Algorithms for isogeny graphs

Sorina Ionica
Ecole Normale Supérieure Paris
Inria Bordeaux 5 février 2013

Cryptographic motivation

We need an abelian variety of small dimension (i.e. 1,2) defined over \mathbb{F}_{q} s.t. $\# A\left(\mathbb{F}_{q}\right)$ is divisible by a large prime number

For pairing based cryptography, use the complex multiplication method to generate curves with prescribed number of points.
\longrightarrow needs precomputing the class polynomials

Class polynomials in cryptography

- Let J be a (simple) abelian surface over \mathbb{C}.
- $\operatorname{End}(J)$ is an order of a (primitive) quartic CM field K (totally imaginary quadratic extension of a totally real number field).
- The class polynomials $H_{1}, H_{2}, H_{3} \in \mathbb{Q}[X]$ parametrize the invariants of all abelian varieties A / \mathbb{C} with $\operatorname{End}(A) \simeq \mathcal{O}_{K}$.

Assume p is a "good" prime

$$
H_{i}(X)=\prod_{\operatorname{End}(A) \simeq \mathcal{O}_{K}}\left(X-j_{i}(A)\right)
$$

$\# J\left(\mathbb{F}_{p}\right)=N_{K / \mathbb{Q}}(\pi-1)$, where π is the Frobenius endomorphism.

The CRT method for class polynomial computation

Eisenträger, Freeman, Lauter, Bröker, Gruenewald, Robert :

- Select a "good" prime p.
- For each abelian surface J in the p^{3} isomorphism classes
- Check if J is in the right isogeny class.
- Check if $\operatorname{End}(J) \simeq \mathcal{O}_{K}$.
- Reconstruct $H_{i} \bmod p$ from jacobians with maximal endomorphism ring

Compute class polynomials modulo small "good" primes and use the CRT to reconstruct H_{1}, H_{2}, H_{3}.

Computing all abelian varieties with maximal order

Eisenträger, Freeman, Lauter, Bröker, Gruenewald, Robert :

- Select a "good" prime p.
- For each abelian surface J in the p^{3} isomorphism classes.
- Check if J is in the right isogeny class.
- Check if $\operatorname{End}(J) \simeq \mathcal{O}_{K}$.
- Generate jacobians with CM by \mathcal{O}_{K} by computing horizontal isogenies* from J .
- Reconstruct $H_{i} \bmod p$ from jacobians with maximal endomorphism ring
*An isogeny $I: J_{1} \rightarrow J_{2}$ is horizontal iff End $J_{1} \simeq$ End J_{2}.

Pairings and endomorphism rings

I.-Joux 2010 : algorithms for horizontal isogeny and endomorphism ring computation in genus 1 by using the Tate pairing
F. Morain : "je suis sûr qu'il y a quelque chose à dire sur les matrices du Frobenius. De toute façon, tout est dans le Frobenius!"
meaning

"It's all about the Frobenius!"

Claim : Indeed, but from a computational point of view, using pairings is faster in many cases.

$$
\operatorname{End}(J) \otimes \mathbb{Z}_{\ell} \rightarrow \operatorname{End}_{\mathbb{F}_{q}}\left(T_{\ell}(J)\right) \text { bijectively }
$$

The endomorphism ring of an ordinary jacobian

Let K be a quartic CM field and assume that $K=Q(\eta)$ with

$$
\begin{aligned}
& \eta=i \sqrt{a+b \frac{-1+\sqrt{d}}{2}} \text { for } d \equiv 1 \bmod 1 \\
& \eta=i \sqrt{a+b \sqrt{d}} \text { for } d \equiv 2,3 \bmod 4
\end{aligned}
$$

Assume real multiplication $\mathcal{O}_{K_{0}}$ has class number 1.
Let J be a jacobian of a genus 2 curve defined over \mathbb{F}_{q}.
J is ordinary, i.e. $\operatorname{End}(J)$ is an order of K.

$$
\mathbb{Z}[\pi, \bar{\pi}] \subset \operatorname{End}(J) \subset \mathcal{O}_{K}
$$

Computing endomorphism rings

Eisenträger and Lauter's algorithm (2005), Freeman-Lauter (2008)

Idea: If $\alpha: J \rightarrow J$ is an endomorphism, then $\frac{\alpha}{n}$ is an endomorphism iff $J[n] \subset \operatorname{Ker} \alpha$.

Check if an order \mathcal{O} is contained in $\operatorname{End}(J)$:

- Write down a basis for the order $\mathcal{O}: \gamma_{i}=\frac{\alpha_{i}}{n_{i}}$, with $\alpha_{i} \in \mathbb{Z}[\pi]$.
- Check if $\gamma_{i} \in \operatorname{End}(J)$ by checking if α_{i} is zero on $J\left[n_{i}\right]$.

Since $n_{i} \mid\left[\mathcal{O}_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right]$ we end up working over large extension fields!

Just to give an idea...

The smallest extension field $\mathbb{F}_{q^{r}}$ s.t. $J[\ell] \subset J\left(\mathbb{F}_{q^{r}}\right)$ has degree r at most ℓ^{4}.

$$
\begin{gathered}
\text { If } J\left[\ell^{2}\right] \nsubseteq J\left(\mathbb{F}_{q^{r}}\right) \text {, then } J\left[\ell^{2}\right] \subseteq J\left(\mathbb{F}_{q^{r \ell}}\right) \\
J\left[\ell^{3}\right] \subseteq J\left[\mathbb{F}_{q^{r \ell^{2}}}\right]
\end{gathered}
$$

Bottleneck: group structure computation $\Longrightarrow \ell$ is small

Computing the endomorphism ring

- For small ℓ, use Eisenträger-Lauter
- If ℓ is larger, use Bisson's algorithm (2012)
- smooth relations in the class group of the order \mathcal{O}
- corresponding smooth horizontal isogeny chains

$$
O((\exp \sqrt{\log q \log \log q}))^{2 \sqrt{3}+o(1)}
$$

under GRH and other heuristic assumptions

Notations

Let $\theta \in \mathcal{O}$. We define

$$
v_{\ell, \mathcal{O}}(\theta):=\max _{a \in \mathbb{Z}}\left\{m \mid \theta+a \in \ell^{m} \mathcal{O}\right\}
$$

How do we compute this?

Consider a \mathbb{Z}-basis $1, \delta, \gamma, \eta$ for \mathcal{O} :

Write $\theta=a_{1}+a_{2} \delta+a_{3} \gamma+a_{4} \eta$. Then

$$
v_{\ell, \mathcal{O}}(\theta):=v_{\ell}\left(\operatorname{gcd}\left(a_{2}, a_{3}, a_{4}\right)\right)
$$

Checking locally maximal orders at ℓ

In general, $v_{\ell, \mathcal{O}}(\theta) \leq v_{\ell, \mathcal{O}_{K}}(\theta)$

Take $O_{K_{0}}=[1, \omega]$ and $\eta=i \sqrt{a+b \omega}$, with $(b, \ell)=1$. Then $\theta=a_{1}+a_{2} \omega+\left(a_{3}+a_{4} \omega\right) \eta, a_{i} \in \mathbb{Z}$.

Lemma *

Let \mathcal{O} be an order such that $\theta \in \mathcal{O}$ and $\left[\mathcal{O}_{K}: \mathcal{O}\right]$ is divisible by a power of ℓ. If $\max \left(v_{\ell}\left(\frac{a_{3}-a_{4}}{\ell}\right), v_{\ell}\left(\frac{\ell a_{3}-a_{4}}{\ell^{2}}\right)\right)<\min \left(v_{\ell}\left(a_{3}\right), v_{\ell}\left(a_{4}\right)\right)$ then $v_{\ell, \mathcal{O}}(\theta)<v_{\ell, \mathcal{O}_{K}}(\theta)$.

Let $v_{\ell}(\pi)=v_{\ell, \operatorname{End}(J)}(\pi)$.
A simple criterion: check if $v_{\ell}(\pi)=v_{\ell, \mathcal{O}_{K}}(\pi)$.

Checking locally maximal orders at ℓ

$$
\text { How do we compute } v_{\ell}(\pi) \text { ? }
$$

Proposition

$v_{\ell}(\pi)$ is the largest integer m such that the Frobenius action on $T_{\ell}(J)$ is a multiple of the identity up to precision m.

The matrix of the Frobenius is of the form

$$
\left(\begin{array}{cccc}
\lambda & 0 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right) \bmod \ell^{k}, k \leq m
$$

We could compute the action of the Frobenius on $J[\ell], J\left[\ell^{2}\right] \ldots$

This means working over large extension fields very quickly, so NO!

How do we compute $v_{\ell}(\pi)$?

2006 Schmoyer : bring pairings into play!

The Weil pairing

Let A be an abelian variety defined over a field K. $A[m]$ is the m-torsion and $\hat{A}[m] \simeq \operatorname{Hom}\left(A[m], \mu_{m}\right)$.

Weil pairing

$$
e_{m}: A[m] \times \hat{A}[m] \rightarrow \mu_{m}
$$

is a bilinear, non-degenerate map.

If A is a principally polarized variety

$$
\begin{aligned}
e_{m}: A[m] \times A[m] & \rightarrow \mu_{m} \\
(P, Q) & \rightarrow e_{m}(P, Q) .
\end{aligned}
$$

We denote by $G_{K}=\operatorname{Gal}(\bar{K} / K)$ the Galois group.
Consider $0 \rightarrow A[m] \rightarrow A(\bar{K}) \xrightarrow{m} A(\bar{K}) \rightarrow 0$.
Take Galois cohomology and get connecting morphism

$$
\begin{aligned}
\delta: A(K) / m A(K)=H^{0}\left(G_{K}, A\right) / m H^{0}\left(G_{K}, A\right) & \rightarrow H^{1}\left(G_{K}, A[m]\right) \\
P & \rightarrow F_{P},
\end{aligned}
$$

where we take \bar{P} such that $m \bar{P}=P$ and define

$$
\begin{aligned}
F_{P}(\sigma): G_{K} & \rightarrow A(\bar{K})[m] \\
\sigma & \rightarrow \sigma \cdot \bar{P}-\bar{P} .
\end{aligned}
$$

The Tate pairing

We get the map

$$
\begin{aligned}
A(K) / m A(K) \times \hat{A}[m](K) & \rightarrow H^{1}\left(G_{K}, \mu_{m}\right) \\
(P, Q) & \rightarrow\left[\sigma \rightarrow e_{m}\left(F_{P}(\sigma), Q\right)\right]
\end{aligned}
$$

bilinear, non-degenerate

The Tate pairing

We get the map

$$
\begin{aligned}
A(K) / m A(K) \times A[m](K) & \rightarrow H^{1}\left(G_{K}, \mu_{m}\right) \\
(P, Q) & \rightarrow\left[\sigma \rightarrow e_{m}\left(F_{P}(\sigma), Q\right)\right]
\end{aligned}
$$

bilinear, non-degenerate

The Tate pairing

For a principally polarized abelian variety over a finite field \mathbb{F}_{q} s.t. $\mu_{m} \subset \mathbb{F}_{q}$

$$
H^{1}\left(G_{\mathbb{F}_{q}}, \mu_{m}\right) \simeq H^{1}\left(\operatorname{Gal}\left(\mathbb{F}_{q^{m}} / \mathbb{F}_{q}\right), \mu_{m}\right) \simeq \mu_{m}
$$

We take $\bar{P} \in A\left(\bar{F}_{q}\right)$ such that $m \bar{P}=P$ and define

The Tate pairing

$$
\begin{aligned}
A\left(\mathbb{F}_{q}\right) / m A\left(\mathbb{F}_{q}\right) \times A[m]\left(\mathbb{F}_{q}\right) & \rightarrow \mu_{m} \\
(P, Q) & \rightarrow e_{m}(\pi(\bar{P})-\bar{P}, Q)
\end{aligned}
$$

Assume there is $n \geq 1$ is s.t. $J\left[\ell^{n}\right] \subseteq J\left[\mathbb{F}_{q}\right]$ and $J\left[\ell^{n+1}\right] \nsubseteq J\left[\mathbb{F}_{q}\right]$, $\ell>2$ prime (or $\pi-1$ is divisible exactly by ℓ^{n})

Let \mathcal{W} be the set of subgroups G of rank 2 in $J\left[\ell^{n}\right]$ which are maximal isotropic with respect to the Weil pairing.
$k_{\ell, J}:=\max _{G \in \mathcal{W}}\left\{k \mid \exists P, Q \in G\right.$ s.t. $\left.T_{\ell^{n}}(P, Q) \in \mu_{\ell^{k}} \backslash \mu_{\ell^{k-1}}\right\}$

One pairing, two formulae

$$
A\left(\mathbb{F}_{q}\right) / \ell^{n} A\left(\mathbb{F}_{q}\right) \times A\left[\ell^{n}\right]\left(\mathbb{F}_{q}\right) \rightarrow \mu_{\ell^{n}}
$$

Tate
$(P, Q) \rightarrow \boldsymbol{e}_{\ell^{n}}(\pi(\bar{P})-\bar{P}, Q)$
with $\ell^{n} \bar{P}=P$ and $\bar{P} \notin J\left(\mathbb{F}_{q}\right)$

One pairing, two formulae

$$
A\left(\mathbb{F}_{q}\right) / \ell^{n} A\left(\mathbb{F}_{q}\right) \times A\left[\ell^{n}\right]\left(\mathbb{F}_{q}\right) \rightarrow \mu_{\ell^{n}}
$$

Tate

$$
(P, Q) \rightarrow e_{\ell^{n}}(\pi(\bar{P})-\bar{P}, Q)
$$

with $\ell^{n} \bar{P}=P$ and $\bar{P} \notin J\left(\mathbb{F}_{q}\right)$

Lichtenbaum

$$
(P, Q) \rightarrow\left(f_{P, \ell^{n}}(Q+R) / f_{P, \ell^{n}}(R)\right)^{\frac{q-1}{e^{n}}}
$$

with $f_{P, \ell^{n}}$ s.t. $\operatorname{div}\left(f_{P, \ell^{n}}\right) \sim \ell^{n}(P)$
compute in $O(n \log \ell+\log q)$ op. in \mathbb{F}_{q}.

One pairing, two formulae

$$
A\left(\mathbb{F}_{q}\right) / \ell^{n} A\left(\mathbb{F}_{q}\right) \times A\left[\ell^{n}\right]\left(\mathbb{F}_{q}\right) \rightarrow \mu_{\ell^{n}}
$$

Tate

$$
(P, Q) \rightarrow \boldsymbol{e}_{\ell^{n}}(\pi(\bar{P})-\bar{P}, Q)
$$

with $\ell^{n} \bar{P}=P$ and $\bar{P} \notin J\left(\mathbb{F}_{q}\right)$
compute the Frobenius action up to precision $\geq n$.

Lichtenbaum

$$
(P, Q) \rightarrow\left(f_{P, \ell^{n}}(Q+R) / f_{P, \ell^{n}}(R)\right)^{\frac{q-1}{e^{n}}}
$$

with $f_{P, \ell^{n}}$ s.t. $\operatorname{div}\left(f_{P, \ell^{n}}\right) \sim \ell^{n}(P)$
compute in $O(n \log \ell+\log q)$ op. in \mathbb{F}_{q}.

Computing $v_{\ell}(\pi)$

Theorem

Suppose $\pi-1$ is exactly divisible by ℓ^{n} and $0<\nu_{\ell, \mathcal{O}_{K}}(\pi)<2 n$. Then $v_{\ell}(\pi)=2 n-k_{\ell, J}$.

Proof: Galois cohomology+linear algebra

Corollary

If $0<v_{\ell, \mathcal{O}_{K}}(\pi)<2 n$ and under the conditions of Lemma $*$, then $\operatorname{End}(J)$ is a locally maximal order at ℓ iff $k_{\ell, J}=2 n-v_{\ell, \mathcal{O}_{K}}(\pi)$.

Computational issues

We need to get $k_{\ell, J}=\max _{G \in \mathcal{W}}\left\{k \mid T_{\ell^{n}}: G \times G \rightarrow \mu_{\ell^{k}}\right.$ surjective $\}$. There are $O\left(\ell^{3}\right)$ subgroups in \mathcal{W} !

In practice, compute a symplectic basis $\left\{Q_{1}, Q_{-1}, Q_{2}, Q_{-2}\right\}$.
Get $k_{\ell, J}=\max _{j \neq-i}\left\{k \mid T_{\ell^{n}}\left(Q_{i}, Q_{j}\right)\right.$ is a ℓ^{k}-th primitive root of unity $\}$

Algorithm

- If the $J[\ell]$ is not defined over \mathbb{F}_{q}, switch to $\mathbb{F}_{q^{r}}, r \leq \ell^{4}-1$.
- Compute largest integer n s.t. $\left.J \ell^{n}\right] \subset J\left(\mathbb{F}_{q^{r}}\right)$.
- Compute a symplectic basis $\left\{Q_{1}, Q_{-1}, Q_{2}, Q_{-2}\right\}$.
- Compute
$k_{\ell, J}=\max _{i \neq-j}\left\{k \mid T_{\ell^{n}}\left(Q_{i}, Q_{j}\right)\right.$ is a ℓ^{k}-th primitive root of unity $\}$
- If $v_{\ell, \mathcal{O}_{K}}\left(\pi^{r}\right)=2 n-k_{\ell, J}$ return true.

Complexity analysis

Denote by $\mathbb{F}_{q^{r}}$ the smallest extension field such that $J[\ell] \subset J\left[\mathbb{F}_{q^{r}}\right]$.
Let $n \geq 1$ be the largest integer such that $J\left[\ell^{\eta}\right] \subset J\left(\mathbb{F}_{q}\right)$ and $u=v_{\ell}\left(\left[\mathcal{O}_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right]\right)$.
Let $M(r)$ is the cost of a multiplication in $F_{q^{r}}$.

Freeman-Lauter	This work
$O\left(\left(r \ell^{u-n}+\ell^{2 u}\right) M\left(r \ell^{u-n}\right) \log q\right)$ $($ worst case $)$	$O\left(M(r)\left(r \log q+\ell^{2 n}+n \log \ell\right)\right)$

Heuristically, if u is large, we would expect $u>n$.

Example

Consider $y^{2}=27 x^{6}+869 x^{5}+364 x^{4}+407 x^{3}+518 x^{2}+47 x+806$ over \mathbb{F}_{1009}.
The index is $\left[\mathcal{O}_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right]=3^{4}$. The 3 -torsion is defined over $\mathbb{F}_{1009^{2}}$.
$\pi^{2}=8626-234 \frac{1+\sqrt{109}}{2}+\left(-33+27 \frac{1+\sqrt{109}}{2}\right) \sqrt{702-13 \frac{1+\sqrt{109}}{2}} \Longrightarrow$ $v_{\ell, \mathcal{O}_{K}}\left(\pi^{2}\right)=1$.

It took less then 2 seconds on a AMD Phenom II X2 B55 (3 GHz) to compute $k_{\ell, J}=1$ and decide that $\operatorname{End}(J)$ is locally maximal at ℓ.

The Freeman-Lauter algorithm runs over $\mathbb{F}_{1009^{6}}$ and returns the same result in 60 sec .

The CRT method for computing class polynomials

- Select a "good" prime p.
- For each abelian surface J in the p^{3} isomorphism classes
- Check if J is in the right isogeny class.
- Check if $\operatorname{End}(J) \simeq \mathcal{O}_{K}$.
- Generate jacobians with CM by \mathcal{O}_{K} by computing horizontal isogenies from J .
- Reconstruct H_{i} mod p from jacobians with maximal endomorphism ring

Compute class polynomials modulo small "good" primes and use the CRT to reconstruct H_{1}, H_{2}, H_{3}.

Computing horizontal isogenies

An ℓ-isogeny is an isogeny whose kernel is a subgroup of $J[\ell]$ maximal isotropic with respect to the Weil pairing.

An ℓ-isogeny $I: J_{1} \rightarrow J_{2}$ is horizontal iff End $J_{1} \simeq$ End J_{2}.
Given by the action of the Shimura class group
$\left\{(\mathfrak{a}, \alpha) \mid \mathfrak{a}\right.$ is a fractional \mathcal{O}_{K}-ideal with $\mathfrak{a} \overline{\mathfrak{a}}=(\alpha)$ with $\alpha \in K_{0}$ totally positive $\} / K^{*}$

Let ℓ coprime to discriminant of $\mathbb{Z}[\pi, \bar{\pi}]$. Then the kernel of I_{a} is a subgroup invariated by π.

$$
O\left(M(r)\left(r \log q+\ell^{2 n}\right)\right)
$$

Non-degenerate pairing on kernel

Let J be a jacobian whose endomorphism ring is locally maximal at ℓ.

Assume $\pi-1$ is exactly divisible by ℓ^{n} and let G be a subgroup in \mathcal{W}.

The Tate pairing is non-degenerate on $G \times G$ if

$$
T_{\ell^{n}}: G \times G \rightarrow \mu_{\ell^{k}, \nu}
$$

is surjective. We say it is degenerate otherwise.

Computing horizontal isogenies

Let G_{1} be a maximal isotropic subgroup of $J[\ell]$.
Consider $G \in \mathcal{W}$ such that $\ell^{n-1} G=G_{1}$.

Theorem

- If the isogeny of kernel G_{1} is horizontal, then the Tate pairing is degenerate on $G \times G$.
- Under the conditions from Lemma $*$, if the Tate pairing is degenerate on $G \times G$, then the isogeny is horizontal.

$$
O\left(M(r)\left(r \log q+\ell^{2 n}+n \log \ell\right)\right)
$$

An example

We consider the jacobian of the hyperelliptic curve

$$
y^{2}=5 x^{5}+4 x^{4}+98 x^{2}+7 x+2, \text { over } \mathbb{F}_{127}
$$

$\operatorname{End}(\mathrm{J})$ is maximal at 5 and $[\operatorname{End} J: \mathbb{Z}[\pi, \bar{\pi}]]=50$.
The decomposition (5) $=\mathfrak{a} \bar{a}$ in \mathcal{O}_{K} gives two horizontal isogenies.
The 5 -torsion is defined over $\mathbb{F}_{127}(t):=\mathbb{F}_{127^{8}}$.
With MAGMA, we computed the Mumford coordinates of the generators of kernels:

$$
\begin{aligned}
& \left(x^{2}+\left(74 t^{7}+25 t^{6}+6 t^{5}+110 t^{4}+96 t^{3}+75 t^{2}+29 t+20\right) x+39 t^{7}+62 t^{6}+77 t^{5}+47 t^{4}\right. \\
& +9 t^{3}+62 t^{2}+97 t+15,\left(116 t^{7}+61 t^{6}+13 t^{5}+38 t^{4}+70 t^{3}+109 t^{2}+62 t+71\right) x+98 t^{7}+77 t^{6}+17 t^{5} \\
& \left.+76 t^{4}+81 t^{3}+5 t^{2}+36 t+33\right),\left(x^{2}+\left(66 t^{7}+89 t^{6}+50 t^{5}+124 t^{4}+91 t^{3}+102 t^{2}+100 t+52\right) x+119 t^{7}\right. \\
& +14 t^{6}+126 t^{5}+42 t^{4}+42 t^{3}+85 t^{2}+12 t+77,\left(92 t^{7}+90 t^{6}+94 t^{5}+57 t^{4}+59 t^{3}+24 t^{2}+72 t\right. \\
& \left.+11) x+103 t^{7}+16 t^{6}+7 t^{5}+111 t^{4}+95 t^{3}+79 t^{2}+45 t+34\right)
\end{aligned}
$$

Kernels with non-degenerate pairing

There are $\ell^{3}+\ell^{2}+\ell+1 \ell$-isogenies. Experimentally, we observed:

ℓ	$\# \ell$-Isogenies	$\#$ Kernels with deg. pairing
3	40	$4,7,8$
5	156	$6,8,12$
7	400	$8,14,16$
11	1464	$12,22,24$

It seems that at most $O(\ell)$ subgroups in \mathcal{W} have degenerate Tate pairing.

- In genus 1 , the ℓ-adic valuation of the Frobenius fully characterizes the endomorphism ring.
I.-Joux, Pairing the volcano, Math. Comp. http://arxiv.org/abs/1110.3602
- In genus 2, we need a stronger invariant. Work in progress with Emmanuel Thomé.
I., Pairing-based algorithms for jacobians of genus 2 curves with maximal endomorphism ring, http://fr.arxiv.org/abs/1204.0222

