FUN WITH ISOGENIES AND TREES

Luca De Feo ${ }^{1}$

joint work with David Jao ${ }^{2}$ and Jérôme Plût ${ }^{3}$
${ }^{1}$ Université de Versailles - Saint-Quentin-en-Yvelines,
${ }^{2}$ University of Waterloo,
${ }^{3}$ ANSI
October 30, 2012, Séminaire LFANT, projet LFANT, Université de Bordeaux

As long as we are concerned in this talk, elliptic curves are

- Algebraic groups defined over a (finite) field.
- Their group law is easy to compute (say, in constant time).
- Any curve E is (almost) uniquely determined by its j-invariant $j(E)$ up to isomorphism (i.e. a change of coordinates).

$$
\begin{gathered}
E: y^{2}=x^{3}+a x+b \quad a, b \in k \\
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
\end{gathered}
$$

Isogenies

Isogenies are just the right notion of morphism for elliptic curves

- Surjective group morphism.
- Algebraic map (i.e., defined by polynomials).
- Rational (coefficients in the base field k).

$$
0 \rightarrow H \rightarrow E \xrightarrow{\phi} E^{\prime} \rightarrow 0
$$

The kernel H determines the image curve E^{\prime} up to isomorphism

$$
E / H \stackrel{\text { def }}{=} E^{\prime}
$$

ISOGENY DEGREE

Neither of these definitions is quite correct, but they nearly are:

- The degree of ϕ is the cardinality of $\operatorname{ker} \phi$.
- (Bisson) the degree of ϕ is the time needed to compute it.

ISOGENIES: AN EXAMPLE

Define the multiplication-by-m map $[m]: E \rightarrow E$

$$
[m] P=\underbrace{P+\cdots+P}_{m \text { times }}
$$

[m] is an isogeny:

- $\operatorname{deg}[m]=m^{2}$;
- In general $\operatorname{ker}[m]=E[m] \simeq(\mathbb{Z} / m \mathbb{Z})^{2}$.

Remark: This is, indeed, an endomorphism.

Computational isogenies

In practice: an isogeny ϕ is just a rational fraction (or maybe two)

$$
\frac{N(x)}{D(x)}=\frac{x^{n}+\cdots+n_{1} x+n_{0}}{x^{n-1}+\cdots+d_{1} x+d_{0}} \in k(x), \quad \text { with } n=\operatorname{deg} \phi
$$

and $D(x)$ vanishes on $\operatorname{ker} \phi$.
THE EXPLICIT ISOGENY PROBLEM
InPUT: A description of the isogeny (e.g, its kernel).
Output: The curve E / H and the rational fraction N / D.
LOWER BOUND: $\Omega(n)$.

THE ISOGENY EVALUATION PROBLEM

INPUT: A description of the isogeny ϕ, a point $P \in E(k)$.
Output: The curve E / H and $\phi(P)$.

IsOGENY GRAPHS

We want to study the graph of elliptic curves with isogenies up to isomorphism. We say two isogenies ϕ, ϕ^{\prime} are isomorphic if:

Example: Finite field, ordinary case, graph of isogenies of degree 3.

Theorem (Serre-Tate)

Two curves are isogenous over a finite field k if and only if they have the same number of points on k.

THE GRAPH OF ISOGENIES OF PRIME DEGREE $\ell \neq p$

Ordinary case

- Nodes can have degree $0,1,2$ or $\ell+1$.
- Connected components form so called volcanoes.

Supersingular case

- The graph is $\ell+1$-regular.
- There is an unique connected component made of all supersingular curves with the same number of points.
- The graph has the Ramanujan property (for cryptographers like me: sufficiently long random walks land anywhere with probability distribution close to uniform).

Isogenies up to endomorrhism

In some cases we want to identify edges
 between the same vertices. We say two isogenies ϕ, ϕ^{\prime} are in the same class if there exist endomorphisms a and b of E and E^{\prime} such that:

FACTS

- This is an equivalence relation.
- Two isogenies are in the same class if and only if they have the same domain and codomain.

The dual isogeny theorem

Theorem: for any isogeny $\phi: E \rightarrow E^{\prime}$ there exists $\hat{\phi}$

- $\hat{\phi}$ is called the dual isogeny, $\operatorname{deg} \phi=\operatorname{deg} \hat{\phi}=m$.
- $\hat{\hat{\phi}}=\phi$.

Obvious corollaries:

- $\phi(E[m])=\operatorname{ker} \hat{\phi}$ (dual isogenies are "easy" to compute).
- Graphs of isogenies are undirected.
- An endomorphism is an isogeny $\phi: E \rightarrow E$.
- The endomorphisms form a ring denoted $\operatorname{End}_{k}(E)$.

THEOREM

$\mathbb{Q} \otimes \operatorname{End}_{\bar{k}}(E)$ is isomorphic to one of the following
ORDINARY CASE: \mathbb{Q} (only possible if char $k=0$),
ORDINARY CASE (COMPLEX MULTIPLICATION): an imaginary quadratic field,
SUPERSINGULAR CASE: a quaternion algebra (only possible if char $k \neq 0$).

Corollary
$\operatorname{End}(E)$ is isomorphic to an order $\mathcal{O} \subset \mathbb{Q} \otimes \operatorname{End}(E)$.

IsOGENIES AND ENDOMORPHISMS

Theorem (Serre-Tate)

Two elliptic curves E, E^{\prime} are isogenous if and only if

$$
\mathbb{Q} \otimes \operatorname{End}(E) \simeq \mathbb{Q} \otimes \operatorname{End}\left(E^{\prime}\right)
$$

Example: Finite field, ordinary case, 3-isogeny graph.
$\operatorname{End}(E)$

bigger node $=$ bigger $\operatorname{End}(E)$

The ordinary case

Let $\operatorname{End}(E)=\mathcal{O} \subset \mathbb{Q}(\sqrt{d})$ be the endomorphism ring of E. Define

- $\mathcal{I}(\mathcal{O})$, the group of invertible fractional ideals,
- $\mathcal{P}(\mathcal{O})$, the group of principal ideals,

DEFINITION (ThE CLASS GROUP)

The class group of \mathcal{O} is

$$
\mathrm{Cl}(\mathcal{O})=\mathcal{I}(\mathcal{O}) / \mathcal{P}(O)
$$

- It is a finite abelian group.
- It arises as the Galois group of an abelian extension of $\mathbb{Q}(\sqrt{d})$.

DEFINITION

Let

- a be a fractional ideal of \mathcal{O};
- $E[\mathfrak{a}]$ be the the subgroup of $E(\bar{k})$ annihilated by \mathfrak{a};
- $\phi: E \rightarrow E / E[\mathfrak{a}]$.

Then $\operatorname{deg} \phi=\mathcal{N}(\mathfrak{a})$. We denote by $*$ the action on the set of elliptic curves.

$$
\mathfrak{a} * j(E)=j(E / E[\mathfrak{a}]) .
$$

Theorem

The action * factors through $\mathrm{Cl}(\mathcal{O})$. It is faithful and transitive.

Let $\mathfrak{a}=m \mathcal{O}$, the ideal corresponding to multiplication by m. Then

- $\operatorname{deg} \phi=\mathcal{N}(m \mathcal{O})=m^{2}$,
- $E[\mathfrak{a}]=E[m]$,
- $m \mathcal{O} \in \mathcal{P}(\mathcal{O})$,
- $m \mathcal{O} \equiv 1 \in \mathrm{Cl}(\mathcal{O})$.
- $\mathfrak{a} * j(E)=j(E)$.

Let ϕ be an isogeny and $\hat{\phi}$ its dual. Let \mathfrak{a} and $\hat{\mathfrak{a}}$ their associated ideals. Then

- $\mathfrak{a} \mathfrak{a}=\mathfrak{a} \hat{\mathfrak{a}}=m \mathcal{O} \in \mathcal{P}(\mathcal{O})$,
- $\operatorname{deg} \phi=\mathcal{N}(\mathfrak{a})=\mathcal{N}(\hat{\mathfrak{a}})=\operatorname{deg} \hat{\phi}$,
- $\hat{\mathfrak{a}} \equiv \mathfrak{a}^{-1} \in \mathrm{Cl}(\mathcal{O})$.

Diffie-Hellman key exchange

Let $G=\langle g\rangle$ be a cyclic group of prime order p.

Group action: $\mathbb{Z} / p \mathbb{Z}$ over G.

DH-like key exchange based on (Semi)GROUP ACTIONS

Let G be an abelian group acting (faithfully and transitively) on a set X.

Let G be a group, X a set and $f: G \rightarrow X$. We say that f hides a subgroup $H \subset G$ if

$$
f\left(g_{1}\right)=f\left(g_{2}\right) \Leftrightarrow g_{1} H=g_{2} H
$$

Definition (Hidden Subgroup Problem (HSP))

InPUT: G, X as above, an oracle computing f.
Output: generators of H.

THEOREM (SCHORR, JOSZA)
If G is abelian, then

- HSP $\in \operatorname{poly}_{B Q P}(\log |G|)$,
- using poly $(\log |G|)$ queries to the oracle.

Let $G=\langle g\rangle$ of order p, and let $h=g^{s}$. Define

$$
\begin{aligned}
f:(\mathbb{Z} / p \mathbb{Z})^{2} & \rightarrow G \\
(a, b) & \mapsto g^{a} h^{b}=g^{a+s b}
\end{aligned}
$$

Remark: A collision in f uncovers the secret s, like in Pollard's Rho.
The reduction

- f is a group morphism;
- $\operatorname{ker} f=\langle(s,-1)\rangle \simeq \mathbb{Z} / p \mathbb{Z}$.

Hence f hides the secret $\langle(s,-1)\rangle$.
Consequence: Diffie-Hellman is broken by quantum computers

The security of DH-like schemes based on group actions depends on
Definition ((Semi)group Action Problem (SAP))
InPUT: A (semi)group G, a set X, elements $x, y \in X$.
Output: Find $s \in G$ such that $y=s \cdot x$.

Definition (Hidden Shift Problem (HShP))
InPut: $f_{0}, f_{1}: G \rightarrow X$ two oracles such that $f_{1}(g)=f_{0}(g s)$.
Outpu: The secret $s \in G$.

Reductions

- SAP \rightarrow HShP (evident).
- HShP \rightarrow non-abelian HSP for the dihedral group $G \ltimes \mathbb{Z} / 2 \mathbb{Z}$.

QUANTUM ALGORITHMS:

KUPERBERG: $2^{O(\sqrt{\log |G|})}$ quantum time and space and query complexity. REGEV: $L_{|G|}\left(\frac{1}{2}, \sqrt{2}\right)$ quantum time and query complexity, poly $(\log (|G|)$ quantum space.

Remark (Regev): certain lattice-based cryptosystems are also vulnerable to the HSP for dihedral groups.

EXCHANGE

Public data:

- E / \mathbb{F}_{p} ordinary elliptic curve with complex multiplication field \mathbb{K},
- primes $\ell_{1}, \ell_{2}, \ell_{3}, \ldots$ not dividing $\operatorname{Disc}(E)$ and s.t. $\left(\frac{D_{\mathrm{K}}}{\ell_{i}}\right)=1$.
- A direction on each ℓ_{i}-isogeny graph (a Frobenius eigenvalue). Secret data: Random walks $\mathfrak{a}, \mathfrak{b}$ in the ℓ_{i}-isogeny graphs.

- ℓ_{1}-isogenies
— ℓ_{2}-isogenies
- ℓ_{3}-isogenies

Key Generation: compose small degree isogenies polynomial in the lenght of the random walk.
Attack: find an isogeny between two curves polynomial in the degree.
Quantum (Childs-Jao-Soukharev): HShP + isogeny evaluation subexponential in the length of the walk.
$\mathbb{Q} \otimes \operatorname{End}(E)$ is a quaternion algebra (non-commutative)

FACTS

- Every supersingular curve is defined over $\mathbb{F}_{p^{2}}$.
- $E\left(\mathbb{F}_{p^{2}}\right) \simeq(\mathbb{Z} /(p+1) \mathbb{Z})^{2}$ (up to twist).
- There are $g\left(X_{0}(p)\right)+1 \sim \frac{p+1}{12}$ supersingular curves up to isomorphism.
- For every maximal order type of the quaternion algebra $\mathbb{Q}_{p, \infty}$ there are 1 or 2 curves over $\mathbb{F}_{p^{2}}$ having endomorphism ring isomorphic to it.
- There is a unique isogeny class of supersingular curves over $\overline{\mathbb{F}}_{p}$ (there are two over any finite field).
- The graph of ℓ-isogenies is $\ell+1$-regular.

GOOD NEWS: there is no action of a commutative class group. BAD NEWS: there is no action of a commutative class group. However: left ideals of $\operatorname{End}(E)$ still act on the isogeny graph:

- The action factors through the right-isomorphism equivalence of ideals.
- Ideal classes form a groupoid (in other words, an undirected multigraph...).

In practice, computations with ideals are hard. We fix, instead:

- Small primes ℓ_{A}, ℓ_{B};
- A large prime p such that $p+1=\ell_{A}^{e_{A}} \ell_{B}^{e_{B}}$;
- A supersingular curve E over $\mathbb{F}_{p^{2}}$, such that

$$
E \simeq(\mathbb{Z} /(p+1) \mathbb{Z})^{2}=\left(\mathbb{Z} / \ell_{A}^{e_{A}} \mathbb{Z}\right)^{2} \oplus\left(\mathbb{Z} / \ell_{B}^{e_{B}} \mathbb{Z}\right)^{2}
$$

- We use isogenies of degrees $\ell_{A}^{e_{A}}$ and $\ell_{B}^{e_{B}}$ with cyclic rational kernels;
- The diagram below can be constructed in time poly $\left(e_{A}+e_{B}\right)$.

$$
\begin{array}{r}
\operatorname{ker} \phi=\langle P\rangle \subset E\left[\ell_{A}^{e_{A}}\right] \\
\operatorname{ker} \psi=\langle Q\rangle \subset E\left[\ell_{B}^{e_{B}}\right] \\
\operatorname{ker} \phi^{\prime}=\langle\psi(P)\rangle \\
\operatorname{ker} \psi^{\prime}=\langle\phi(Q)\rangle
\end{array}
$$

A ZK proof of knowledge

Secret: knowledge of the kernel of a degree $\ell_{A}^{e_{A}}$ isogeny from E to $E /\langle S\rangle$.

Secret: knowledge of the kernel of a degree $\ell_{A}^{e_{A}}$ isogeny from E to $E /\langle S\rangle$.

- Choose a random point $P \in E\left[\ell_{B}^{e_{B}}\right]$, compute the diagram;
(2) Publish the curves $E /\langle P\rangle$ and $E /\langle P, S\rangle$;

Secret: knowledge of the kernel of a degree $\ell_{A}^{e_{A}}$ isogeny from E to $E /\langle S\rangle$.

- Choose a random point $P \in E\left[\ell_{B}^{e_{B}}\right]$, compute the diagram;
(2) Publish the curves $E /\langle P\rangle$ and $E /\langle P, S\rangle$;
- The verifier asks one of the two questions:
- Reveal the degree $\ell_{B}^{e_{B}}$ isogenies;

A ZK proof of knowledge

Secret: knowledge of the kernel of a degree $\ell_{A}^{e_{A}}$ isogeny from E to $E /\langle S\rangle$.

- Choose a random point $P \in E\left[\ell_{B}^{e_{B}}\right]$, compute the diagram;
(2) Publish the curves $E /\langle P\rangle$ and $E /\langle P, S\rangle$;
(3) The verifier asks one of the two questions:
- Reveal the degree $\ell_{B}^{e_{B}}$ isogenies;
- Reveal the bottom isogeny.

What information does ϕ^{\prime} give on ϕ ?

- We prove that the protocol is zero-knowledge if distinguishing a pair $\left(\phi, \phi^{\prime}\right)$ from a random pair (ϕ, χ) is hard.
- We conjecture this problem is hard, even using ideal classes.

What information do ψ and ψ^{\prime} give on ϕ ?

- On the first round, we learn $(P, \phi(P))$,

What information do ψ and ψ^{\prime} give on ϕ ?

- On the first round, we learn $(P, \phi(P))$,
- On the second round, we learn $(Q, \phi(Q))$,

What information do ψ and ψ^{\prime} give on ϕ ?

- On the first round, we learn $(P, \phi(P))$,
- On the second round, we learn $(Q, \phi(Q))$,
- With high probabilty, $\langle P, Q\rangle=E\left[\ell_{B}^{e_{B}}\right]$, and we learn $\phi\left(E\left[\ell_{B}^{e_{B}}\right]\right)$.
- We make $\phi\left(E\left[\ell_{B}^{e_{B}}\right]\right)$ part of the public data, and we conjecture that this is secure.

Going Diffie-Hellman

The idea: Alice chooses ϕ, Bob chooses ψ.

Problem:

- How does Alice know the kernel of ϕ^{\prime} ?
- How does Bob know the kernel of ψ^{\prime} ?

The idea: Alice chooses ϕ, Bob chooses ψ.

Problem:

- How does Alice know the kernel of ϕ^{\prime} ?
- How does Bob know the kernel of ψ^{\prime} ?

Our solution:

- It is not so dangerous to publish $\phi\left(E\left[\ell_{B}^{e_{B}}\right]\right)$.
- It is not so dangerous to publish $\psi\left(E\left[\ell_{A}^{e_{A}}\right]\right)$.

OUR PROPOSAL

Public data:

- Prime p such that

$$
p+1=\ell_{A}^{a} \ell_{B}^{b}
$$

- Supersingular curve

$$
E \simeq(\mathbb{Z} /(p+1) \mathbb{Z})^{2} ;
$$

- $E\left[\ell_{A}^{a}\right]=\left\langle P_{A}, Q_{A}\right\rangle$;
- $E\left[\ell_{B}^{b}\right]=\left\langle P_{B}, Q_{B}\right\rangle$.

Secret data:

- $R_{A}=m_{A} P_{A}+n_{A} Q_{A}$,
- $R_{B}=m_{B} P_{B}+n_{B} Q_{B}$,
$E /\left\langle R_{B}\right\rangle$

$$
\frac{E /\left\langle R_{A}\right\rangle}{\phi\left(R_{B}\right)} \simeq E /\left\langle R_{A}, R_{B}\right\rangle \simeq \frac{E /\left\langle R_{B}\right\rangle}{\psi\left(R_{A}\right)}
$$

OUR PROPOSAL

Public data:

- Prime p such that

$$
p+1=\ell_{A}^{a} \ell_{B}^{b}
$$

- Supersingular curve

$$
E \simeq(\mathbb{Z} /(p+1) \mathbb{Z})^{2}
$$

- $E\left[\ell_{A}^{a}\right]=\left\langle P_{A}, Q_{A}\right\rangle$;
- $E\left[\ell_{B}^{b}\right]=\left\langle P_{B}, Q_{B}\right\rangle$.

Secret data:

- $R_{A}=m_{A} P_{A}+n_{A} Q_{A}$,
- $R_{B}=m_{B} P_{B}+n_{B} Q_{B}$,

OUR PROPOSAL

Public data:

- Prime p such that

$$
p+1=\ell_{A}^{a} \ell_{B}^{b}
$$

- Supersingular curve

$$
E \simeq(\mathbb{Z} /(p+1) \mathbb{Z})^{2} ;
$$

- $E\left[\ell_{A}^{a}\right]=\left\langle P_{A}, Q_{A}\right\rangle$;
- $E\left[\ell_{B}^{b}\right]=\left\langle P_{B}, Q_{B}\right\rangle$.

Secret data:

- $R_{A}=m_{A} P_{A}+n_{A} Q_{A}$,
- $R_{B}=m_{B} P_{B}+n_{B} Q_{B}$,

Problem: Given E, E^{\prime}, isogenous of degree ℓ^{n}, find $\phi: E \rightarrow E^{\prime}$.

- With high probability ϕ is the unique collision (or claw).
- A quantum claw finding algorithm solves the problem in $O\left(\ell^{n / 3}\right)$ (Tani).
- For efficiency chose p such that $p+1=2^{a} 3^{b}$.
- For classical n-bit security, choose $2^{a} \sim 3^{b} \sim 2^{2 n}$, hence $p \sim 2^{4 n}$.
- For quantum n-bit security, choose $2^{a} \sim 3^{b} \sim 2^{3 n}$, hence $p \sim 2^{6 n}$.

PRACTICAL OPTIMIZATIONS:

- -1 is a quadratic non-residue: $\mathbb{F}_{p^{2}} \simeq \mathbb{F}_{p}[X] /\left(X^{2}+1\right)$.
- E (or its twist) has a 4-torsion point: it has an Edwards and a Montgomery form.
- Other optimizations in the next slides.

Round 1

- Pick random $m, n \in \mathbb{Z}$;
- Compute $R=m P+n Q$;
- Compute $\phi: E \rightarrow E /\langle R\rangle$;
- Evaluate $\phi(S), \phi(T)$ for some points S, T.

Round 2

- Compute $R^{\prime}=m P^{\prime}+n Q^{\prime}$;
- Compute $\psi: E \rightarrow E /\left\langle R^{\prime}\right\rangle$;

Evaluating composite isogenies

$\operatorname{ord}(R)=\ell^{a}$ and $\phi=\phi_{0} \circ \phi_{1} \circ \cdots \circ \phi_{a-1}$, each of degree ℓ

For each i, one needs to compute $\left[\ell^{e-i}\right] R_{i}$ in order to compute ϕ_{i}.

What's the best strategy?

Figure: The seven well formed strategies for $e=4$.

- Right edges are ℓ-isogeny evaluation;
- Left edges are multiplications by ℓ (about twice as expensive);

The best strategy can be precomputed offline and hardcoded in an embedded system.

Funny fact: strategies are in one-to-one correspondence with certain instances of Gelfand-Tsetlin patterns [OEIS, Sequence A130715].

FIGURE: Optimal strategy for $e=512, \ell=2$.

MANY OPTIMAL STRATEGIES

MANY OPTIMAL STRATEGIES

MANY OPTIMAL STRATEGIES

MANY OPTIMAL STRATEGIES

Reference implementation

Available at http://www.prism.uvsq.fr/~dfl/

- $C+G M P$ implementation of $\mathbb{F}_{p^{2}}$;
- C implementation of the key exchange;
- Cython interface to the key exchange and implementation of elliptic curves;
- Python + Sage script for parameter generation and strategy computation.

	tuned (2, 1)			balanced (1, 1)	
	512 bits	768 bits	1024 bits	768 bits	1024 bits
Alice round 1	28.1 ms	65.7 ms	122 ms	66.8 ms	123 ms
Alice round 2	23.3 ms	54.3 ms	101 ms	55.5 ms	102 ms
Bob round 1	28.0 ms	65.6 ms	125 ms	67.1 ms	128 ms
Bob round 2	22.7 ms	53.7 ms	102 ms	55.1 ms	105 ms

We have proposed a new candidate primitive for post-quantum cryptography.

- It is based on a new group theoretic construction that does not seem to have been used before.
- It is based on well known objects for which a lot of good software already exists.
- It has a simple Zero Knowledge proof with no analogue in classic discrete log based and group action based constructions.
- It is reasonably fast:
- More than 1000 times faster than Rostovstev and Stolbunov's system at the same (classical) security level.
- Running times comparable to pairing-based protocols.
- Because of its novelty, more scrutiny is required to assess its security. In particular, it is not clear what mathematical assumptions are needed to prove its security.

