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ELLIPTIC CURVES

As long as we are concerned in this talk, elliptic curves are

Algebraic groups defined over a (finite) field.

Their group law is easy to compute (say, in constant time).

Any curve E is (almost) uniquely determined by its j -invariant j (E)
up to isomorphism (i.e. a change of coordinates).

E : y2 = x 3 + ax + b a ; b 2 k

j (E) = 1728
4a3

4a3 + 27b2
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ISOGENIES

Isogenies are just the right notion of morphism for elliptic curves

Surjective group morphism.
Algebraic map (i.e., defined by polynomials).
Rational (coefficients in the base field k ).

0 ! H ! E
�! E 0 ! 0

The kernel H determines the image curve E 0 up to isomorphism

E=H def
= E 0:

ISOGENY DEGREE

Neither of these definitions is quite correct, but they nearly are:

The degree of � is the cardinality of ker�.

(Bisson) the degree of � is the time needed to compute it.
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ISOGENIES: AN EXAMPLE

Define the multiplication-by-m map [m ] : E ! E

[m ]P = P + � � �+ P| {z }
m times

[m ] is an isogeny:

deg[m ] = m2;

In general ker[m ] = E [m ] ' (Z=mZ)2.

Remark: This is, indeed, an endomorphism.
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COMPUTATIONAL ISOGENIES

In practice: an isogeny � is just a rational fraction (or maybe two)

N (x )
D(x )

=
xn + � � �+ n1x + n0

xn�1 + � � �+ d1x + d0
2 k(x ); with n = deg �;

and D(x ) vanishes on ker�.

THE EXPLICIT ISOGENY PROBLEM

INPUT: A description of the isogeny (e.g, its kernel).

OUTPUT: The curve E=H and the rational fraction N=D .

LOWER BOUND: 
(n).

THE ISOGENY EVALUATION PROBLEM

INPUT: A description of the isogeny �, a point P 2 E(k).
OUTPUT: The curve E=H and �(P).
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ISOGENY GRAPHS

We want to study the graph of elliptic curves
with isogenies up to isomorphism. We say two
isogenies �; �0 are isomorphic if:

E E 0

E 0

�

�0

e

Example: Finite field, ordinary case, graph of isogenies of degree 3.
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STRUCTURE OF THE GRAPH

THEOREM (SERRE-TATE)
Two curves are isogenous over a finite field k if and only if they have the
same number of points on k .

THE GRAPH OF ISOGENIES OF PRIME DEGREE ` 6= p
Ordinary case

Nodes can have degree 0; 1; 2 or `+ 1.

Connected components form so called volcanoes.

Supersingular case

The graph is `+ 1-regular.

There is an unique connected component made of all supersingular
curves with the same number of points.

The graph has the Ramanujan property (for cryptographers like me:
sufficiently long random walks land anywhere with probability
distribution close to uniform).
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ISOGENIES UP TO ENDOMORPHISM

E E 0

�

�0

In some cases we want to identify edges
between the same vertices. We say two
isogenies �; �0 are in the same class if there
exist endomorphisms a and b of E and E 0

such that:

E E 0

E E 0

�

�0

a b

FACTS

This is an equivalence relation.

Two isogenies are in the same class if and only if they have the same
domain and codomain.
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THE DUAL ISOGENY THEOREM

Theorem: for any isogeny � : E ! E 0 there exists �̂

E

E

E 0
�

[m ]
�̂

�̂ is called the dual isogeny, deg � = deg �̂ = m .
^̂� = �.

OBVIOUS COROLLARIES:

�(E [m ]) = ker �̂ (dual isogenies are “easy” to compute).

Graphs of isogenies are undirected.
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THE ENDOMORPHISM RING

An endomorphism is an isogeny � : E ! E .

The endomorphisms form a ring denoted Endk (E).

THEOREM

Q
 End�k (E) is isomorphic to one of the following

ORDINARY CASE: Q (only possible if char k = 0),

ORDINARY CASE (COMPLEX MULTIPLICATION): an imaginary quadratic
field,

SUPERSINGULAR CASE: a quaternion algebra (only possible if char k 6= 0).

COROLLARY

End(E) is isomorphic to an order O � Q
 End(E).
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ISOGENIES AND ENDOMORPHISMS

THEOREM (SERRE-TATE)
Two elliptic curves E ;E 0 are isogenous if and only if

Q
 End(E) ' Q
 End(E 0):

Example: Finite field, ordinary case, 3-isogeny graph.

End(E)

bigger node = bigger End(E)
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THE ORDINARY CASE

Let End(E) = O � Q(pd) be the endomorphism ring of E . Define

I(O), the group of invertible fractional ideals,

P(O), the group of principal ideals,

DEFINITION (THE CLASS GROUP)
The class group of O is

Cl(O) = I(O)=P(O):

It is a finite abelian group.

It arises as the Galois group of an abelian extension of Q(
p

d).
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ISOGENY (CLASSES) = IDEAL (CLASSES)

DEFINITION

Let

a be a fractional ideal of O;

E [a] be the the subgroup of E(�k) annihilated by a;

� : E ! E=E [a].

Then deg � = N (a). We denote by � the action on the set of elliptic
curves.

a � j (E) = j (E=E [a]):

THEOREM

The action � factors through Cl(O). It is faithful and transitive.

Luca De Feo (UVSQ) Fun with isogeniesand trees Bordeaux, October 30, 2012 13 / 40



EXAMPLE: PRINCIPAL IDEALS

Let a = mO, the ideal corresponding to multiplication by m . Then

deg � = N (mO) = m2,

E [a] = E [m ],

mO 2 P(O),

mO � 1 2 Cl(O).

a � j (E) = j (E).
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EXAMPLE: THE DUAL ISOGENY

Let � be an isogeny and �̂ its dual. Let a and â their associated ideals.
Then

âa = aâ = mO 2 P(O),

deg � = N (a) = N (â) = deg �̂,

â � a�1 2 Cl(O).
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DIFFIE-HELLMAN KEY EXCHANGE

Let G = hgi be a cyclic group of prime order p.

g

ga gb

gab

a b

b a

Group action: Z=pZ over G .
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DH-LIKE KEY EXCHANGE BASED ON (SEMI)-
GROUP ACTIONS

Let G be an abelian group acting (faithfully and transitively) on a set X .

x0

g � x0 h � x0

gh � x0 = hg � x0

g h

h g

Luca De Feo (UVSQ) Fun with isogeniesand trees Bordeaux, October 30, 2012 17 / 40



HIDDEN SUBGROUP PROBLEM

Let G be a group, X a set and f : G ! X . We say that f hides a
subgroup H � G if

f (g1) = f (g2), g1H = g2H :

DEFINITION (HIDDEN SUBGROUP PROBLEM (HSP))
INPUT: G ;X as above, an oracle computing f .

OUTPUT: generators of H .

THEOREM (SCHORR, JOSZA)
If G is abelian, then

HSP 2 polyBQP(log jG j),
using poly(log jG j) queries to the oracle.
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DISCRETE LOGARITHM ! HSP

Let G = hgi of order p, and let h = gs . Define

f : (Z=pZ)2 ! G

(a ; b) 7! gahb = ga+sb

Remark: A collision in f uncovers the secret s , like in Pollard’s Rho.

THE REDUCTION

f is a group morphism;

ker f = h(s ;�1)i ' Z=pZ.

Hence f hides the secret h(s ;�1)i.

Consequence: Diffie-Hellman is broken by quantum computers
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THE HIDDEN SHIFT PROBLEM

The security of DH-like schemes based on group actions depends on

DEFINITION ((SEMI)GROUP ACTION PROBLEM (SAP))
INPUT: A (semi)group G , a set X , elements x ; y 2 X .

OUTPUT: Find s 2 G such that y = s � x .

DEFINITION (HIDDEN SHIFT PROBLEM (HSHP))
INPUT: f0; f1 : G ! X two oracles such that f1(g) = f0(gs).

OUTPU: The secret s 2 G .
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THE HIDDEN SHIFT PROBLEM

REDUCTIONS

SAP ! HShP (evident).

HShP ! non-abelian HSP for the dihedral group G n Z=2Z.

QUANTUM ALGORITHMS:

KUPERBERG: 2O(
p

log jGj) quantum time and space and query complexity.

REGEV: LjGj(
1
2 ;
p

2) quantum time and query complexity,
poly(log(jG j) quantum space.

Remark (Regev): certain lattice-based cryptosystems are also vulnerable to
the HSP for dihedral groups.
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ROSTOVSTEV AND STOLBUNOV’S KEY

EXCHANGE

Public data:
E=Fp ordinary elliptic curve with complex multiplication field K,

primes `1,`2, `3, . . . not dividing Disc(E) and s.t.
�

DK
`i

�
= 1.

A direction on each `i -isogeny graph (a Frobenius eigenvalue).
Secret data: Random walks a; b in the `i -isogeny graphs.

E

a � E b � E

ab � E = ba � E

`
a1
1 `

a2
2 `

a3
3 � � � = N (a) N (b) = `

b1
1 `

b2
2 `

b3
3 � � �
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R&S KEY EXCHANGE

`1-isogenies

`2-isogenies

`3-isogenies
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R&S KEY EXCHANGE

KEY GENERATION: compose small degree isogenies
polynomial in the lenght of the random walk.

ATTACK: find an isogeny between two curves
polynomial in the degree.

QUANTUM (CHILDS-JAO-SOUKHAREV): HShP + isogeny evaluation
subexponential in the length of the walk.
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SUPERSINGULAR CURVES

Q
 End(E) is a quaternion algebra (non-commutative)

FACTS

Every supersingular curve is defined over Fp2 .

E(Fp2) ' (Z=(p + 1)Z)2 (up to twist).

There are g(X0(p)) + 1 � p+1
12 supersingular curves up to

isomorphism.

For every maximal order type of the quaternion algebra Qp;1 there
are 1 or 2 curves over Fp2 having endomorphism ring isomorphic to
it.

There is a unique isogeny class of supersingular curves over �Fp
(there are two over any finite field).

The graph of `-isogenies is `+ 1-regular.

Luca De Feo (UVSQ) Fun with isogeniesand trees Bordeaux, October 30, 2012 25 / 40



GOOD AND BAD NEWS

GOOD NEWS: there is no action of a commutative class group.
BAD NEWS: there is no action of a commutative class group.

However: left ideals of End(E) still act on the isogeny graph:

E E 0

E 00 E 000

a

ab

b ba

The action factors through the right-isomorphism equivalence of
ideals.
Ideal classes form a groupoid (in other words, an undirected
multigraph. . . ).
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FROM IDEALS BACK TO ISOGENIES

In practice, computations with ideals are hard. We fix, instead:

Small primes `A, `B ;
A large prime p such that p + 1 = `eA

A `
eB
B ;

A supersingular curve E over Fp2 , such that

E ' (Z=(p + 1)Z)2 = (Z=`eA
A Z)

2 � (Z=`eB
B Z)

2;

We use isogenies of degrees `eA
A and `eB

B with cyclic rational kernels;
The diagram below can be constructed in time poly(eA + eB ).

ker� = hPi � E [`eA
A ]

ker = hQi � E [`eB
B ]

ker�0 = h (P)i
ker 0 = h�(Q)i

E E=hPi

E=hQi E=hP ;Qi

�

�0

  0
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A ZK PROOF OF KNOWLEDGE

Secret: knowledge of the kernel of a degree `eA
A isogeny from E to E=hSi.

E E=hSi

E=hPi E=hP ;Si

�

?

? ?

1 Choose a random point P 2 E [`eB
B ], compute the diagram;

2 Publish the curves E=hPi and E=hP ;Si;
3 The verifier asks one of the two questions:

I Reveal the degree `eB
B isogenies;

I Reveal the bottom isogeny.
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SECURITY

E E=hSi

E=hPi E=hP ;Si

�

�0

? ?

What information does �0 give on �?

We prove that the protocol is zero-knowledge if distinguishing a pair
(�; �0) from a random pair (�; �) is hard.

We conjecture this problem is hard, even using ideal classes.

Luca De Feo (UVSQ) Fun with isogeniesand trees Bordeaux, October 30, 2012 29 / 40



SECURITY

E E=hSi

E=hPi E=hP ;Si

�

?

  0

What information do  and  0 give on �?

On the first round, we learn (P ; �(P)),

On the second round, we learn (Q ; �(Q)),

. . .

With high probabilty, hP ;Qi = E [`eB
B ], and we learn �(E [`eB

B ]).

We make �(E [`eB
B ]) part of the public data, and we conjecture that

this is secure.
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GOING DIFFIE-HELLMAN

The idea: Alice chooses �, Bob chooses  .

E E=hPi

E=hQi E=hP ;Qi

�

�0

  0

Problem:
How does Alice know the kernel of �0?
How does Bob know the kernel of  0?

Our solution:
It is not so dangerous to publish �(E [`eB

B ]).
It is not so dangerous to publish  (E [`eA

A ]).
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OUR PROPOSAL

Public data:

Prime p such that
p + 1 = `aA`

b
B ;

Supersingular curve
E ' (Z=(p + 1)Z)2;

E [`aA] = hPA;QAi;
E [`bB ] = hPB ;QB i.

Secret data:

RA = mAPA + nAQA,

RB = mBPB + nBQB ,

E

E=hRAi

�(PB )

�(QB )

E=hRBi

 (PA)

 (QA)

E=hRAi
�(RB ) ' E=hRA;RBi ' E=hRB i

 (RA)

�  

 0 �0

�(RB )  (RA)
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GENERIC ATTACKS

Problem: Given E ;E 0, isogenous of degree `n , find � : E ! E 0.

E

E=hP0i

Ei=hPii

E=hP`n=2i

...

...

E 0

`n=2

`n=2

With high probability � is the unique collision (or claw).

A quantum claw finding algorithm solves the problem in O(`n=3)
(Tani).
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OUR RECOMMENDED PARAMETERS

For efficiency chose p such that p + 1 = 2a3b .

For classical n -bit security, choose 2a � 3b � 22n , hence p � 24n .

For quantum n -bit security, choose 2a � 3b � 23n , hence p � 26n .

PRACTICAL OPTIMIZATIONS:
�1 is a quadratic non-residue: Fp2 ' Fp [X ]=(X 2 + 1).
E (or its twist) has a 4-torsion point: it has an Edwards and a
Montgomery form.

Other optimizations in the next slides.
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ANALYSIS OF THE KEY EXCHANGE

ROUND 1
Pick random m ;n 2 Z;

Compute R = mP + nQ ;

Compute � : E ! E=hRi;
Evaluate �(S); �(T ) for some points S ;T .

ROUND 2
Compute R0 = mP 0 + nQ 0;

Compute  : E ! E=hR0i;
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EVALUATING COMPOSITE ISOGENIES

ord(R) = `a and � = �0 � �1 � � � � � �a�1, each of degree `

R

R1

R2

R3

R4

R5

[`1]R

[`2]R

[`3]R

[`4]R

[`5]R

�0

�0

�0

�0

�0

�1

�1

�1

�1

�2

�2

�2

�3

�3 �4

[`]

[`]

[`]

[`]

[`]

[`4]R1 [`3]R2 [`2]R3 [`1]R4

�

� �

� � �

� � � �

� � � � �

� � � � � �

For each i , one needs to compute [`e�i ]Ri in order to compute �i .
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WHAT’S THE BEST STRATEGY?

�� �� � �� � � �

�� �� � �� � � �

�� �� � �� � � �

�� �� � �� � � �

�� �� � �� � � �

�� �� � �� � � �

�� �� � �� � � �

FIGURE: The seven well formed strategies for e = 4.

Right edges are `-isogeny evaluation;

Left edges are multiplications by ` (about twice as expensive);

The best strategy can be precomputed offline and hardcoded in an
embedded system.

Funny fact: strategies are in one-to-one correspondence with certain
instances of Gelfand-Tsetlin patterns [OEIS, Sequence A130715].
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EXAMPLE

FIGURE: Optimal strategy for e = 512, ` = 2.
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MANY OPTIMAL STRATEGIES
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TIMINGS

REFERENCE IMPLEMENTATION

Available at http://www.prism.uvsq.fr/~dfl/

C + GMP implementation of Fp2 ;

C implementation of the key exchange;

Cython interface to the key exchange and implementation of elliptic
curves;

Python + Sage script for parameter generation and strategy
computation.

tuned (2; 1) balanced (1; 1)
512 bits 768 bits 1024 bits 768 bits 1024 bits

Alice round 1 28.1 ms 65.7 ms 122 ms 66.8 ms 123 ms
Alice round 2 23.3 ms 54.3 ms 101 ms 55.5 ms 102 ms
Bob round 1 28.0 ms 65.6 ms 125 ms 67.1 ms 128 ms
Bob round 2 22.7 ms 53.7 ms 102 ms 55.1 ms 105 ms
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CONCLUSION

We have proposed a new candidate primitive for post-quantum
cryptography.

It is based on a new group theoretic construction that does not seem
to have been used before.

It is based on well known objects for which a lot of good software
already exists.

It has a simple Zero Knowledge proof with no analogue in classic
discrete log based and group action based constructions.
It is reasonably fast:
I More than 1000 times faster than Rostovstev and Stolbunov’s system at

the same (classical) security level.
I Running times comparable to pairing-based protocols.

Because of its novelty, more scrutiny is required to assess its security.
In particular, it is not clear what mathematical assumptions are
needed to prove its security.
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