{\Theta_{0}, \Theta_{1}}(t)=\frac{\operatorname{cov}\left(\Theta_{0}(t), \Theta_{1}(t)\right)}{\sigma_{\Theta_{0}(t)} \sigma_{\Theta_{1}(t)}}
$$

First Attack Description (1)

Principle: detect when two SubBytes inputs (and outputs) are equal in first AES round

Result: provide a relation between two key bytes

First Attack Description (2)

- Encrypt N times the same message M and collect the N traces of first AES round
- For the 120 possible pairs $\left(i_{1}, i_{2}\right)$ compute $\hat{\rho}_{\Theta_{i_{1}}, \Theta_{i_{2}}}(t)$
- When a correlation peak appears a relation between $k_{i_{1}}$ and $k_{i_{2}}$ is found
- Repeat for several random messages M until enough relations are found

First Attack Description (2)

- Encrypt N times the same message M and collect the N traces of first AES round
- For the 120 possible pairs $\left(i_{1}, i_{2}\right)$ compute $\hat{\rho}_{\Theta_{i_{1}}, \Theta_{i_{2}}}(t)$
- When a correlation peak appears a relation between $k_{i_{1}}$ and $k_{i_{2}}$ is found
- Repeat for several random messages M until enough relations are found

On average 59 messages are needed Total number of traces $=59 \times N$

Experimental Results

Correlation traces obtained on real traces for $N=25$

Total number of acquisitions : $25 \times 59 \approx 1500$

Second Attack Description (1)

Previous attack cannot be applied to masked inversion if masks are different for each byte

Collision between input and output reveals one key byte except one bit:

$$
k_{i}=m_{i} \quad \text { or } \quad k_{i}=m_{i} \oplus 1
$$

Practical Results

Correlation traces obtained on simulated traces for the pseudo-inversion of the first byte in $G F\left(2^{8}\right)$ with $N=16$

Outline

introduction
RSA and Elliptic Curve Cryptography
Scalar Multiplication Implementation Side-Channel Analysis
Improved Atomic Pattern for Scalar Multiplication
Square Always Exponentiation
Horizontal Correlation Analysis
Long-Integer Multiplication Blinding and Shuffling
Collision-Correlation Analysis on AES

Conclusion

Conclusion

Concrete results of this thesis:

- 4 publications in international conferences (CHES, INDOCRYPT, CARDIS, ICICS)
- 4 patent registrations

Personal benefits:

- Research with industrial constraints is motivating
- Both implementation and side-channel analysis covered in this research
- Both high and low-level implementation studied
- Both public and private-key cryptography investigated

[^0]: ${ }^{1}$ algorithm unprotected towards the SPA
 ${ }^{2}$ algorithm sensitive to $\mathrm{S}-\mathrm{M}$ discrimination
 ${ }^{3}$ possible sliding window optimization

[^1]: ${ }^{1}$ algorithm unprotected towards the SPA
 ${ }^{2}$ algorithm sensitive to $\mathrm{S}-\mathrm{M}$ discrimination
 ${ }^{3}$ possible sliding window optimization

