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The theory of reals

Consider the theory of reals (i.e. formulas true in R) based on the
following language:

• All rational constants p/q

• Operators of negation (‘−’), addition (‘+’), subtraction (‘−’)and
multiplication (‘·’)

• Relations ‘=’, ‘<’, ‘≤’, ‘>’, ‘≥’

An interesting theory that can express many nontrivial (indeed open)
problems:

Kissing problem: how many disjoint n-dimensional spheres
can be packed into space so that they touch a given unit
sphere?
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Axiomatizing the theory of reals (1)

1 6= 0

∀x y. x + y = y + x

∀x y z. x + (y + z) = (x + y) + z

∀x. 0 + x = x

∀x. (−x) + x = 0

∀x y. xy = yx

∀x y z. x(yz) = (xy)z

∀x. 1x = x

∀x. x 6= 0 ⇒ x−1x = 1

∀x y z. x(y + z) = xy + xz
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Axiomatizing the theory of reals (2)

Axioms for an ordered field:

∀x y. x = y ∨ x < y ∨ y < x

∀x y z. x < y ∧ y < z ⇒ x < z

∀x. x 6< x

∀y z. y < z ⇒ ∀x. x + y < x + z

∀x y. 0 < x ∧ 0 < y ⇒ 0 < xy

and the higher-order axiom of completeness:

∀S. (∃x. x ∈ S) ∧ (∃M. ∀x ∈ S. x ≤ M)

⇒ ∃m. (∀x ∈ S. x ≤ m) ∧ ∀m′. (∀x ∈ S. x ≤ m′) ⇒ m ≤ m′

These axioms are categorical, i.e. determine R up to isomorphism.
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Real-closed fields

The theory of real-closed fields takes instead of completeness just
the existence of square roots:

∀x. x ≥ 0 ⇒ ∃y. x = y2

and that all polynomials of odd degree have a root (one of these for
each odd n):

∀a0, . . . , an. an 6= 0 ⇒ ∃x. anxn + an−1x
n−1 + · · · + a1x + a0 = 0

This theory is not categorical: other models include the computable
real numbers. However, it is complete, i.e. determines all first-order
consequences.
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Completeness and decidability

Tarski proved in the 1930s that the theory of real-closed fields is
complete and decidable, and even exhibited a quantifier elimination
procedure for it.

This was only published in 1948 (by RAND!)

R |= (∃x.ax2 + bx+ c = 0) ⇔ a 6= 0∧ b2 ≥ 4ac∨a = 0∧ (b 6= 0∨ c = 0)

Collins’s CAD algorithm is much more efficient and the first decision
method actually to be implemented.

Some good implementations like qepcad and REDLOG, but
theoretical and practical complexity issues limit its application.

Cohen-Hörmander algorithm is significantly simpler and has been
implemented in Coq and HOL to generate proofs, but even slower.
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The universal fragment

Many interesting problems fall into the purely universal fragment:

• Everyday trivialities like ∀x y. x ≥ 0 ∧ y ≥ 0 ⇒ xy ≥ 0

• Polynomial bound problems like ∀x ∈ [0, 1]. |p(x)| ≤ k (used for
some of my verifications).

• Most classical geometrical theorems

NB: geometry theorems with no use of ordering often turn out to be
true over C, which makes things easier.
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Universality of real-closed fields

By the Artin-Schreier theory every ordered field can be embedded in
a real-closed field.

This means that a universal formula holds in all real-closed fields iff it
holds in all ordered fields, or even in all ordered integral domains.

So we will never need to use anything beyond the axioms for an
ordered integral domain!

(Compare the case of fields in general: a universal formula holds in
C iff it holds in all fields/integral domains of characteristic 0.)
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Positivity

Consider first an even more special case of proving positive
semidefiniteness:

∀x1, . . . , xn. p(x1, . . . , xn) ≥ 0

Not as limited as it may appear: can express polynomial bounds by

change of variables like x 7→ y2

1+y2

Illustrates the core techniques of SOS and SDP methods while
avoiding some technicalities.
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Sum-of-squares proofs

A sufficient condition for

∀x1, . . . , xn. p(x1, . . . , xn) ≥ 0

is the expressibility of p as a sum of squares (SOS)

p(x1, . . . , xn) = s1(x1, . . . , xn)2 + · · · + sk(x1, . . . , xn)2

In general it is not a necessary condition; a concrete counterexample
is the Motzkin form 1 + x4y2 + x2y4 − 3x2y2.

The solution to Hilbert’s 17th problem shows that a polynomial is
PSD iff it is a sum of squares of rational functions.
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Sufficiency of sum-of-squares

PSD and SOS are equivalent in several special cases, the most
important being

• Univariate polynomials of any degree

• Quadratic forms (all terms have degree exactly 2) in any number
of variables (‘complete the square’)

Moreover, one can base complete approaches on various
“Positivstellensatz” results that also depend essentially on sums of
squares.
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Example (problem)

Consider the following (Zeng et al, JSC vol 37, 2004, p83-99).

∀w x y z. w6 + 2z2w3 + x4 + y4 + z4 + 2x2w + 2x2z+

3x2 + w2 + 2zw + z2 + 2z + 2w + 1 ≥ 0

Constraint problems of this sort are in general quite hard to solve.
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Example (solution)

We can express the polynomial as a SOS:

w6 + 2z2w3 + x4 + y4 + z4 + 2x2w + 2x2z+

3x2 + w2 + 2zw + z2 + 2z + 2w + 1 =

(y2)2 + (x2 + w + z + 1)2 + x2 + (w3 + z2)2

Note how nice this is for LCF-style proving: the SOS decomposition
can be checked without any tricky decision procedures.

But how do we find the SOS decomposition? By semidefinite
programming (SDP)!
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Reduction to quadratic form

By introducing new variables for monomials, we can express a
polynomial as a quadratic form subject to linear constrants. Example:

2x4 + 2x3y − x2y2 + 5y4

We consider all monomials (only need homogenous ones since
original is a form): z1 = x2, z2 = y2, z3 = xy and write the
polynomial as a quadratic form. In matrix notation:
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Linear parametrization

By comparing coefficients we get linear constraints; in this case we
end up with only one parameter.

q11 = 5

q22 = 5

q33 + 2q12 = −1

2q13 = 2

2q23 = 0

In general we’ll get more, but the key point is that the
parametrization is linear.
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Semidefinite programming

For quadratic forms, being PSD is equivalent to being SOS.

Finding a parametrization making a matrix PSD, subject to (and
optimizing) linear constraints is a standard problem called
semidefinite programming.

The problem is polynomial-time solvable using interior-point
algorithms.

There are many efficient tools to solve the problem effectively in
practice. I mostly use CSDP.
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The usual Nullstellensatz

Over algebraically closed fields like C we have a nice simple
equivalence.

The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in an
algebraically closed field have no common solution iff there are
polynomials q1(x), . . . , qk(x) such that the following polynomial
identity holds:

q1(x) · p1(x) + · · · + qk(x) · pk(x) = 1

Thus we can reduce equation-solving to ideal membership and
solve it efficiently using Gröbner bases.
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The real Nullstellensatz

In the analogous Nullstellensatz result over R, sums of squares play
a central role:

The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in a real closed
closed field have no common solution iff there are polynomials q1(x),
. . . , qk(x), s1(x), . . . , sm(x) such that

q1(x) · p1(x) + · · · + qk(x) · pk(x) + s1(x)2 + · · · + sm(x)2 = −1

SDP can also solve this more general problem, either by linear
parametrization of possible qi(x) or combining with Gröbner bases.
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Real Positivstellensatz

There are still more general “Positivstellensatz” results about the
inconsistency of a set of equations, negated equations, strict and
non-strict inequalities.

Because there are so many different kinds of hypothesis, the exact
statement looks a bit daunting.

But here’s a simple example: prove

∀a b c x. ax2 + bx + c = 0 ⇒ b2 − 4ac ≥ 0

via the following SOS certificate:

b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c)
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Experience and problems

This approach is often much more efficient than competing
techniques such as general quantifier elimination.

Lends itself very well to a separation of proof search and LCF-style
checking, so fits very well with HOL Light.

Available with HOL Light since 2.0 in Examples/sos.ml, and
seems quite useful.

Still some awkward numerical problems where the PSD is tight (can
become zero) and the rounding to rationals causes loss of
PSD-ness.
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The univariate case

Alternative based on the simple observation that every nonnegative
univariate polynomial is a sum of squares of real polynomials.

All roots, real or complex, must occur in conjugate pairs. Thus the
polynomial is a product of factors

(x − [ak + ibk])(x − [ak − ibk])

and so is of the form

(q(x) + ir(x))(q(x) − ir(x)) = q(x)2 + r(x)2

To get an exact rational decomposition, we need a more intricate
algorithm, but this is the basic idea.
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Experience of univariate case

Numerical problems can be particularly annoying with some
polynomial bound problems in real applications where the
coefficients are non-trivial (60-200 bits).

For example, proving ∀x. |x| ≤ k ⇒ |f(x) − p(x)| < ǫ where p is a
short approximation to a longer polynomial f .

The direct approach is often better than SDP-based methods, for
numerical reasons, in such examples.
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General conclusion

There’s often a lack of communication between researchers in
theorem proving and in related fields.

Sometimes we can get important ideas from other theorem provers
(e.g. declarative proof from Mizar).

We can learn lots of useful ideas from computer algebra, and even
exploit the systems themselves (e.g. Analytica).

As this work shows, there is also a lot of interesting stuff out there in
the optimization field that we may be able to exploit.

But a high-precision SDP solver would be desirable!
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