

FUN WITH ISOGENIES And trees

Luca De Feo¹ joint work with David Jao² and Jérôme Plût³ ¹Université de Versailles – Saint-Quentin-en-Yvelines, ²University of Waterloo, ³ANSI

October 30, 2012, Séminaire LFANT, projet LFANT, Université de Bordeaux

ELLIPTIC CURVES

As long as we are concerned in this talk, elliptic curves are

- Algebraic groups defined over a (finite) field.
- Their group law is easy to compute (say, in constant time).
- Any curve *E* is (almost) uniquely determined by its *j*-invariant j(E) up to isomorphism (i.e. a change of coordinates).

$$E \hspace{.1in}:\hspace{.1in} y^2 = x^3 + ax + b \qquad a, \, b \in k$$

$$j(E) = 1728 rac{4a^3}{4a^3 + 27b^2}$$

ISOGENIES

Isogenies are just the right notion of morphism for elliptic curves

- Surjective group morphism.
- Algebraic map (i.e., defined by polynomials).
- Rational (coefficients in the base field *k*).

$$0 o H o E \stackrel{\phi}{ o} E' o 0$$

The kernel *H* determines the image curve E' up to isomorphism $E/H \stackrel{\text{def}}{=} E'$.

ISOGENY DEGREE

Neither of these definitions is quite correct, but they nearly are:

- The degree of ϕ is the cardinality of ker ϕ .
- (Bisson) the degree of ϕ is the time needed to compute it.

ISOGENIES: AN EXAMPLE

Define the multiplication-by- $m \max[m] : E \to E$

$$[m]P = \underbrace{P + \dots + P}_{m \text{ times}}$$

[*m*] is an isogeny:

- $\deg[m] = m^2;$
- In general $\ker[m] = E[m] \simeq (\mathbb{Z}/m\mathbb{Z})^2$.

Remark: This is, indeed, an endomorphism.

COMPUTATIONAL ISOGENIES

In practice: an isogeny ϕ is just a rational fraction (or maybe two)

$$rac{N(x)}{D(x)}=rac{x^n+\dots+n_1x+n_0}{x^{n-1}+\dots+d_1x+d_0}\in k(x),\qquad ext{with }n=\deg\phi,$$

and D(x) vanishes on ker ϕ .

THE EXPLICIT ISOGENY PROBLEM INPUT: A description of the isogeny (e.g., its kernel).

OUTPUT: The curve E/H and the rational fraction N/D. LOWER BOUND: $\Omega(n)$.

THE ISOGENY EVALUATION PROBLEM

INPUT: A *description* of the isogeny ϕ , a point $P \in E(k)$. OUTPUT: The curve E/H and $\phi(P)$.

Luca De Feo (UVSQ)

ISOGENY GRAPHS

We want to study the graph of elliptic curves with isogenies up to isomorphism. We say two isogenies ϕ , ϕ' are isomorphic if:

Example: Finite field, ordinary case, graph of isogenies of degree 3.

THEOREM (SERRE-TATE)

Two curves are isogenous over a finite field k if and only if they have the same number of points on k.

The graph of isogenies of prime degree $\ell eq p$

Ordinary case

- Nodes can have degree 0, 1, 2 or $\ell + 1$.
- Connected components form so called volcanoes.

Supersingular case

- The graph is $\ell + 1$ -regular.
- There is an unique connected component made of all supersingular curves with the same number of points.
- The graph has the Ramanujan property (for cryptographers like me: sufficiently long random walks land anywhere with probability distribution close to uniform).

Luca De Feo (UVSQ)

ISOGENIES UP TO ENDOMORPHISM

 $E \underbrace{\overset{\phi'}{\overbrace{}}}_{\phi} E'$

In some cases we want to identify edges between the same vertices. We say two isogenies ϕ , ϕ' are in the same class if there exist endomorphisms *a* and *b* of *E* and *E'* such that:

FACTS

- This is an equivalence relation.
- Two isogenies are in the same class if and only if they have the same domain and codomain.

THE DUAL ISOGENY THEOREM

Theorem: for any isogeny $\phi : E \to E'$ there exists $\hat{\phi}$

φ̂ is called the dual isogeny, deg φ = deg φ̂ = m.
φ̂ = φ.

OBVIOUS COROLLARIES:

- $\phi(E[m]) = \ker \hat{\phi}$ (dual isogenies are "easy" to compute).
- Graphs of isogenies are undirected.

THE ENDOMORPHISM RING

- An endomorphism is an isogeny $\phi : E \to E$.
- The endomorphisms form a ring denoted $\operatorname{End}_k(E)$.

THEOREM

 $\mathbb{Q} \otimes \operatorname{End}_{\bar{k}}(E)$ is isomorphic to one of the following ORDINARY CASE: \mathbb{Q} (only possible if char k = 0), ORDINARY CASE (COMPLEX MULTIPLICATION): an imaginary quadratic field,

SUPERSINGULAR CASE: a quaternion algebra (only possible if char $k \neq 0$).

COROLLARY

 $\operatorname{End}(E)$ is isomorphic to an order $\mathcal{O} \subset \mathbb{Q} \otimes \operatorname{End}(E)$.

ISOGENIES AND ENDOMORPHISMS

THEOREM (SERRE-TATE)

Two elliptic curves E, E' are isogenous if and only if

 $\mathbb{Q}\otimes \operatorname{End}(E)\simeq \mathbb{Q}\otimes \operatorname{End}(E').$

Example: Finite field, ordinary case, 3-isogeny graph.

THE ORDINARY CASE

Let $\operatorname{End}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{d})$ be the endomorphism ring of *E*. Define

- $\mathcal{I}(\mathcal{O})$, the group of invertible fractional ideals,
- $\mathcal{P}(\mathcal{O})$, the group of principal ideals,

```
DEFINITION (THE CLASS GROUP)
The class group of \mathcal{O} is
```

 $\operatorname{Cl}(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$

- It is a finite abelian group.
- It arises as the Galois group of an abelian extension of $\mathbb{Q}(\sqrt{d})$.

ISOGENY (CLASSES) = IDEAL (CLASSES)

DEFINITION

Let

- a be a fractional ideal of \mathcal{O} ;
- $E[\mathfrak{a}]$ be the subgroup of $E(\bar{k})$ annihilated by \mathfrak{a} ;
- $\phi: E \to E/E[\mathfrak{a}]$.

Then deg $\phi = \mathcal{N}(\mathfrak{a})$. We denote by * the action on the set of elliptic curves.

 $\mathfrak{a} * j(E) = j(E/E[\mathfrak{a}]).$

THEOREM

The action * factors through Cl(\mathcal{O}). It is faithful and transitive.

Let $\mathfrak{a} = m\mathcal{O}$, the ideal corresponding to multiplication by m. Then

- $\deg \phi = \mathcal{N}(m\mathcal{O}) = m^2$,
- $E[\mathfrak{a}] = E[m]$,
- $m\mathcal{O}\in\mathcal{P}(\mathcal{O}),$
- $m\mathcal{O} \equiv 1 \in \operatorname{Cl}(\mathcal{O}).$
- $\mathfrak{a} * j(E) = j(E)$.

Let ϕ be an isogeny and $\hat{\phi}$ its dual. Let \mathfrak{a} and $\hat{\mathfrak{a}}$ their associated ideals. Then

•
$$\hat{\mathfrak{a}}\mathfrak{a}=\mathfrak{a}\hat{\mathfrak{a}}=m\mathcal{O}\in\mathcal{P}(\mathcal{O}),$$

•
$$\deg \phi = \mathcal{N}(\mathfrak{a}) = \mathcal{N}(\hat{\mathfrak{a}}) = \deg \hat{\phi}$$
,

•
$$\hat{\mathfrak{a}} \equiv \mathfrak{a}^{-1} \in \operatorname{Cl}(\mathcal{O}).$$

DIFFIE-HELLMAN KEY EXCHANGE

Let $G = \langle g \rangle$ be a cyclic group of prime order p.

Group action: $\mathbb{Z}/p\mathbb{Z}$ over *G*.

DH-LIKE KEY EXCHANGE BASED ON (SEMI)-GROUP ACTIONS

Let *G* be an abelian group acting (faithfully and transitively) on a set X.

HIDDEN SUBGROUP PROBLEM

Let *G* be a group, *X* a set and $f : G \to X$. We say that *f* hides a subgroup $H \subset G$ if

 $f(g_1) = f(g_2) \Leftrightarrow g_1 H = g_2 H.$

DEFINITION (HIDDEN SUBGROUP PROBLEM (HSP)) INPUT: G, X as above, an oracle computing f. OUTPUT: generators of H.

THEOREM (SCHORR, JOSZA)

If G is abelian, then

- $HSP \in poly_{BQP}(\log |G|)$,
- using $poly(\log |G|)$ queries to the oracle.

Discrete logarithm \rightarrow HSP

Let $G = \langle g \rangle$ of order p, and let $h = g^s$. Define

$$egin{array}{ll} f:(\mathbb{Z}/p\mathbb{Z})^2 o G\ (a,b)\mapsto g^ah^b=g^{a+sb} \end{array}$$

Remark: A collision in *f* uncovers the secret *s*, like in Pollard's Rho.

THE REDUCTION

- *f* is a group morphism;
- ker $f = \langle (s, -1) \rangle \simeq \mathbb{Z}/p\mathbb{Z}$.

Hence *f* hides the secret $\langle (s, -1) \rangle$.

Consequence: Diffie-Hellman is broken by quantum computers

The security of DH-like schemes based on group actions depends on

DEFINITION ((SEMI)GROUP ACTION PROBLEM (SAP))

INPUT: A (semi)group G, a set X, elements $x, y \in X$.

OUTPUT: Find $s \in G$ such that $y = s \cdot x$.

DEFINITION (HIDDEN SHIFT PROBLEM (HSHP)) INPUT: $f_0, f_1 : G \to X$ two oracles such that $f_1(g) = f_0(gs)$.

OUTPU: The secret $s \in G$.

THE HIDDEN SHIFT PROBLEM

REDUCTIONS

- SAP \rightarrow HShP (evident).
- HShP \rightarrow non-abelian HSP for the dihedral group $G \ltimes \mathbb{Z}/2\mathbb{Z}$.

QUANTUM ALGORITHMS:

KUPERBERG: $2^{O(\sqrt{\log |G|})}$ quantum time and space and query complexity. REGEV: $L_{|G|}(\frac{1}{2}, \sqrt{2})$ quantum time and query complexity, poly(log(|G|) quantum space.

Remark (Regev): certain lattice-based cryptosystems are also vulnerable to the HSP for dihedral groups.

ROSTOVSTEV AND STOLBUNOV'S KEY

Public data:

- E/\mathbb{F}_p ordinary elliptic curve with complex multiplication field \mathbb{K} ,
- primes $\ell_1, \ell_2, \ell_3, \ldots$ not dividing $\operatorname{Disc}(E)$ and s.t. $\left(\frac{D_{\mathbb{K}}}{\ell_i}\right) = 1$.
- A *direction* on each ℓ_i -isogeny graph (a Frobenius eigenvalue).

Secret data: Random walks $\mathfrak{a}, \mathfrak{b}$ in the ℓ_i -isogeny graphs.

R&S KEY EXCHANGE

Luca De Feo (UVSQ)

R&S KEY EXCHANGE

 KEY GENERATION: compose small degree isogenies polynomial in the lenght of the random walk.
 ATTACK: find an isogeny between two curves polynomial in the degree.
 QUANTUM (CHILDS-JAO-SOUKHAREV): HShP + isogeny evaluation subexponential in the length of the walk.

Luca De Feo (UVSQ)

Fun with isogeniesand trees

SUPERSINGULAR CURVES

 $\mathbb{Q} \otimes \operatorname{End}(E)$ is a quaternion algebra (non-commutative)

FACTS

- Every supersingular curve is defined over \mathbb{F}_{p^2} .
- $E(\mathbb{F}_{p^2}) \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2$ (up to twist).
- There are $g(X_0(p)) + 1 \sim \frac{p+1}{12}$ supersingular curves up to isomorphism.
- For every maximal order type of the quaternion algebra $\mathbb{Q}_{p,\infty}$ there are 1 or 2 curves over \mathbb{F}_{p^2} having endomorphism ring isomorphic to it.
- There is a unique isogeny class of supersingular curves over $\overline{\mathbb{F}}_p$ (there are two over any finite field).
- The graph of ℓ -isogenies is $\ell + 1$ -regular.

GOOD AND BAD NEWS

GOOD NEWS: there is no action of a commutative class group. BAD NEWS: there is no action of a commutative class group. However: left ideals of End(E) still act on the isogeny graph:

- The action factors through the right-isomorphism equivalence of ideals.
- Ideal classes form a groupoid (in other words, an undirected multigraph...).

Luca De Feo (UVSQ)

Fun with isogeniesand trees

FROM IDEALS BACK TO ISOGENIES

In practice, computations with ideals are hard. We fix, instead:

- Small primes ℓ_A , ℓ_B ;
- A large prime p such that $p + 1 = \ell_A^{e_A} \ell_B^{e_B}$;
- A supersingular curve E over \mathbb{F}_{p^2} , such that

$$E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2 = (\mathbb{Z}/\boldsymbol{\ell}_A^{e_A}\mathbb{Z})^2 \oplus (\mathbb{Z}/\boldsymbol{\ell}_B^{e_B}\mathbb{Z})^2,$$

- We use isogenies of degrees $\ell_A^{e_A}$ and $\ell_B^{e_B}$ with cyclic rational kernels;
- The diagram below can be constructed in time $poly(e_A + e_B)$.

Secret: knowledge of the kernel of a degree $\ell_A^{e_A}$ isogeny from *E* to $E/\langle S \rangle$.

φ E $E/\langle S \rangle$

Secret: knowledge of the kernel of a degree $\ell_A^{e_A}$ isogeny from *E* to $E/\langle S \rangle$.

• Choose a random point $P \in E[\ell_B^{e_B}]$, compute the diagram;

2 Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;

Secret: knowledge of the kernel of a degree $\ell_A^{e_A}$ isogeny from *E* to $E/\langle S \rangle$.

- Choose a random point $P \in E[\ell_B^{e_B}]$, compute the diagram;
- 2 Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- The verifier asks one of the two questions:
 - Reveal the degree $\ell_B^{e_B}$ isogenies;

Secret: knowledge of the kernel of a degree $\ell_A^{e_A}$ isogeny from *E* to $E/\langle S \rangle$.

- Choose a random point $P \in E[\ell_B^{e_B}]$, compute the diagram;
- 2 Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- The verifier asks one of the two questions:
 - Reveal the degree $\ell_B^{e_B}$ isogenies;
 - Reveal the bottom isogeny.

UNIVERSITÉ DE VERSAILLES ST-QUENTIN-EN-YVELINES

SECURITY

What information does ϕ' give on ϕ ?

- We prove that the protocol is zero-knowledge if distinguishing a pair (ϕ, ϕ') from a random pair (ϕ, χ) is hard.
- We conjecture this problem is hard, even using ideal classes.

UNIVERSITÉ DE VERSAILLES ST-QUENTIN-EN-YVELINES

SECURITY

What information do ψ and ψ' give on ϕ ?

• On the first round, we learn $(P, \phi(P))$,

UNIVERSITÉ DE VERSAILLES ST-QUENTIN-EN-YVELINES

SECURITY

What information do ψ and ψ' give on ϕ ?

- On the first round, we learn $(P, \phi(P))$,
- On the second round, we learn $(Q, \phi(Q))$,

• . . .

SECURITY

What information do ψ and ψ' give on ϕ ?

- On the first round, we learn $(P, \phi(P))$,
- On the second round, we learn $(Q, \phi(Q))$,
- . . .
- With high probability, $\langle P, Q \rangle = E[\ell_B^{e_B}]$, and we learn $\phi(E[\ell_B^{e_B}])$.
- We make $\phi(E[\ell_B^{e_B}])$ part of the public data, and we conjecture that this is secure.

GOING DIFFIE-HELLMAN

The idea: Alice chooses ϕ , Bob chooses ψ .

Problem:

- How does Alice know the kernel of ϕ' ?
- How does Bob know the kernel of ψ' ?

GOING DIFFIE-HELLMAN

The idea: Alice chooses ϕ , Bob chooses ψ .

Problem:

- How does Alice know the kernel of ϕ' ?
- How does Bob know the kernel of ψ' ?

Our solution:

- It is not so dangerous to publish $\phi(E[\ell_B^{e_B}])$.
- It is not so dangerous to publish $\psi(E[\ell_A^{e_A}])$.

OUR PROPOSAL

Public data:

- Prime p such that $p + 1 = \ell_A^a \ell_B^b$;
- Supersingular curve $E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2;$
- $E[\ell_A^a] = \langle P_A, Q_A \rangle;$
- $E[\ell_B^b] = \langle P_B, Q_B \rangle.$

Secret data:

• $R_A = m_A P_A + n_A Q_A$,

•
$$R_B = m_B P_B + n_B Q_B$$
,

OUR PROPOSAL

Public data:

- Prime p such that $p + 1 = \ell_A^a \ell_B^b;$
- Supersingular curve $E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2;$
- $E[\ell_A^a] = \langle P_A, Q_A \rangle;$
- $E[\ell_B^b] = \langle P_B, Q_B \rangle.$

Secret data:

• $R_A = m_A P_A + n_A Q_A$,

•
$$R_B = m_B P_B + n_B Q_B$$
,

OUR PROPOSAL

Public data:

- Prime p such that $p + 1 = \ell_A^a \ell_B^b;$
- Supersingular curve $E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2;$
- $E[\ell_A^a] = \langle P_A, Q_A \rangle;$
- $E[\ell_B^b] = \langle P_B, Q_B \rangle.$

Secret data:

• $R_A = m_A P_A + n_A Q_A$,

•
$$R_B = m_B P_B + n_B Q_B$$
,

GENERIC ATTACKS

Problem: Given E, E', isogenous of degree ℓ^n , find $\phi : E \to E'$.

- With high probability ϕ is the unique collision (or *claw*).
- A quantum claw finding algorithm solves the problem in $O(\ell^{n/3})$ (Tani).

Luca De Feo (UVSQ)

OUR RECOMMENDED PARAMETERS

- For efficiency chose p such that $p + 1 = 2^a 3^b$.
- For classical *n*-bit security, choose $2^a \sim 3^b \sim 2^{2n}$, hence $p \sim 2^{4n}$.
- For quantum *n*-bit security, choose $2^a \sim 3^b \sim 2^{3n}$, hence $p \sim 2^{6n}$.

PRACTICAL OPTIMIZATIONS:

- -1 is a quadratic non-residue: $\mathbb{F}_{p^2} \simeq \mathbb{F}_p[X]/(X^2+1)$.
- *E* (or its twist) has a 4-torsion point: it has an Edwards and a Montgomery form.
- Other optimizations in the next slides.

ANALYSIS OF THE KEY EXCHANGE

ROUND 1

- Pick random $m, n \in \mathbb{Z}$;
- Compute R = mP + nQ;
- Compute $\phi : E \to E/\langle R \rangle$;
- Evaluate $\phi(S), \phi(T)$ for some points S, T.

ROUND 2

- Compute R' = mP' + nQ';
- Compute $\psi : E \to E/\langle R' \rangle$;

EVALUATING COMPOSITE ISOGENIES

 $\operatorname{ord}(R) = \ell^a$ and $\phi = \phi_0 \circ \phi_1 \circ \cdots \circ \phi_{a-1}$, each of degree ℓ

For each *i*, one needs to compute $[\ell^{e-i}]R_i$ in order to compute ϕ_i .

FIGURE: The seven well formed strategies for e = 4.

- Right edges are *l*-isogeny evaluation;
- Left edges are multiplications by ℓ (about twice as expensive);

The best strategy can be precomputed offline and hardcoded in an embedded system.

Funny fact: strategies are in one-to-one correspondence with certain instances of Gelfand-Tsetlin patterns [OEIS, Sequence A130715].

FIGURE: Optimal strategy for e = 512, $\ell = 2$.

Luca De Feo (UVSQ)

Fun with isogeniesand trees

TIMINGS

REFERENCE IMPLEMENTATION

Available at http://www.prism.uvsq.fr/~dfl/

- C + GMP implementation of \mathbb{F}_{p^2} ;
- C implementation of the key exchange;
- Cython interface to the key exchange and implementation of elliptic curves;
- Python + Sage script for parameter generation and strategy computation.

	tuned (2, 1)			balanced (1, 1)	
	512 bits	768 bits	1024 bits	768 bits	1024 bits
Alice round 1	28.1 ms	65.7 ms	122 ms	66.8 ms	123 ms
Alice round 2	23.3 ms	54.3 ms	101 ms	55.5 ms	102 ms
Bob round 1	28.0 ms	65.6 ms	125 ms	67.1 ms	128 ms
Bob round 2	22.7 ms	53.7 ms	102 ms	55.1 ms	105 ms

CONCLUSION

We have proposed a new candidate primitive for post-quantum cryptography.

- It is based on a new group theoretic construction that does not seem to have been used before.
- It is based on well known objects for which a lot of good software already exists.
- It has a simple Zero Knowledge proof with no analogue in classic discrete log based and group action based constructions.
- It is reasonably fast:
 - More than 1000 times faster than Rostovstev and Stolbunov's system at the same (classical) security level.
 - Running times comparable to pairing-based protocols.
- Because of its novelty, more scrutiny is required to assess its security. In particular, it is not clear what mathematical assumptions are needed to prove its security.