Un test de pseudo-primalité efficace

Tony EZOME

Université des Sciences et Techniques de Masuku (USTM) Franceville - Gabon

19 février 2013

Contexte

Dans cet exposé, je vais présenter un travail qui est le fruit d'une collaboration avec J.-M. Couveignes et R. Lercier

Étant donné un entier naturel n, on peut se demander si n est premier ou composé.

Il existe plusieurs méthodes pour étudier la primalité des entiers (article de R. Schoof 2008) : les tests de Miller-Rabin, AKS, APR-CL, ECPP.

Deux types d'algorithmes : tests de composition (pseudo-primalité) et tests de primalité.

Objectif

L'objectif de cet exposé est de présenter un nouveau test de pseudo-primalité efficace qui mêle test de Miller-Rabin et extensions galoisiennes

- Préliminaires
 - Généralités sur les tests de composition
 - Miller-Rabin
- 2 Le test de Galois
 - Le critère
 - La proportion de faux témoins
- 3 Un test de pseudo-primalité efficace

Plan

- Préliminaires
 - Généralités sur les tests de composition
 - Miller-Rabin
- 2 Le test de Galois
 - Le critère
 - La proportion de faux témoins
- Un test de pseudo-primalité efficace

Un critère de composition est un énoncé concernant les propriétés des inversibles d'un anneau S, qui peut-être $\mathbb{Z}/n\mathbb{Z}$ ou une extension.

À partir du critère de composition, on construit un ensemble de témoins W_n et une application

$$P_n: W_n \to \{\text{composite}, \text{prime}\}$$

qui à tout témoin $x \in W_n$ associe une affirmation concernant la primalité de n.

Un test de composition est la donnée d'un critère de composition, de l'ensemble des témoins W_n associé à ce critère, et de l'application $P_n: W_n \to \{\text{composite}, \text{prime}\}$.

Lorsque n est premier, l'image de P_n est $P_n(W_n) = \{\text{premier}\}$. Dans ce cas, il n'y a que de bons témoins.

Si n est composé, alors les éléments x de W_n tels que $P_n(x)$ = premier sont appelés faux témoins.

On dit que n a validé un test P_n , si après avoir choisi uniformément un témoin x dans W_n , on a obtenu $P_n(x) = \text{prime}$.

Deux caractéristiques importantes :

- Le temps de Calcul $n \mapsto T(n)$ de $P_n(x)$,
- La densité de faux témoins $n \mapsto \mu_n$ dans W_n qui mesure la fiabilité du test.

Plan

- Préliminaires
 - Généralités sur les tests de composition
 - Miller-Rabin
- 2 Le test de Galois
 - Le critère
 - La proportion de faux témoins
- Un test de pseudo-primalité efficace

C'est un test de composition qui repose sur le résultat suivant :

Théorème (Critère Miller-Rabin)

Soit $n \ge 3$ un entier impair. On pose $n-1=2^k m$, où m est un entier impair. Si n est premier alors pour tout x dans $(\mathbb{Z}/n\mathbb{Z})^*$

$$x^m = 1$$
, ou bien $\exists i \in \{0, 1, 2, \dots, k - 1\}$ tel que $x^{m2^i} = -1$. (1)

L'ensemble des témoins pour le test de Miller-Rabin est $W_n = (\mathbb{Z}/n\mathbb{Z})^*$, et l'application associée $\mathrm{MR}_n : (\mathbb{Z}/n\mathbb{Z})^* \to \{\mathrm{composite}, \mathrm{prime}\}$ est définie par :

$$\mathrm{MR}_n(x) = \mathrm{prime} \Longleftrightarrow \left\{ \begin{array}{l} x^m = 1 \\ \mathrm{ou} \\ \exists i \in \{0, 1, 2, \dots, k-1\}, x^{m2^i} = -1. \end{array} \right.$$

La fiabilité de ce test est donnée par le théorème suivant.

Théorème (R. Schoof)

Soit n un entier impair composé. Alors la densité de faux témoins pour le test Miller-Rabin vérifie

$$\mu_{\mathrm{MR}} = \frac{\#\{x \in (\mathbb{Z}/n\mathbb{Z})^* | \textit{ la condition (1) est vérifiée}\}}{\varphi(n)} \leq \frac{1}{2^{t-1}}$$

où $\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^*$ et t est le nombre de diviseurs premiers distincts de n.

De plus si $n \geq 11$, alors $\mu_{\mathrm{MR}} \leq \frac{1}{4}$.

Le test de Miller-Rabin est donc particulièrement efficace lorsque *n* a beaucoup de diviseurs premiers.

On a au moins une chance sur quatre de détecter un nombre composé $n \ge 11$. La probabilité qu'un entier composé valide k tests de Miller-Rabin indépendants est au plus égale à $(1/4)^k$. le temps de calcul des k tests est $k(\log n)^{2+\epsilon(n)}$.

Ce test ne prouve pas qu'un entier est premier, mais apporte une forte conviction. C'est pourquoi on dit aussi que c'est un test de *pseudo-primalité*.

Plan

- Préliminaires
 - Généralités sur les tests de composition
 - Miller-Rabin
- 2 Le test de Galois
 - Le critère
 - La proportion de faux témoins
- Un test de pseudo-primalité efficace

Un critère de pseudo-primalité

Le test de Galois est un test de pseudo-primalité qui repose sur le résultat suivant :

Théorème (Couveignes-Ezome-Lercier)

Soit $n \geq 2$ un entier, on pose $R = \mathbb{Z}/n\mathbb{Z}$. Soit $S \supset R$ une R-algèbre commutative fidèle libre de rang fini. Soit σ un R-endomorphisme de S. Soit $\Omega \subset S$ un sous-ensemble de S tel que la plus petite sous R-algèbre de S contenant Ω et stable par σ est encore S. Supposons que $\sigma(\omega) = \omega^n$ pour tout $\omega \in \Omega$. Si n est premier, alors pour tout x dans S on a : $\sigma(x) = x^n$.

En pratique l'algèbre S est telle que $(S, \langle \sigma \rangle)$ est une extension galoisienne de l'anneau $R = \mathbb{Z}/n\mathbb{Z}$.

Le livre de Demeyer et Ingraham et l'article de Chase, Harrison et Rosenberg décrivent les extensions galoisiennes d'anneaux.

Nous insistons sur les éléments suivants :

Definition (F. DeMeyer, E. Ingraham)

Soit R un anneau commutatif unitaire. Soient $S \supset R$ une R-algèbre commutative fidèle et $\mathcal G$ un sous-groupe fini de l'ensemble $\operatorname{Aut}_R(S)$ des R-automorphismes de S. On dit que $(S,\mathcal G)$ est une extension galoisienne de R de degré $\#\mathcal G$ si :

- La sous-algèbre $S^{\mathcal{G}}$ des éléments de S fixés par \mathcal{G} est égale à R.
- ② Pout tout idéal maximal M de S et pour tout σ dans $\mathcal{G} \{ \mathrm{Id}_S \}$, il existe un élément x dans S tel que $\sigma(x) x \notin M$.

Lorsque $\mathcal{G}=\langle\sigma\rangle$, on dit que (S,\mathcal{G}) est une extension cyclique de R.

On montre que l'anneau S est une R-algèbre libre de rang $\#\mathcal{G}$.

Il existe plusieurs définitions de la notion d'extension d'anneaux. Nous en donnons encore une autre :

Le produit tensoriel $S \otimes_R S$ a une structure de S-algèbre induite par la relation $s(a \otimes b) = (sa) \otimes b$, pour tous $a, b, s \in S$. Soit

$$i: S \otimes_R S \longrightarrow S^{\#\mathcal{G}}$$

$$x \otimes y \longmapsto (x\sigma(y))_{\sigma \in \mathcal{G}}.$$

Alors on peut remplacer l'assertion (2) de la définiton ci-dessus par : (2)' L'application $i:S\otimes_R S\to S^{\#\mathcal{G}}$ est un isomorphisme de S-algèbres.

Illustration

Soit $n \ge 2$ un entier, on pose $R = \mathbb{Z}/n\mathbb{Z}$. Soit d un diviseur de $\varphi(n)$. Soit $\zeta \in R^*$ un élément d'ordre exact d (cela signifie que $\zeta^d = 1$ et $\zeta^i - 1$ est inversible pour tout $1 \le i < d$).

Soit $a \in R^*$ un inversible, on pose $S = R[x]/(x^d - a)$. On note $\sigma: S \to S$ l'endomorphisme du R-module S défini par $\sigma(x) = \zeta x$. Alors :

- ullet σ est un automorphisme de R-algèbres,
- $\sigma(\sum_i u_i x^i) \sum_i u_i x^i = \sum_i (\zeta^i 1) u_i x^i$ (donc $S^{\mathcal{G}} = R$),
- $\sigma^i(x) x = (\zeta^i 1)x$ est une unité si $i \neq 0 \mod d$.

Illustration

Donc $(R[x]/(x^d - a), \langle \sigma \rangle)$ est une extension cyclique de $R = \mathbb{Z}/n\mathbb{Z}$.

Par ailleurs si R est un corps, S une extension de R et G un groupe fini alors le couple (S, G) est une extension galoisienne de R au sens de la définition ci-dessus

si et seulement si

 (S, \mathcal{G}) est une extension galoisienne de R au sens de la théorie de Galois classique sur les corps.

Proposition (S. CHase, D. Harrison, A. Rosenberg)

Soient n>1 un entier naturel, on pose $R=\mathbb{Z}/n\mathbb{Z}$. Si (S,\mathcal{G}) est une extension galoisienne de R, il existe un élément ω dans S tel que $(\sigma(\omega))_{\sigma\in\mathcal{G}}$ est une R-base de S, autrement dit S possède une base normale sur R.

On peut donc utiliser le critère de pseudo-primalité de tout à l'heure avec les extensions galoisiennes de $\mathbb{Z}/n\mathbb{Z}$.

Construction d'une extension cyclique de degré d

- Algorithme de Berlekamp pour trouver $f(x) \in (\mathbb{Z}/n\mathbb{Z})[x]$ de degré d qui est irréductible si n est premier, i.e $x^{n^i} x$ est une unité de R[x]/f(x) pour $1 \le i \le \frac{d}{2}$.
- On pose S = R[x]/f(x), et $\sigma: S \to S$ l'endomorphisme de R-modules défini par $\sigma(x^i) = x^{ni} \mod f(x)$ pour $0 \le i \le d-1$.
- Vérifier que σ est multiplicative, $i.e \ \sigma(x^i \ \text{mod} \ f(x)) = x^{ni} \ \text{mod} \ f(x) \ \text{pour} \ d \leq i \leq 2d-2.$
- Vérifie que σ est d'ordre d, i.e $x^{n^d} x = 0 \mod f(x)$.
- Vérifier que $S^{\sigma} = R$, en utilisant la matrice de σ dans la base $(1, x, \dots, x^{d-1})$.
- Choisir $u \in S$ et vérifier que $\sigma^i(u) u \in S^*$ pour $1 \le i \le d-1$.

Plan

- Préliminaires
 - Généralités sur les tests de composition
 - Miller-Rabin
- 2 Le test de Galois
 - Le critère
 - La proportion de faux témoins
- Un test de pseudo-primalité efficace

L'ensemble des témoins pour le test de Galois est égal au groupe S^* des unités de la $\mathbb{Z}/n\mathbb{Z}$ -algèbre S, où n est l'entier dont on veut étudier la primalité.

Soit $n = \prod_{p} p^{v_p}$ la décomposition en facteurs premiers de n. Si p et q sont deux diviseurs premiers de n, alors $p^{v_p}S + q^{v_q}S = S$.

De plus l'intersection des $p^{\nu_p}S$ est nulle. Donc $S \cong \prod_{p|n} S/(p^{\nu_p}S) = \prod_{p|n} S_p$.

Ainsi $S^* = \prod_{p|n} S_p^*$. On va donc compter les faux témoins dans chacun des S_p^* .

Cela donne lieu à une étude simple des extensions de l'anneau et/ou de ses quotients $\mathbb{Z}/p\mathbb{Z}$ où p est un diviseur de n.

On obtient des résultats intéressants.

Par exemple si $(S, \langle \sigma \rangle)$ est une extension galoisienne de $\mathbb{Z}/n\mathbb{Z}$ de degré d, alors pour tout nombre premier p divisant n:

- $(S/pS, \langle \sigma \rangle)$ est une extension galoisienne de $\mathbb{Z}/p\mathbb{Z}$.
- il existe un diviseur f de d tel que $pS = \mathfrak{p}_1 \cdots \mathfrak{p}_m$, où m = d/f.
- ullet il existe un entier z premier à f tel que

$$x^p = \sigma^{zm}(x) \mod p$$
, pour tout $x \in S$,

C'est-à-dire que l'automorphisme de Frobenius du quotient S/pS est une puissance de σ .

Théorème (Couveignes-Ezome-Lercier)

Soient A>2 et $B\geq 3$ deux nombres réels. Soit $n\geq 3$ un entier, on pose $R=\mathbb{Z}/n\mathbb{Z}$. Supposons que tout diviseur premier de n est plus grand ou égal à B et que n n'est pas une puissance d'un nombre premier. Soit $(S,\langle\sigma\rangle)$ une extension galoisienne de R de rang d. Supposons que p est un nombre premier tel que p^{v} divise p et p divise p et p de facult form p est p est p de facult form p est p

Alors la densité $\mu_S = \frac{\#\{x \in S^* \mid \sigma(x) = x^n\}}{\#S^*}$ de faux témoins dans S^* est telle que

$$\mu_{S} \leq p^{-\frac{vd}{2}(1-\frac{2}{A}-\frac{4}{B})} \leq n^{-\frac{A}{2}(1-\frac{2}{A}-\frac{4}{B})}.$$

Définition du Test produit

On définit la loi de composition associative

$$\lor$$
: {composite, prime} \times {composite, prime} \rightarrow {composite, prime}

munie de la table

V	composite	prime
composite	composite	composite
prime	composite	prime

Test produit

Si pour $1 \le i \le r$ les applications $P_n^i: W_n^i \to \{\text{composite}, \text{prime}\}\$ sont r tests de pseudo-primalité.

Le test produit $P_n = \bigvee_{1 \leq i \leq r} P_n^i$ est tel que

$$P_n$$
: $W_n = W_n^1 \times W_n^2 \times \cdots \times W_n^r \longrightarrow \{\text{composite}, \text{prime}\}$

$$(w_1,\ldots,w_r) \longmapsto \bigvee_{1\leq i\leq r} P_n^i(w_i).$$

Test produit

Un témoin pour P_n est un r-uplet $w = (w_1, \ldots, w_r)$ de témoins w_i des r tests P_n^i . Si n est composé, alors w est un mauvais témoin si et seulement si tous les w_i sont de mauvais témoins.

Donc la densité de mauvais témoins est égale au produit de toutes les densités. Et le temps de calcul du test produit est égal à la somme des complexités multipliée par $\lceil \log_2 r \rceil + 1$.

le test de Galois est efficace lorsque n a est un grand diviseur p^{v} .

D'autre part, si *n* a beaucoup de diviseurs premiers il est rapidement détecté par une serie raisonnable de tests de Miller-Rabin.

On a construit (avec Couveignes et Lercier) un test de pseudo-primalité efficace (le test de Miller-Rabin-Galois) qui est le produit d'un test de Galois et de r tests de Miller-Rabin.

Algorithme (Test de Miller-Rabin-Galois)

Pour une densité de faux témoins $\leq 2^{-\lambda}$.

- Vérifier que n n'a pas de diviseur premier < 1000.
- ② Vérifier que n n'est pas une puissance exacte.
- Construire une extension galoisienne $(S, \langle \sigma \rangle)$ de $\mathbb{Z}/n\mathbb{Z}$ de degré d telle que $k \leq d \leq k^{1+\epsilon(k)}$ où $k = \max(16, \lfloor \sqrt{\lambda} \rfloor)$.
- Enchaîner r tests Miller-Rabin avec $r = \lceil \lambda/(0.18 \times d) \rceil$. Si l'un des tests échoue n est composé.
- Choisir au hasard dans S un élement non nul x et vérifier que x est inversible. Sinon n est composé.
- Vérifier que $\sigma(x) = x^n$. Si c'est vraie retouner prime, sinon composite.

Une implémentation de ce test, sur MAGMA V2.18-2, est disponible sur la page internet de Reynald Lercier.

Merci de votre attention!