Bad words arising from generalized Fibonacci cubes

Sandi Klavžar University of Ljubljana, Slovenia University of Maribor, Slovenia joint work with Aleksandar Ilić, Yoomi Rho, Sergey Shpectorov

Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence CNRS, LaBRI, UMR5800, F-33400 Talence April 26, 2013

Fibonacci cubes

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

< ∃ >

The *d*-cube Q_d or hypercube of dimension *d*:

□ > < E > < E >

э

The *d*-cube Q_d or hypercube of dimension *d*:

•
$$V(Q_d) = \{b_1 b_2 \dots b_d \mid b_i \in \{0, 1\}\}.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

э

The *d*-cube Q_d or hypercube of dimension *d*:

- $V(Q_d) = \{b_1 b_2 \dots b_d \mid b_i \in \{0, 1\}\}.$
- Two vertices are adjacent if the binary strings differ in one position.

A B > A B >

The *d*-cube Q_d or hypercube of dimension *d*:

- $V(Q_d) = \{b_1 b_2 \dots b_d \mid b_i \in \{0, 1\}\}.$
- Two vertices are adjacent if the binary strings differ in one position.

•
$$|V(Q_d)| = 2^d$$

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

同 ト イ ヨ ト イ ヨ ト

The *d*-cube Q_d or hypercube of dimension *d*:

- $V(Q_d) = \{b_1 b_2 \dots b_d \mid b_i \in \{0, 1\}\}.$
- Two vertices are adjacent if the binary strings differ in one position.
- $|V(Q_d)| = 2^d$
- Q_d is *d*-regular

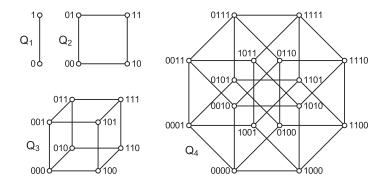
伺 ト く ヨ ト く ヨ ト

The *d*-cube Q_d or hypercube of dimension *d*:

- $V(Q_d) = \{b_1 b_2 \dots b_d \mid b_i \in \{0, 1\}\}.$
- Two vertices are adjacent if the binary strings differ in one position.
- $|V(Q_d)| = 2^d$
- Q_d is *d*-regular
- Q_d is vertex-transitive ...

· < E > < E >

Small cubes



Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

э

・ 同 ト ・ ヨ ト ・ ヨ ト

• A Fibonacci string of length d is a binary string $b_1 b_2 \dots b_d$ with $b_i \cdot b_{i+1} = 0$ for $1 \le i < d$.

A B + A B +

3

- A Fibonacci string of length d is a binary string $b_1 b_2 \dots b_d$ with $b_i \cdot b_{i+1} = 0$ for $1 \le i < d$.
 - 01010001 and 00100001 are Fibonacci strings.
 - 011000 and 001010110 are not Fibonacci strings.

3 N 4 3 N

- A Fibonacci string of length d is a binary string $b_1 b_2 \dots b_d$ with $b_i \cdot b_{i+1} = 0$ for $1 \le i < d$.
 - 01010001 and 00100001 are Fibonacci strings.
 - 011000 and 001010110 are not Fibonacci strings.
- Name comes from Zeckendorf's theorem.

- A Fibonacci string of length d is a binary string $b_1 b_2 \dots b_d$ with $b_i \cdot b_{i+1} = 0$ for $1 \le i < d$.
 - 01010001 and 00100001 are Fibonacci strings.
 - 011000 and 001010110 are not Fibonacci strings.
- Name comes from Zeckendorf's theorem.

Definition

Fibonacci cube Γ_d , $d \ge 1$: subgraph of Q_d induced by the Fibonacci strings of length d.

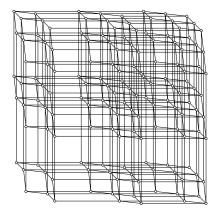
- A Fibonacci string of length d is a binary string $b_1 b_2 \dots b_d$ with $b_i \cdot b_{i+1} = 0$ for $1 \le i < d$.
 - 01010001 and 00100001 are Fibonacci strings.
 - 011000 and 001010110 are not Fibonacci strings.
- Name comes from Zeckendorf's theorem.

Definition

Fibonacci cube Γ_d , $d \ge 1$: subgraph of Q_d induced by the Fibonacci strings of length d.

Introduced in (Hsu, 1993) as a model for interconnection networks.

The Fibonacci cube Γ_{10}



э

<ロト <部ト < 注ト < 注ト

G graph, then the simplex graph $\kappa(G)$ of G:

- G graph, then the simplex graph $\kappa(G)$ of G:
 - vertices: complete subgraphs of G (including empty),
 - edges: complete subgraphs adjacent if differ in a single vertex.

G graph, then the simplex graph $\kappa(G)$ of G:

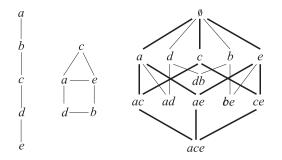
- vertices: complete subgraphs of G (including empty),
- edges: complete subgraphs adjacent if differ in a single vertex.

 Γ_d is the simplex graph of the complement of P_d :

G graph, then the simplex graph $\kappa(G)$ of G:

- vertices: complete subgraphs of G (including empty),
- edges: complete subgraphs adjacent if differ in a single vertex.

 Γ_d is the simplex graph of the complement of P_d :



(Cong, Zheng, Sharma, 1993) Γ_d has a hamiltonian path for any $d \ge 0$.

∃ ▶ ∢

(Cong, Zheng, Sharma, 1993) Γ_d has a hamiltonian path for any $d \ge 0$.

(Munarini, Perelli Cippo, Zagaglia Salvi, 2001):

$$|E(\Gamma_n)|=\frac{nF_{n+1}+2(n+1)F_n}{5}$$

(Cong, Zheng, Sharma, 1993) Γ_d has a hamiltonian path for any $d \ge 0$.

(Munarini, Perelli Cippo, Zagaglia Salvi, 2001):

$$|E(\Gamma_n)|=\frac{nF_{n+1}+2(n+1)F_n}{5}$$

The number of 4-cycles of Γ_n (K., 2005):

$$-\frac{3n}{25}F_{n+1}+\left(\frac{n^2}{10}+\frac{3n}{50}-\frac{1}{25}\right)F_n.$$

(K., Mollard, Petkovšek, 2011) The number of vertices of Γ_n having degree k is $\sum_{i=0}^k {n-2i \choose k-i} {i+1 \choose n-k-i+1}$.

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

< 3 > < 3 >

(K., Mollard, Petkovšek, 2011) The number of vertices of Γ_n having degree k is $\sum_{i=0}^k {n-2i \choose k-i} {i+1 \choose n-k-i+1}$.

Theorem

(Castro, Mollard, 2012) Let $n \ge k \ge 1$, then the number of vertices of Γ_n with eccentricity k is $\binom{k}{n-k} + \binom{k-1}{n-k}$.

(K., Mollard, Petkovšek, 2011) The number of vertices of Γ_n having degree k is $\sum_{i=0}^k {n-2i \choose k-i} {i+1 \choose n-k-i+1}$.

Theorem

(Castro, Mollard, 2012) Let $n \ge k \ge 1$, then the number of vertices of Γ_n with eccentricity k is $\binom{k}{n-k} + \binom{k-1}{n-k}$.

Theorem

(K., Mollard, 2012)
$$W(\Gamma_n) = \frac{4(n+1)F_n^2}{25} + \frac{(9n+2)F_nF_{n+1}}{25} + \frac{6nF_{n+1}^2}{25}$$
.

伺 ト イ ヨ ト イ ヨ ト

(Taranenko, Vesel, 2007) Fibonacci cubes can be recognized in $O(m \log n)$ time.

- * E > * E >

(Taranenko, Vesel, 2007) Fibonacci cubes can be recognized in $O(m \log n)$ time.

Theorem

(Vesel, 2013/14) Fibonacci cubes can be recognized in O(m) time.

伺 ト く ヨ ト く ヨ ト

Generalized Fibonacci cubes

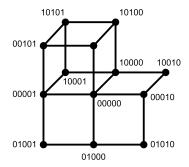
• f arbitrary binary string, $d \ge 1$.

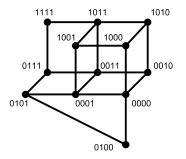
- f arbitrary binary string, $d \ge 1$.
- The generalized Fibonacci cube, $Q_d(f)$, is the graph obtained from Q_d by removing all vertices that contain f as a substring.

- f arbitrary binary string, $d \ge 1$.
- The generalized Fibonacci cube, $Q_d(f)$, is the graph obtained from Q_d by removing all vertices that contain f as a substring.

• Note:
$$\Gamma_d = Q_d(11)$$
.

Fibonacci cube $Q_5(11)$ and 110-Fibonacci cube $Q_4(110)$





A couple of properties

Set
$$H_d = Q_d(110)$$
.

A couple of properties

Set
$$H_d = Q_d(110)$$
.

Proposition

For any
$$d \ge 0$$
, $|E(H_d)| = -1 + \sum_{i=1}^{d+1} F_i F_{d+2-i}$.

/□ ▶ < 글 ▶ < 글

э

A couple of properties

Set
$$H_d = Q_d(110)$$
.

Proposition

For any
$$d \ge 0$$
, $|E(H_d)| = -1 + \sum_{i=1}^{d+1} F_i F_{d+2-i}$.

Proposition

For any
$$d \ge 0$$
,
 $|S(H_d)| = -\frac{3(d+1)}{25}F_{d+2} + \left(\frac{(d+1)^2}{10} + \frac{3(d+1)}{50} - \frac{1}{25}\right)F_{d+1}.$

э

伺 と く ヨ と く ヨ と

H is an isometric subgraph of *G* if for any $u, v \in V(H)$, $d_H(u, v) = d_G(u, v)$.

글 🕨 🖌 글

H is an isometric subgraph of *G* if for any $u, v \in V(H)$, $d_H(u, v) = d_G(u, v)$.

- $H \hookrightarrow G$: *H* is an isometric subgraph of *G*
- $H \not\hookrightarrow G$: H is not an isometric subgraph of G

H is an isometric subgraph of *G* if for any $u, v \in V(H)$, $d_H(u, v) = d_G(u, v)$.

- $H \hookrightarrow G$: *H* is an isometric subgraph of *G*
- $H \not\hookrightarrow G$: H is not an isometric subgraph of G

Problem

For which f and d, $Q_d(f) \hookrightarrow Q_d$ holds?

• \overline{b} : binary complement of b,

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

- \overline{b} : binary complement of b,
- b^R : reverse of b.

- \overline{b} : binary complement of b,
- b^R : reverse of b.

Facts:

• f of length r, $1 \le d \le r$. Then $Q_d(f) \hookrightarrow Q_d$.

- \overline{b} : binary complement of b,
- b^R : reverse of b.

Facts:

- f of length r, $1 \le d \le r$. Then $Q_d(f) \hookrightarrow Q_d$.
- $Q_d(f)$ is isomorphic to $Q_d(\overline{f})$.

- \overline{b} : binary complement of b,
- b^R : reverse of b.

Facts:

- f of length r, $1 \le d \le r$. Then $Q_d(f) \hookrightarrow Q_d$.
- $Q_d(f)$ is isomorphic to $Q_d(\overline{f})$.
- $Q_d(f)$ is isomorphic to $Q_d(f^R)$.

Forbidden factors with at most three blocks

Proposition

Let $s \geq 1$. Then $Q_d(1^s) \hookrightarrow Q_d$.

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

э

Forbidden factors with at most three blocks

Proposition

Let
$$s \geq 1$$
. Then $Q_d(1^s) \hookrightarrow Q_d$.

Proposition

Let $r, s, t \ge 1$ and let $d \ge r + s + t + 1$. Then $Q_d(1^r 0^s 1^t) \not\hookrightarrow Q_d$.

A B + A B +

Proposition

Let
$$s \geq 1$$
. Then $Q_d(1^s) \hookrightarrow Q_d$.

Proposition

Let $r, s, t \ge 1$ and let $d \ge r + s + t + 1$. Then $Q_d(1^r 0^s 1^t) \not\hookrightarrow Q_d$.

Theorem

Let $d \ge 2$. Then (i) For $r \ge 1$, $Q_d(1^r 0) \hookrightarrow Q_d$. (ii) For $s \ge 2$, $Q_d(1^2 0^s) \hookrightarrow Q_d$ if and only if $d \le s + 4$. (iii) If $r, s \ge 3$, then $Q_d(1^r 0^s) \hookrightarrow Q_d$ if and only if $d \le 2r + 2s - 3$.

- 4 B b 4 B b

Proposition

Let $s \ge 1$. Then $Q_d((10)^s 1) \not\hookrightarrow Q_d$ for $d \ge 4s$.

Proposition

Let
$$s \ge 1$$
. Then $Q_d((10)^s 1) \not\hookrightarrow Q_d$ for $d \ge 4s$.

Proposition

Let $r, s \geq 1$. Then $Q_d((10)^r 1(10)^s) \not\hookrightarrow Q_d$ for $d \geq 2r + 2s + 3$.

A B + A B +

Proposition

Let
$$s \ge 1$$
. Then $Q_d((10)^s 1) \not\hookrightarrow Q_d$ for $d \ge 4s$.

Proposition

Let $r, s \geq 1$. Then $Q_d((10)^r 1(10)^s) \not\hookrightarrow Q_d$ for $d \geq 2r + 2s + 3$.

Theorem

Let $s \geq 2$. Then $Q_d(1^s 01^s 0) \hookrightarrow Q_d$.

伺 ト く ヨ ト く ヨ ト

Proposition

Let
$$s \geq 1$$
. Then $Q_d((10)^s 1) \not\hookrightarrow Q_d$ for $d \geq 4s$.

Proposition

Let $r, s \geq 1$. Then $Q_d((10)^r 1(10)^s) \not\hookrightarrow Q_d$ for $d \geq 2r + 2s + 3$.

Theorem

Let
$$s \geq 2$$
. Then $Q_d(1^s 01^s 0) \hookrightarrow Q_d$.

Theorem

Let
$$s \geq 1$$
. Then $Q_d((10)^s) \hookrightarrow Q_d$.

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

▲御▶ ▲理▶ ▲理≯

● 11, 10,

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

- **• 11**, **10**,
- **111**, **110**, 101,

- 11, 10,
- 111, 110, 101,
- **1111**, **1110**, **1010**, 1101, 1001,

- 11, 10,
- **111**, **110**, 101,
- **1111**, **1110**, **1010**, 1101, 1001,
- **1100** (d ≤ 6), 1100 (d ≥ 7),

- 11, 10,
- **111**, **110**, 101,
- **1111**, **1110**, **1010**, 1101, 1001,
- **1100** (d ≤ 6), 1100 (d ≥ 7),
- 11111, 11110, 11010, 11001, 11101, 11011, 10001,

- 11, 10,
- **111**, **110**, 101,
- **1111**, **1110**, **1010**, 1101, 1001,
- **1100** (d ≤ 6), 1100 (d ≥ 7),
- 11111, 11110, 11010, 11001, 11101, 11011, 10001,
- **11100** $(d \le 7)$, 11100 $(d \ge 8)$,

11, 10,

• **111**, **110**, 101,

- **1111**, **1110**, **1010**, 1101, 1001,
- **1100** (d ≤ 6), 1100 (d ≥ 7),
- **11111**, **11110**, **11010**, 11001, 11101, 11011, 10001,
- **11100** (d ≤ 7), 11100 (d ≥ 8),
- **10110** (d ≤ 6), 10110 (d ≥ 7),

11, 10,

• **111**, **110**, 101,

• **1111**, **1110**, **1010**, 1101, 1001,

• **1100**
$$(d \le 6)$$
, 1100 $(d \ge 7)$,

- **11111**, **11110**, **11010**, 11001, 11101, 11011, 10001,
- **11100** (d ≤ 7), 11100 (d ≥ 8),
- 10110 (d ≤ 6), 10110 (d ≥ 7),
- 10101 ($d \le 7$), 10101 ($d \ge 8$).

1: Good and bad words

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

同 ト イヨ ト イヨ ト

A word f is bad if there exists a dimension d such that $Q_d(f) \nleftrightarrow Q_d$.

直 と く ヨ と く ヨ と

A word f is bad if there exists a dimension d such that $Q_d(f) \nleftrightarrow Q_d$.

Examples: $(10)^{s}1 \ (s \ge 1)$, and $1^{r}0^{s} \ (r, s \ge 2)$, are bad words.

A B + A B +

A word f is bad if there exists a dimension d such that $Q_d(f) \nleftrightarrow Q_d$.

Examples: $(10)^{s}1 \ (s \ge 1)$, and $1^{r}0^{s} \ (r, s \ge 2)$, are bad words.

Lemma

Suppose that $Q_d(f) \nleftrightarrow Q_d$ for some dimension d. Then $Q_{d'}(f) \nleftrightarrow Q_{d'}$ for all $d' \ge d$.

Bad words cont'd

Proof

•
$$d' = d + r, r \ge 1$$
.

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

- 4 回 2 - 4 □ 2 - 4 □

Bad words cont'd

Proof

- $d' = d + r, r \ge 1.$
- $Q_d(f) \nleftrightarrow Q_d$ hence for some u and v, $d_{Q_d(f)}(u, v) > d_{Q_d}(u, v).$

回 と く ヨ と く ヨ と

- $d' = d + r, r \ge 1.$
- $Q_d(f) \nleftrightarrow Q_d$ hence for some u and v, $d_{Q_d(f)}(u, v) > d_{Q_d}(u, v).$
- If the first bit of f is 1, set $\hat{u} = 0^r u$ and $\hat{v} = 0^r v$, otherwise set $\hat{u} = 1^r u$ and $\hat{v} = 1^r v$.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $d' = d + r, r \ge 1.$
- $Q_d(f) \nleftrightarrow Q_d$ hence for some u and v, $d_{Q_d(f)}(u, v) > d_{Q_d}(u, v).$
- If the first bit of f is 1, set $\hat{u} = 0^r u$ and $\hat{v} = 0^r v$, otherwise set $\hat{u} = 1^r u$ and $\hat{v} = 1^r v$.

•
$$\widehat{u}, \widehat{v} \in Q_{d'}(f)$$
 and

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $d' = d + r, r \ge 1.$
- $Q_d(f) \nleftrightarrow Q_d$ hence for some u and v, $d_{Q_d(f)}(u, v) > d_{Q_d}(u, v).$
- If the first bit of f is 1, set $\hat{u} = 0^r u$ and $\hat{v} = 0^r v$, otherwise set $\hat{u} = 1^r u$ and $\hat{v} = 1^r v$.
- $\widehat{u}, \widehat{v} \in Q_{d'}(f)$ and

$$d_{Q_{d'}(f)}(u,v) = d_{Q_d(f)}(u,v) > d_{Q_d}(u,v) = d_{Q_{d'}}(u,v),$$

A B M A B M

- $d' = d + r, r \ge 1.$
- $Q_d(f) \nleftrightarrow Q_d$ hence for some u and v, $d_{Q_d(f)}(u, v) > d_{Q_d}(u, v).$
- If the first bit of f is 1, set $\hat{u} = 0^r u$ and $\hat{v} = 0^r v$, otherwise set $\hat{u} = 1^r u$ and $\hat{v} = 1^r v$.
- $\widehat{u}, \widehat{v} \in Q_{d'}(f)$ and

$$d_{Q_{d'}(f)}(u,v) = d_{Q_d(f)}(u,v) > d_{Q_d}(u,v) = d_{Q_{d'}}(u,v),$$

* E > * E >

3

hence $Q_{d'}(f) \not\hookrightarrow Q_{d'}$.

A word f is good if it is not bad.

□ > < E > < E >

A word f is good if it is not bad.

By the lemma, f is good if $Q_d(f) \hookrightarrow Q_d$ for all dimensions d.

伺 ト く ヨ ト く ヨ ト

A word f is good if it is not bad.

By the lemma, f is good if $Q_d(f) \hookrightarrow Q_d$ for all dimensions d. Examples: 1^s , 10^s , and $(10)^s$, are good words for any $s \ge 1$.

A B > A B >

A word f is good if it is not bad.

By the lemma, f is good if $Q_d(f) \hookrightarrow Q_d$ for all dimensions d. Examples: 1^s , 10^s , and $(10)^s$, are good words for any $s \ge 1$.

$$\mathcal{G}_n = \{ f \in B^n \mid f \text{ is good} \}$$
$$\mathcal{B}_n = \{ f \in B^n \mid f \text{ is bad} \}$$

A B > A B >

• For a word f we introduce an r-error overlap of length k.

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

∃ ▶ ∢

- For a word f we introduce an *r*-error overlap of length k.
- If f has an r-error overlap for some length k then f has an r-error overlap.

- For a word f we introduce an *r*-error overlap of length k.
- If f has an r-error overlap for some length k then f has an r-error overlap.
- \mathcal{T}_n ... words of length *n* having a 2-error overlap.

- For a word f we introduce an r-error overlap of length k.
- If f has an r-error overlap for some length k then f has an r-error overlap.
- \mathcal{T}_n ... words of length *n* having a 2-error overlap.
- $f \in \mathcal{T}_n$ is split if f has a 2-error overlap of length $k \leq \frac{n}{2}$.

- For a word f we introduce an *r*-error overlap of length k.
- If f has an r-error overlap for some length k then f has an r-error overlap.
- \mathcal{T}_n ... words of length *n* having a 2-error overlap.
- $f \in \mathcal{T}_n$ is split if f has a 2-error overlap of length $k \leq \frac{n}{2}$.
- \mathcal{T}_n^s ... split words from \mathcal{T}_n .

The sequence $\frac{|\mathcal{T}_n^s|}{2^n}$ is monotonically increasing and bounded from above by 1. In particular, it has a limit $a \leq 1$.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The sequence $\frac{|\mathcal{T}_n^s|}{2^n}$ is monotonically increasing and bounded from above by 1. In particular, it has a limit $a \leq 1$.

Lemma The sequence $\frac{|\mathcal{T}_n|}{2^n}$ converges to the same limit value a.

A B > A B >

The sequence $\frac{|\mathcal{T}_n^s|}{2^n}$ is monotonically increasing and bounded from above by 1. In particular, it has a limit $a \leq 1$.

Lemma The sequence $\frac{|\mathcal{T}_n|}{2^n}$ converges to the same limit value a.

Lemma

If f is bad then f has a 2-error overlap.

I ≡ ▶ < </p>

The sequence $\frac{|\mathcal{T}_n^s|}{2^n}$ is monotonically increasing and bounded from above by 1. In particular, it has a limit $a \leq 1$.

Lemma The sequence $\frac{|\mathcal{T}_n|}{2^n}$ converges to the same limit value a.

Lemma

If f is bad then f has a 2-error overlap.

Theorem

$$\lim_{n\to\infty}\frac{|\mathcal{B}_n|}{2^n}=a\,.$$

/□ ▶ < 글 ▶ < 글

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

Estimates for the limit value a

n	$ \mathcal{T}_n^s $	$ \mathcal{T}_n^s /2^n$
4	4	0.250000
6	34	0.531250
8	182	0.710938
10	830	0.810547
12	3518	0.858887
14	14538	0.887329
16	59074	0.901398
18	238534	0.909935
22	3845886	0.916931
24	15408114	0.918395
26	61689006	0.919238
28	246881258	0.919704
30	987815218	0.919975

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

n	$ \mathcal{T}_n $	$ \mathcal{T}_n /2^n$
4	8	0.500000
5	22	0.687500
6	46	0.718750
7	98	0.765625
8	210	0.820313
9	430	0.839844
10	886	0.865234
25	30873042	0.920088
26	61759618	0.920290
27	123512490	0.920240
28	247051278	0.920338
29	494077866	0.920292
30	988213906	0.920346
31	1976359510	0.920314

・ロト ・回ト ・ヨト ・ヨト

æ

The value of the limit a is between 0.919975 and 0.924156.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The value of the limit a is between 0.919975 and 0.924156.

Proof

• Lower bound is easy since the sequence a_n (densities of split words with a 2-error overlap) is monotonically increasing.

The value of the limit a is between 0.919975 and 0.924156.

Proof

- Lower bound is easy since the sequence a_n (densities of split words with a 2-error overlap) is monotonically increasing.
- $T_n \ldots \#$ of nonsplit words of length n.

The value of the limit a is between 0.919975 and 0.924156.

Proof

- Lower bound is easy since the sequence a_n (densities of split words with a 2-error overlap) is monotonically increasing.
- $T_n \ldots \#$ of nonsplit words of length n.
- Focus on words of even length n = 2k.

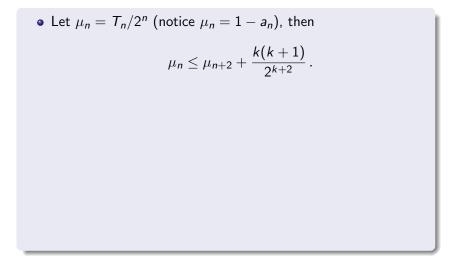
The value of the limit a is between 0.919975 and 0.924156.

Proof

- Lower bound is easy since the sequence a_n (densities of split words with a 2-error overlap) is monotonically increasing.
- $T_n \ldots \#$ of nonsplit words of length n.
- Focus on words of even length n = 2k.

•
$$4T_n \leq T_{n+2} + 2^{k+1} \binom{k+1}{2}$$
.

Proof cont'd



3

Proof cont'd

• Let
$$\mu_n = T_n/2^n$$
 (notice $\mu_n = 1 - a_n$), then
 $\mu_n \le \mu_{n+2} + \frac{k(k+1)}{2^{k+2}}$.

• This implies that

$$\mu_{n+2} \ge \mu_n - \frac{k(k+1)}{2^{k+2}}.$$

□ > < E > < E >

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

Proof cont'd

• Let
$$\mu_n = T_n/2^n$$
 (notice $\mu_n = 1 - a_n$), then
 $\mu_n \le \mu_{n+2} + \frac{k(k+1)}{2^{k+2}}$.

• This implies that

$$\mu_{n+2} \ge \mu_n - \frac{k(k+1)}{2^{k+2}}.$$

□ > < E > < E >

• Since
$$a_n = 1 - \mu_n$$
 we get $a_{n+2} \leq a_n + rac{k(k+1)}{2^{k+2}}$.

$$a_{n+2m} \leq a_n + \sum_{i=k}^{k+m-1} \frac{i(i+1)}{2^{i+2}}.$$

> < 프 > < 프</p>

$$a_{n+2m} \leq a_n + \sum_{i=k}^{k+m-1} \frac{i(i+1)}{2^{i+2}}.$$

• Take *m* to infinity to get:

$$a \leq a_n + \sum_{i=k}^{\infty} \frac{i(i+1)}{2^{i+2}}.$$

Image: Image:

$$a_{n+2m} \leq a_n + \sum_{i=k}^{k+m-1} \frac{i(i+1)}{2^{i+2}}.$$

• Take *m* to infinity to get:

$$a \leq a_n + \sum_{i=k}^{\infty} \frac{i(i+1)}{2^{i+2}} \, .$$

3 1 4 3

• Using computer with k = 15 we get that the sum here is at most 0.004181.

$$a_{n+2m} \leq a_n + \sum_{i=k}^{k+m-1} \frac{i(i+1)}{2^{i+2}}.$$

• Take *m* to infinity to get:

$$a \leq a_n + \sum_{i=k}^{\infty} \frac{i(i+1)}{2^{i+2}}.$$

- Using computer with k = 15 we get that the sum here is at most 0.004181.
- Together with the value $a_{30} = 0.919975$ this yields an upper limit of 0.924156.

2: Index of binary words

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

3

Definition

The index of a word f, denoted $\beta(f)$, is the smallest integer d such that $Q_d(f) \nleftrightarrow Q_d$. If no such integer exists we set $\beta(f) = \infty$.

直 ト イヨ ト イヨ ト

Definition

The index of a word f, denoted $\beta(f)$, is the smallest integer d such that $Q_d(f) \nleftrightarrow Q_d$. If no such integer exists we set $\beta(f) = \infty$.

Clearly, $\beta(f) < \infty$ if and only if f is bad.

伺 ト く ヨ ト く ヨ ト

Definition

The index of a word f, denoted $\beta(f)$, is the smallest integer d such that $Q_d(f) \nleftrightarrow Q_d$. If no such integer exists we set $\beta(f) = \infty$.

Clearly, $\beta(f) < \infty$ if and only if f is bad.

Theorem

Let f be a bad word. Then $\beta(f) < |f|^2$.

伺 ト く ヨ ト く ヨ ト

For almost all bad words f, $\beta(f) < 2|f|$.

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

御 と く ヨ と く ヨ と

3

For almost all bad words f, $\beta(f) < 2|f|$.

Conjecture

For any bad word f, $\beta(f) < 2|f|$.

御 と く ヨ と く ヨ と

3

For almost all bad words f, $\beta(f) < 2|f|$.

Conjecture

For any bad word f, $\beta(f) < 2|f|$.

Conjecture verified by computer for all words of length at most 10 and dimension at most 20.

→ □ → → □ →

3: Parity index of binary words

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

医下子 医

Recall: Γ_d has a hamiltonian path for any $d \ge 0$.

∃ → < ∃ →</p>

Recall: Γ_d has a hamiltonian path for any $d \ge 0$.

(Liu, Hsu, Chung, 1994) Each $Q_d(1^r)$ contains a hamiltonian path.

Recall: Γ_d has a hamiltonian path for any $d \ge 0$.

(Liu, Hsu, Chung, 1994) Each $Q_d(1^r)$ contains a hamiltonian path.

Question: what about $Q_d(f)$?

Theorem

Parity index defined

• Even/odd words of $Q_d(f)$ form its bipartition.

Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

Parity index defined

- Even/odd words of $Q_d(f)$ form its bipartition.
- For a set of words X, let e(X), o(X) be the number of even/odd words in X.

Parity index defined

- Even/odd words of $Q_d(f)$ form its bipartition.
- For a set of words X, let e(X), o(X) be the number of even/odd words in X.

•
$$\Delta(X) = e(X) - o(X)$$
.

Parity index defined

- Even/odd words of $Q_d(f)$ form its bipartition.
- For a set of words X, let e(X), o(X) be the number of even/odd words in X.

•
$$\Delta(X) = e(X) - o(X)$$
.

• $\operatorname{PI}_d(f) = \Delta(\mathcal{F}_d(f)) \dots$ parity index of f of dimension d.

Parity index defined

- Even/odd words of $Q_d(f)$ form its bipartition.
- For a set of words X, let e(X), o(X) be the number of even/odd words in X.

•
$$\Delta(X) = e(X) - o(X)$$
.

• $\operatorname{PI}_d(f) = \Delta(\mathcal{F}_d(f)) \dots$ parity index of f of dimension d.

Therefore, a necessary condition for $Q_d(f)$ to contain a hamiltonian path is:

 $|\operatorname{PI}_d(f)| \leq 1.$

A word f of length d is prime if for any k, $1 \le k \le d-1$, the suffix of f of length k is different from the prefix of f of the same length.

A word f of length d is prime if for any k, $1 \le k \le d-1$, the suffix of f of length k is different from the prefix of f of the same length.

001101 is a prime word (00 appears only at its beginning).

A word f of length d is prime if for any k, $1 \le k \le d-1$, the suffix of f of length k is different from the prefix of f of the same length.

001101 is a prime word (00 appears only at its beginning). 01101011 is not prime (it starts and ends with 011).

A word f of length d is prime if for any k, $1 \le k \le d-1$, the suffix of f of length k is different from the prefix of f of the same length.

001101 is a prime word (00 appears only at its beginning). 01101011 is not prime (it starts and ends with 011).

Definition

A word b is a power of a word c if $b = c^k$ for some $k \ge 1$.

A word f of length d is prime if for any k, $1 \le k \le d-1$, the suffix of f of length k is different from the prefix of f of the same length.

001101 is a prime word (00 appears only at its beginning). 01101011 is not prime (it starts and ends with 011).

Definition

A word b is a power of a word c if $b = c^k$ for some $k \ge 1$.

Theorem

Let f be a power of a prime word. Then $|\operatorname{PI}_d(f)| \leq 1$ for any $d \geq 1$.

伺下 イヨト イヨト

Conjecture

Let f be a word such that $|\operatorname{PI}_d(f)| \leq 1$ holds for any d. Then f is a power of a prime word.

3 > 4 3

Conjecture

Let f be a word such that $|PI_d(f)| \le 1$ holds for any d. Then f is a power of a prime word.

Theorem

Let $r \ge 1$. Then

$$|\mathrm{PI}_d(0^r 10^r)| = \begin{cases} 0; & d \le 2r, 2r+2 \le d \le 3r+1, \\ 1; & d = 2r+1, 3r+2 \le d \le 4r+3. \end{cases}$$

Moreover, for any $d \ge 4r + 4$, $|PI_d(0^r 10^r)| \ge 2$.

A B > A B >

Theorem

$$\begin{split} & \text{Let } r, s, t \geq 1. \ \text{Let } z \text{ be the integer such that} \\ & (z-1)t+2 \leq r+s \leq zt+1. \ \text{Then} \\ & |\operatorname{PI}_d(0^r1^s0^t)| \begin{cases} = 0; \ d < r+s+t, \\ y(r+s+t) < d < (y+1)(r+s)+t; 1 \leq y \leq z, \\ \geq 1; \ d = r+s+t, \\ (y+1)(r+s)+t \leq d \leq (y+1)(r+s+t); 1 \leq y \leq z, \\ d = (z+1)(r+s+t)+1. \end{cases} \end{split}$$

Moreover, for any $d \ge (z+1)(r+s+t)+2$, $|\operatorname{PI}_d(0^r1^s0^t)| \ge 2$.

Support for the conjecture cont'd

 $\operatorname{PI}_d(f)$ computed for $|f| \leq 10$, $d \leq 31$. Balanced words:

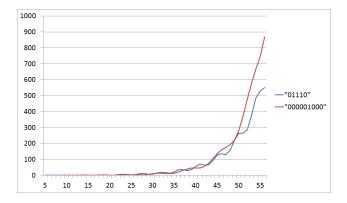
Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

∃ → < ∃ →</p>

 $\operatorname{PI}_d(f)$ computed for $|f| \leq 10$, $d \leq 31$. Balanced words:

length	f
3	001
4	0001, 0011, 0101
5	00001, 00011, 00101
6	000001, 000011, 000101, 000111
	001001, 001011, 001101, 010101
7	0000001, 0000011, 0000101, 0000111
	0001001, 0001011, 0001101, 0010011
	0010101, 0011101
8	00000001, 00000011, 00000101, 00000111
	00001001, 00001011, 00001101, 00001111
	00010001, 00010011, 00010101, 00010111
	00011001, 00011011, 00011101, 00100011
	00100101, 00101011, 00101101, 00110011
	00110101, 00111101, 01010101

Values of $|PI_d(f)|$ for f = 0.00001000



Sandi Klavžar University of Ljubljana, Slovenia University of M Bad words arising from generalized Fibonacci cubes

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Merci beaucoup!