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Introduction

Given two points x and y on the Jacobian of an algebraic curve, there are
various methods to explicitly compute the sum x + y . For example,

using the Mumford representation of divisors,
using Hess's arithmetic method of Riemann-Roch spaces in algebraic
function �elds, or
using Khuri-Makdisi's geometric method of Riemann-Roch spaces with
respect to a projective embedding of the curve.

The goal of the �rst part of this work is to show that Khuri-Makdisi's
approach can be generalised to the case of the Jacobian of a relative curve
over an a�ne Noetherian base scheme.
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Representing divisors on algebraic curves

Let X be an algebraic curve.

Fix a very ample invertible sheaf L on X of degree at least 2g + 1.

An e�ective divisor D on X is given by a basis for the subspace
H0(X ,L (−D)) of H0(X ,L ). If L (−D) is generated by global sections,
this represents the divisor precisely.

The degree of L determines an upper bound on the divisors D that we
can represent. Indeed, if

deg(D) 6 deg(L )− (2g + 1),

then L (−D) is very ample and hence generated by its global sections.

Let M be an element of Pic0X (k); so M is an invertible sheaf of degree 0.
The isomorphism class of M is represented by any e�ective divisor D of
degree deg(L ) such that M ∼= L (−D).
Since deg(L ) > 2g + 1, we have deg(L 2(−D)) = deg(L ) > 2g + 1 and so
L 2(−D) is very ample.
We can therefore represent M by the space H0(X ,L 2(−D)).
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Module quotients

Let M, N and P be R-modules and let µ :M ⊗ N → P be a homomorphism.
Let N ′ ⊆ N and P ′ ⊆ P be submodules. The module quotient of P ′ by N ′ is
de�ned to be the R-submodule

(P ′ : N ′) = {m ∈ M | µ(m ⊗ N ′) ⊆ P ′}

of M.
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Khuri-Makdisi's multiplication and quotient propositions

Let X be a complete, smooth, geometrically connected curve of genus g over a
�eld k and let M and N be invertible sheaves on X .

Proposition (Khuri-Makdisi)

Suppose M and N are each of degree at least 2g + 1. Then the canonical map

µ :H0(X ,M )⊗ H0(X ,N )→ H0(X ,M ⊗N )

is surjective.

Proposition (Khuri-Makdisi)

Suppose N is generated by global sections and let D be any e�ective divisor
on X . Then we have an equality

H0(X ,M (−D)) =
(
H0(X ,M ⊗N (−D)) : H0(X ,N )

)
where the quotient is taken with respect to the map µ above.
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Khuri-Makdisi's add�ip algorithm

Algorithm (Khuri-Makdisi)

Let x and y be elements of Pic0X (k) given by submodules H0(X ,L 2(−D1))
and H0(X ,L 2(−D2)). The following procedure calculates a divisor E on X
and a section s ∈ H0(X ,L 3) such that

div(s) = D1 + D2 + E .

1 Multiply H0(X ,L 2(−D1)) and H0(X ,L 2(−D2)) to obtain
H0(X ,L 4(−D1 − D2)).

2 Calculate H0(X ,L 3(−D1 −D2)) = (H0(X ,L 4(−D1 −D2)) : H
0(X ,L )).

3 Choose a non-zero s ∈ H0(X ,L 3(−D1 − D2)).

4 Multiply s and H0(X ,L 2) to obtain H0(X ,L 5(−D1 − D2 − E)).

5 Calculate

H0(X ,L 2(−E)) = (H0(X ,L 5(−D1−D2−E)) : H0(X ,L 3(−D1−D2))).

6 Return H0(X ,L 2(−E)) and s.
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Arithmetic on a Jacobian

There is an algorithm which produces a divisor in the class of zero and an
algorithm for testing whether a given divisor is zero. We will not discuss these
here.

Given x , y ∈ Pic0X (k), Khuri-Makdisi's algorithm produces −x − y . We then
have

Negation: −x = −x − 0.

Addition: x + y = −(−x − y).

Di�erence: x − y = −(−x)− y .

Equality: take the di�erence and compare with zero.
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Relative curves

We will now prove generalisations of Khuri-Makdisi's multiplication and
quotient propositions for relative e�ective Cartier divisors on relative curves,
from which it will follow that the add�ip algorithm remains valid in much
greater generality.

Let S be a scheme. An S-scheme X is called a relative curve if it is
projective and smooth of relative dimension one with geometrically
connected �bres.

We think of X/S as a family of geometrically connected, smooth,
projective algebraic curves parametrised by S .
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Relative e�ective Cartier divisors

Let f :X → S be a relative curve. A relative e�ective Cartier divisor on X
is closed subscheme ι :D → X whose ideal sheaf is invertible such that
f ◦ ι :D → S is �at.

There is a correspondence between isomorphism classes of invertible
sheaves that are �at over S and relative e�ective Cartier divisors.

The restriction of a relative e�ective Cartier divisor on a relative curve to a
geometric �bre (an algebraic curve) gives an e�ective divisor on that �bre.

The Euler characteristic of an invertible sheaf on X is locally constant,
hence so are the genera of the �bres and the degrees of the relative
e�ective Cartier divisors.
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Relative e�ective Cartier divisors

Let X → S be a relative curve.

Proposition

Let F be an OX -module which is �at over S. If H1(X ,F ) is projective, then
so is H0(X ,F ).

Proposition

If L is a very ample sheaf on X , then H1(X ,L ) = 0. In particular, the module
of global sections of a very ample sheaf is projective.
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Fibres

Henceforth, we set S = Spec(R) for some Noetherian ring R.

Let s be a closed point of S .

Denote the �bre of X above s by Xs = X × Spec(k(s)) where k(s) is the
residue �eld at s.

For an invertible sheaf L on X , denote by Ls = ρ∗sL the �bre of L over
s, where ρs :Xs → X is the projection map.
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Criteria for very ampleness

Proposition

Let X be a relative curve and let L be an invertible sheaf on X . Then L is
very ample on X if and only if Ls is very ample on Xs for all closed points
s ∈ S.

Corollary

Let X be a relative curve of genus g and let L be an invertible sheaf on X . If
deg(L ) > 2g + 1, then L is very ample.
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Criteria for normal generation

Let X be a scheme and let L be an invertible sheaf on X . Then L is said to
be normally generated if it is ample and the natural map

H0(X ,L )⊗n → H0(X ,L⊗n)

is surjective for all n > 0.

Proposition

Let X be a relative curve and let L be an invertible sheaf on X . Then L is
normally generated if and only if it is very ample and the natural maps

H0(Pn,OPn (d))→ H0(X ,L⊗d )

are surjective for all d > 1.

Proposition

Let X be a relative curve of genus g and let L be an invertible sheaf on X . If
deg(L ) > 2g + 1, then L is normally generated.

Hamish Ivey-Law Arithmetic on Jacobians of Relative Curves 14 / 23



Divisors on relative curves
Divisor arithmetic on relative Jacobians

Khuri-Makdisi's addition algorithm
Relative curves and relative e�ective Cartier divisors
Criteria for normal generation
Tensor products and module quotients

Tensor products

Proposition (I.-L.)

Let X be a relative curve and let M and N be normally generated sheaves on
X . Then

µ :H0(X ,M )⊗ H0(X ,N )→ H0(X ,M ⊗N )

is surjective.

Sketch of proof.

We obtain a commutative diagram

H0(Pm,OPm (1))⊗ H0(Pn,OPn (1)) //

��

H0(X ,M )⊗ H0(X ,N ) //

µ

��

0

H0(Pm × Pn,OPm×Pn (1)) // H0(X ,M ⊗N ) // 0

where all maps except µ are known to be surjective. Thus µ is surjective.
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Module quotients

Proposition (I.-L.)

Let X be a relative curve of genus g and let M and N be invertible sheaves
on X , each of degree at least 2g + 1. Then for any relative e�ective Cartier
divisor D on X of degree at most deg(M )− (2g + 1), we have

H0(X ,M (−D)) =
(
H0(X ,M ⊗N (−D)) : H0(X ,N )

)
.

Sketch of proof.

Khuri-Makdisi proved that the result holds on the �bres. We can show that
tensoring by k(s) and taking global sections �commute� in the sense that

H0(X ,L )⊗ k(s) ∼= H0(Xs ,Ls)

when L is very ample and s ∈ S is closed. Using properties of the module
quotient, we can then �lift� Khuri-Makdisi's result from the �bres to the
relative curve using Nakayama's Lemma.
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Amenable rings

Let R be a ring. We say that R is amenable if

we can perform exact arithmetic on elements of R, and

the following functions are e�ectively computable on projective R-modules
and homomorphisms between them:

Dual: Given ϕ :M → N, return the dual homomorphism ϕ∨ :N∨ → M∨.
Composite: Given ϕ :M → N and ψ :N → P, return the composite
ψ ◦ ϕ :M → P.
Kernel: Given ϕ :M → N, return κ :K → M such that Ker(ϕ) = Im(κ).
Common kernel: Given ϕi :M → N, return the common kernel

⋂
i ϕi .

Sum: Given submodules M1,M2 ⊆ M, return M1 +M2 ⊆ M.

Examples of amenable rings:

Finite �elds, the rationals, the integers (classic).

Dedekind domains (Bosma, Pohst, Cohen), for example the ring of
integers in a number �eld.

Finite semi-local rings (Howell, Storjohann), for example Z/nZ.
Certain approximation structures for Zp [[u]] (Caruso, Lubicz).

The case of primary interest is that of local Artin rings, in particular quotients
of discrete valuation rings.
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Arithmetic of modules - Multiplication

Let R be an amenable ring.

Let M, N and P be �nitely generated projective R-modules and let
µ :M ⊗ N → P be a homomorphism.

Given �nitely generated submodules M ′ ⊆ M and N ′ ⊆ N, evaluating the
image µ(M ′ ⊗ N ′) can be reduced to matrix multiplications de�ned with
respect to the generating sets of M, N and P.
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Arithmetic of modules - Quotients

Let M, N, P and µ be as in the previous slide.

Proposition (I.-L.)

Let N ′ ⊆ N and P ′ ⊆ P be �nitely generated projective submodules and
suppose P ′ is a direct summand of P. Let {g1, . . . , gn′} be a generating set for
N ′. Then there exists a homomorphism κ :P → Rk whose kernel is P ′ and we
have

(P ′ : N ′) =
n′⋂
i=1

Ker(κ∨ ◦ µgi ).

It is clear from this proposition that we can e�ectively calculate (P ′ : N ′).
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Representing divisors in general

Fix a relative curve f :X → S where S = Spec(R) for an amenable ring R.

Fix a very ample invertible sheaf L on X of large degree.

The module of global sections H0(X ,L ) is projective.

A relative e�ective Cartier divisor D on X is given as the set of generators
of the �nitely generated submodule H0(X ,L (−D)) of H0(X ,L ).

We can use the multiplication map

µ :H0(X ,M )⊗ H0(X ,N )→ H0(X ,M ⊗N )

to perform arithmetic in using the module algorithms we just saw when M
and N are normally generated.

The degree of L determines an upper bound on the divisors D that we
can represent. Indeed, if

deg(D) 6 deg(L )− (2g + 1),

then L (−D) is normally generated.
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Representing divisor classes on a relative Jacobian

The Picard group, Pic(X ), of X is the group H1(X ,O∗X ) of isomorphism
classes of invertible sheaves on X .

For any S-scheme T , de�ne

Pic0X (T ) = {L ∈ Pic(XT ) | deg(Lt) = 0 for all t ∈ T}/f ∗T Pic(T ).

Let M be an invertible sheaf of degree 0. As before, we can represent it
by the module H0(X ,L 2(−D)) where D is any relative e�ective Cartier
divisor such that M ∼= L (−D).

Proposition (I.-L.)

The `add�ip' algorithm of Khuri-Makdisi is correct (mutatis mutandis) when
operating on classes of relative e�ective Cartier divisors in Pic0X (S), represented
as above, for a relative curve X → S.
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A note on complexity

The algorithms of Khuri-Makdisi that we have generalised here have time
complexities in O(g4) where g is the genus of the curve.

Under reasonable assumptions about the linear algebra of modules over
amenable rings, the generalised algorithms also have time complexities in
O(g4).
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Merci pour votre attention!

Thank you for your attention.
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