Arithmetic on Jacobians of Relative Curves Being one half of a recently defended thesis. . .

Hamish Ivey-Law

Supervisor: David Kohel

Institut de Mathématiques de Luminy
Université d'Aix-Marseille

School of Mathematics and Statistics University of Sydney

22 janvier 2013

Arithmetic on Jacobians of relative curves

(1) Divisors on relative curves

- Khuri-Makdisi's addition algorithm
- Relative curves and relative effective Cartier divisors
- Criteria for normal generation
- Tensor products and module quotients
(2) Divisor arithmetic on relative Jacobians
- Linear algebra over amenable rings
- Arithmetic of divisors

Introduction

- Given two points x and y on the Jacobian of an algebraic curve, there are various methods to explicitly compute the sum $x+y$. For example,
- using the Mumford representation of divisors,
- using Hess's arithmetic method of Riemann-Roch spaces in algebraic function fields, or
- using Khuri-Makdisi's geometric method of Riemann-Roch spaces with respect to a projective embedding of the curve.
- The goal of the first part of this work is to show that Khuri-Makdisi's approach can be generalised to the case of the Jacobian of a relative curve over an affine Noetherian base scheme.

Representing divisors on algebraic curves

- Let X be an algebraic curve.
- Fix a very ample invertible sheaf \mathscr{L} on X of degree at least $2 g+1$.
- An effective divisor D on X is given by a basis for the subspace $H^{0}(X, \mathscr{L}(-D))$ of $H^{0}(X, \mathscr{L})$. If $\mathscr{L}(-D)$ is generated by global sections, this represents the divisor precisely.
- The degree of \mathscr{L} determines an upper bound on the divisors D that we can represent. Indeed, if

$$
\operatorname{deg}(D) \leqslant \operatorname{deg}(\mathscr{L})-(2 g+1)
$$

then $\mathscr{L}(-D)$ is very ample and hence generated by its global sections.

- Let \mathscr{M} be an element of $\operatorname{Pic}_{X}^{0}(k)$; so \mathscr{M} is an invertible sheaf of degree 0 .
- The isomorphism class of \mathscr{M} is represented by any effective divisor D of degree $\operatorname{deg}(\mathscr{L})$ such that $\mathscr{M} \cong \mathscr{L}(-D)$.
- Since $\operatorname{deg}(\mathscr{L}) \geqslant 2 g+1$, we have $\operatorname{deg}\left(\mathscr{L}^{2}(-D)\right)=\operatorname{deg}(\mathscr{L}) \geqslant 2 g+1$ and so $\mathscr{L}^{2}(-D)$ is very ample.
- We can therefore represent \mathscr{M} by the space $H^{0}\left(X, \mathscr{L}^{2}(-D)\right)$.

Module quotients

Let M, N and P be R-modules and let $\mu: M \otimes N \rightarrow P$ be a homomorphism. Let $N^{\prime} \subseteq N$ and $P^{\prime} \subseteq P$ be submodules. The module quotient of P^{\prime} by N^{\prime} is defined to be the R-submodule

$$
\left(P^{\prime}: N^{\prime}\right)=\left\{m \in M \mid \mu\left(m \otimes N^{\prime}\right) \subseteq P^{\prime}\right\}
$$

of M.

Khuri-Makdisi's multiplication and quotient propositions

Let X be a complete, smooth, geometrically connected curve of genus g over a field k and let \mathscr{M} and \mathscr{N} be invertible sheaves on X.

Proposition (Khuri-Makdisi)

Suppose \mathscr{M} and \mathscr{N} are each of degree at least $2 g+1$. Then the canonical map

$$
\mu: H^{0}(X, \mathscr{M}) \otimes H^{0}(X, \mathscr{N}) \rightarrow H^{0}(X, \mathscr{M} \otimes \mathscr{N})
$$

is surjective.

Proposition (Khuri-Makdisi)

Suppose \mathscr{N} is generated by global sections and let D be any effective divisor on X. Then we have an equality

$$
H^{0}(X, \mathscr{M}(-D))=\left(H^{0}(X, \mathscr{M} \otimes \mathscr{N}(-D)): H^{0}(X, \mathscr{N})\right)
$$

where the quotient is taken with respect to the map μ above.

Khuri-Makdisi's addflip algorithm

Algorithm (Khuri-Makdisi)

Let x and y be elements of $\operatorname{Pic}_{x}^{0}(k)$ given by submodules $H^{0}\left(X, \mathscr{L}^{2}\left(-D_{1}\right)\right)$ and $H^{0}\left(X, \mathscr{L}^{2}\left(-D_{2}\right)\right)$. The following procedure calculates a divisor E on X and a section $s \in H^{0}\left(X, \mathscr{L}^{3}\right)$ such that

$$
\operatorname{div}(s)=D_{1}+D_{2}+E
$$

(1) Multiply $H^{0}\left(X, \mathscr{L}^{2}\left(-D_{1}\right)\right)$ and $H^{0}\left(X, \mathscr{L}^{2}\left(-D_{2}\right)\right)$ to obtain $H^{0}\left(X, \mathscr{L}^{4}\left(-D_{1}-D_{2}\right)\right)$.
(2) Calculate $H^{0}\left(X, \mathscr{L}^{3}\left(-D_{1}-D_{2}\right)\right)=\left(H^{0}\left(X, \mathscr{L}^{4}\left(-D_{1}-D_{2}\right)\right): H^{0}(X, \mathscr{L})\right)$.
(3) Choose a non-zero $s \in H^{0}\left(X, \mathscr{L}^{3}\left(-D_{1}-D_{2}\right)\right)$.
(9) Multiply s and $H^{0}\left(X, \mathscr{L}^{2}\right)$ to obtain $H^{0}\left(X, \mathscr{L}^{5}\left(-D_{1}-D_{2}-E\right)\right)$.
(5) Calculate

$$
H^{0}\left(X, \mathscr{L}^{2}(-E)\right)=\left(H^{0}\left(X, \mathscr{L}^{5}\left(-D_{1}-D_{2}-E\right)\right): H^{0}\left(X, \mathscr{L}^{3}\left(-D_{1}-D_{2}\right)\right)\right)
$$

(0) Return $H^{0}\left(X, \mathscr{L}^{2}(-E)\right)$ and s.

Arithmetic on a Jacobian

There is an algorithm which produces a divisor in the class of zero and an algorithm for testing whether a given divisor is zero. We will not discuss these here.

Given $x, y \in \operatorname{Pic}_{X}^{0}(k)$, Khuri-Makdisi's algorithm produces $-x-y$. We then have

- Negation: $-x=-x-0$.
- Addition: $x+y=-(-x-y)$.
- Difference: $x-y=-(-x)-y$.
- Equality: take the difference and compare with zero.

Relative curves

We will now prove generalisations of Khuri-Makdisi's multiplication and quotient propositions for relative effective Cartier divisors on relative curves, from which it will follow that the addflip algorithm remains valid in much greater generality.

- Let S be a scheme. An S-scheme X is called a relative curve if it is projective and smooth of relative dimension one with geometrically connected fibres.
- We think of X / S as a family of geometrically connected, smooth, projective algebraic curves parametrised by S.

Relative effective Cartier divisors

- Let $f: X \rightarrow S$ be a relative curve. A relative effective Cartier divisor on X is closed subscheme $\iota: D \rightarrow X$ whose ideal sheaf is invertible such that $f \circ \iota: D \rightarrow S$ is flat.
- There is a correspondence between isomorphism classes of invertible sheaves that are flat over S and relative effective Cartier divisors.
- The restriction of a relative effective Cartier divisor on a relative curve to a geometric fibre (an algebraic curve) gives an effective divisor on that fibre.
- The Euler characteristic of an invertible sheaf on X is locally constant, hence so are the genera of the fibres and the degrees of the relative effective Cartier divisors.

Relative effective Cartier divisors

Let $X \rightarrow S$ be a relative curve.

Proposition

Let \mathscr{F} be an \mathscr{O}_{X}-module which is flat over S. If $H^{1}(X, \mathscr{F})$ is projective, then so is $H^{0}(X, \mathscr{F})$.

Proposition

If \mathscr{L} is a very ample sheaf on X, then $H^{1}(X, \mathscr{L})=0$. In particular, the module of global sections of a very ample sheaf is projective.

Fibres

Henceforth, we set $S=\operatorname{Spec}(R)$ for some Noetherian ring R.

- Let s be a closed point of S.
- Denote the fibre of X above s by $X_{s}=X \times \operatorname{Spec}(k(s))$ where $k(s)$ is the residue field at s.
- For an invertible sheaf \mathscr{L} on X, denote by $\mathscr{L}_{s}=\rho_{s}^{*} \mathscr{L}$ the fibre of \mathscr{L} over s, where $\rho_{s}: X_{s} \rightarrow X$ is the projection map.

Criteria for very ampleness

Proposition

Let X be a relative curve and let \mathscr{L} be an invertible sheaf on X. Then \mathscr{L} is very ample on X if and only if \mathscr{L}_{s} is very ample on X_{s} for all closed points $s \in S$.

Corollary

Let X be a relative curve of genus g and let \mathscr{L} be an invertible sheaf on X. If $\operatorname{deg}(\mathscr{L}) \geqslant 2 g+1$, then \mathscr{L} is very ample.

Criteria for normal generation

Let X be a scheme and let \mathscr{L} be an invertible sheaf on X. Then \mathscr{L} is said to be normally generated if it is ample and the natural map

$$
H^{0}(X, \mathscr{L})^{\otimes n} \rightarrow H^{0}\left(X, \mathscr{L}^{\otimes n}\right)
$$

is surjective for all $n>0$.

Proposition

Let X be a relative curve and let \mathscr{L} be an invertible sheaf on X. Then \mathscr{L} is normally generated if and only if it is very ample and the natural maps

$$
H^{0}\left(\mathbb{P}^{\boldsymbol{n}}, \mathscr{O}_{\mathbb{P}^{\boldsymbol{n}}}(d)\right) \rightarrow H^{0}\left(X, \mathscr{L}^{\otimes d}\right)
$$

are surjective for all $d \geqslant 1$.

Proposition

Let X be a relative curve of genus g and let \mathscr{L} be an invertible sheaf on X. If $\operatorname{deg}(\mathscr{L}) \geqslant 2 g+1$, then \mathscr{L} is normally generated.

Tensor products

Proposition (I.-L.)

Let X be a relative curve and let \mathscr{M} and \mathscr{N} be normally generated sheaves on X. Then

$$
\mu: H^{0}(X, \mathscr{M}) \otimes H^{0}(X, \mathscr{N}) \rightarrow H^{0}(X, \mathscr{M} \otimes \mathscr{N})
$$

is surjective.

Sketch of proof.

We obtain a commutative diagram

$$
H^{0}\left(\mathbb{P}^{\boldsymbol{m}}, \mathscr{O}_{\mathbb{P} \boldsymbol{m}}(1)\right) \otimes H^{0}\left(\mathbb{P}^{\boldsymbol{n}}, \mathscr{O}_{\mathbb{P}^{\boldsymbol{n}}}(1)\right) \longrightarrow H^{0}(X, \mathscr{M}) \otimes H^{0}(X, \mathscr{N}) \longrightarrow 0
$$

where all maps except μ are known to be surjective. Thus μ is surjective.

Module quotients

Proposition (I.-L.)

Let X be a relative curve of genus g and let \mathscr{M} and \mathscr{N} be invertible sheaves on X, each of degree at least $2 g+1$. Then for any relative effective Cartier divisor D on X of degree at most $\operatorname{deg}(\mathscr{M})-(2 g+1)$, we have

$$
H^{0}(X, \mathscr{M}(-D))=\left(H^{0}(X, \mathscr{M} \otimes \mathscr{N}(-D)): H^{0}(X, \mathscr{N})\right)
$$

Sketch of proof.

Khuri-Makdisi proved that the result holds on the fibres. We can show that tensoring by $k(s)$ and taking global sections "commute" in the sense that

$$
H^{0}(X, \mathscr{L}) \otimes k(s) \cong H^{0}\left(X_{s}, \mathscr{L}_{s}\right)
$$

when \mathscr{L} is very ample and $s \in S$ is closed. Using properties of the module quotient, we can then "lift" Khuri-Makdisi's result from the fibres to the relative curve using Nakayama's Lemma.

Amenable rings

Let R be a ring. We say that R is amenable if

- we can perform exact arithmetic on elements of R, and
- the following functions are effectively computable on projective R-modules and homomorphisms between them:
- Dual: Given $\varphi: M \rightarrow N$, return the dual homomorphism $\varphi^{\vee}: N^{\vee} \rightarrow M^{\vee}$.
- Composite: Given $\varphi: M \rightarrow N$ and $\psi: N \rightarrow P$, return the composite $\psi \circ \varphi: M \rightarrow P$.
- Kernel: Given $\varphi: M \rightarrow N$, return $\kappa: K \rightarrow M$ such that $\operatorname{Ker}(\varphi)=\operatorname{lm}(\kappa)$.
- Common kernel: Given $\varphi_{i}: M \rightarrow N$, return the common kernel $\bigcap_{i} \varphi_{i}$.
- Sum: Given submodules $M_{1}, M_{2} \subseteq M$, return $M_{1}+M_{2} \subseteq M$.

Examples of amenable rings:

- Finite fields, the rationals, the integers (classic).
- Dedekind domains (Bosma, Pohst, Cohen), for example the ring of integers in a number field.
- Finite semi-local rings (Howell, Storjohann), for example $\mathbb{Z} / n \mathbb{Z}$.
- Certain approximation structures for $\mathbb{Z}_{p} \llbracket u \rrbracket$ (Caruso, Lubicz).

The case of primary interest is that of local Artin rings, in particular quotients of discrete valuation rings.

Arithmetic of modules - Multiplication

- Let R be an amenable ring.
- Let M, N and P be finitely generated projective R-modules and let $\mu: M \otimes N \rightarrow P$ be a homomorphism.
- Given finitely generated submodules $M^{\prime} \subseteq M$ and $N^{\prime} \subseteq N$, evaluating the image $\mu\left(M^{\prime} \otimes N^{\prime}\right)$ can be reduced to matrix multiplications defined with respect to the generating sets of M, N and P.

Arithmetic of modules - Quotients

Let M, N, P and μ be as in the previous slide.

Proposition (I.-L.)

Let $N^{\prime} \subseteq N$ and $P^{\prime} \subseteq P$ be finitely generated projective submodules and suppose P^{\prime} is a direct summand of P. Let $\left\{g_{1}, \ldots, g_{n^{\prime}}\right\}$ be a generating set for N^{\prime}. Then there exists a homomorphism $\kappa: P \rightarrow R^{k}$ whose kernel is P^{\prime} and we have

$$
\left(P^{\prime}: N^{\prime}\right)=\bigcap_{i=1}^{n^{\prime}} \operatorname{Ker}\left(\kappa^{\vee} \circ \mu_{g_{i}}\right) .
$$

It is clear from this proposition that we can effectively calculate $\left(P^{\prime}: N^{\prime}\right)$.

Representing divisors in general

- Fix a relative curve $f: X \rightarrow S$ where $S=\operatorname{Spec}(R)$ for an amenable ring R.
- Fix a very ample invertible sheaf \mathscr{L} on X of large degree.
- The module of global sections $H^{0}(X, \mathscr{L})$ is projective.
- A relative effective Cartier divisor D on X is given as the set of generators of the finitely generated submodule $H^{0}(X, \mathscr{L}(-D))$ of $H^{0}(X, \mathscr{L})$.
- We can use the multiplication map

$$
\mu: H^{0}(X, \mathscr{M}) \otimes H^{0}(X, \mathscr{N}) \rightarrow H^{0}(X, \mathscr{M} \otimes \mathscr{N})
$$

to perform arithmetic in using the module algorithms we just saw when \mathscr{M} and \mathscr{N} are normally generated.

- The degree of \mathscr{L} determines an upper bound on the divisors D that we can represent. Indeed, if

$$
\operatorname{deg}(D) \leqslant \operatorname{deg}(\mathscr{L})-(2 g+1)
$$

then $\mathscr{L}(-D)$ is normally generated.

Representing divisor classes on a relative Jacobian

- The Picard group, $\operatorname{Pic}(X)$, of X is the group $H^{1}\left(X, \mathscr{O}_{X}^{*}\right)$ of isomorphism classes of invertible sheaves on X.
- For any S-scheme T, define

$$
\operatorname{Pic}_{X}^{0}(T)=\left\{\mathscr{L} \in \operatorname{Pic}\left(X_{T}\right) \mid \operatorname{deg}\left(\mathscr{L}_{t}\right)=0 \text { for all } t \in T\right\} / f_{T}^{*} \operatorname{Pic}(T)
$$

- Let \mathscr{M} be an invertible sheaf of degree 0 . As before, we can represent it by the module $H^{0}\left(X, \mathscr{L}^{2}(-D)\right)$ where D is any relative effective Cartier divisor such that $\mathscr{M} \cong \mathscr{L}(-D)$.

Proposition (I.-L.)

The 'addflip' algorithm of Khuri-Makdisi is correct (mutatis mutandis) when operating on classes of relative effective Cartier divisors in $\mathrm{Pic}_{X}^{0}(S)$, represented as above, for a relative curve $X \rightarrow S$.

A note on complexity

- The algorithms of Khuri-Makdisi that we have generalised here have time complexities in $O\left(g^{4}\right)$ where g is the genus of the curve.
- Under reasonable assumptions about the linear algebra of modules over amenable rings, the generalised algorithms also have time complexities in $O\left(g^{4}\right)$.

Merci pour votre attention!

Thank you for your attention.

