Cone theta functions and what they tell us about the irrationality of spherical polytope volumes

Universite de Bordeaux
Algorithmic Number Theory Seminar
June 2013

Sinai Robins
CNRS/LAAS, Toulouse France and NTU, Singapore
Joint work with Amanda Folsom and Winfried Kohnen

An angle can be thought of as the measure of the intersection of a cone with a sphere, centered at the vertex of the cone.

An angle can be thought of as the measure of the intersection of a cone with a sphere, centered at the vertex of the cone.

What is a higher-dim'l angle?

A cone $K \subset \mathbb{R}^{d}$ is the non-negative real span of a finite number number of vectors in Euclidean space.

That is, a cone is defined by:

$$
K=\left\{\lambda_{1} W_{1}+\ldots+\lambda_{d} W_{d} \mid \text { all } \lambda_{j} \geq 0\right\}
$$

where we assume that the vectors
W_{1}, \ldots, W_{d} are linearly independent in \mathbb{R}^{d}.

Example: a 3-dimensional cone.

Cone K

How do we describe an angle analytically in higher dimensions?

A nice analytic description of an angle is given by:

$$
\text { angle }=\int_{K} e^{-\pi\left(x^{2}+y^{2}\right)} d x d y
$$

The solid angle $\begin{aligned} & \text { at the vertex } v \\ & \text { of a cone } K \text { in } \mathbb{R}^{d}\end{aligned}=\omega_{K}(v)=\int_{K} e^{-\pi\|x\|^{2}} d x$

A solid angle in dimension d is equivalently:

1. The proportion of a sphere, centered at the vertex of a cone, which intersects the cone.
2. The probability that a randomly chosen point in Euclidean space, chosen from a fixed sphere centered at the vertex of K, will lie inside K.
3. Solid angle $=\int_{K} e^{-\pi\left(x^{2}+y^{2}\right)} d x d y$
4. The volume of a spherical polytope.

Example: defining the solid angle at a vertex of a 3 -dimensional cone.

Example: defining the solid angle at a vertex of a 3 -dimensional cone.

Example: defining the solid angle at a vertex of a 3 -dimensional cone.

The moral: a solid angle in higher dimensions is really the volume of a spherical polytope.

To help us analyze solid angles, we introduced the following cone theta function for a cone K, and a full rank lattice L:

Definition.

where τ is in the upper complex half plane.

Example.

For the cone theta function of the positive orthant $K_{0}:=\mathbb{R}_{\geq 0}^{d}$, and with \mathcal{L} the integer lattice, we claim that
$\Phi_{K_{0}}(\tau)=\frac{1}{2^{d}}(\theta(\tau)+1)^{d}$,
where $\theta(\tau):=\sum_{n \in \mathbb{Z}} e^{\pi i \tau n^{2}}$, the classical weight $1 / 2$ modular form. In particular,

$$
\Phi_{K_{0}}(\tau)=\frac{1}{2^{d}} \sum_{k=0}^{d}\binom{d}{k} \theta^{k}(\tau),
$$

There is an analytic link between solid angles and these conic theta functions, given by:

Lemma.

$$
t^{\frac{d}{2}} \Phi_{K, \mathcal{L}}(i t) \sim \frac{\omega_{K}}{|\operatorname{det} K|}
$$

$$
\text { as } t \rightarrow 0^{+}
$$

What are tangent cones?

Example: If the face F is a vertex, what does the tangent cone at the vertex look like?

Example: If the face F is a vertex, what does the tangent cone at the vertex look like?

The tangent cone K_{F} is the union of all of these rays from the face $\mathrm{F}=$ vertex v

$$
K_{F}
$$

Definition. The tangent cone K_{F} of a face $F \subset P$ is defined by

$$
K_{F}=\{x+\lambda(y-x) \mid x \in F, y \in P, \text { and } \lambda \geq 0\} .
$$

Intuitively, the tangent cone of F is the union of all rays that have a base point in F and point 'towards P'.

We note that the tangent cone of F contains the affine span of F.

an edge

Example. when the face F is a 1-dimensional edge of a polygon, the tangent cone of F is a half-plane.

an edge

Example. when the face F is a 1-dimensional edge of a polygon, the tangent cone of F is a half-plane.

Question 1. Which lattice polyhedral cones K give rise to spherical polytopes with a rational volume?

Question 1. Which lattice polyhedral cones K give rise to spherical polytopes with a rational volume?

Question 2. Analyzing the cone theta function Φ_{K} attached to a polyhedral cone K, how 'close' is Φ_{K} to being modular?

For each even integral lattice \mathcal{L}, we define its usual theta function by:
$\Theta_{\mathcal{L}}(\tau):=\sum_{n \in \mathcal{L}} e^{\pi i \tau\|n\|^{2}}$, where τ lies in the upper half plane H.

For each even integral lattice \mathcal{L}, we define its usual theta function by:
$\Theta_{\mathcal{L}}(\tau):=\sum_{n \in \mathcal{L}} e^{\pi i \tau| | n \|^{2}}$, where τ lies in the upper half plane H.

It is a standard fact that the theta function $\Theta_{\mathcal{L}}(\tau)$ turns out to be a modular form, of weight $\frac{d}{2}$ and level N, where N divides $|\operatorname{det}(A)|$.

We define R to be the ring of all finite, rational linear combinations of theta functions $\Theta_{\mathcal{L}}$, for any d-dimensional even integral lattice \mathcal{L}, where we vary over all dimensions d.

Theorem (Folsom, Kohnen, R.)

If the polyhedral cone K is the Weyl chamber of a finite reflection group W, then the cone theta function $\Phi_{K, 2 \mathcal{L}_{\text {root }}}(\tau)$ is in the graded ring R.

The spirit of this result is that enough symmetry of the integer cone K will be reflected in some functional relations between the associated cone theta functions $\Phi_{K, \mathcal{L}_{j}}$, for various j-dimensional lattices \mathcal{L}_{j} which lie on the boundaries of $K \cap \mathcal{L}$.

On the other hand, we have the following result, showing that conic theta functions are 'usually' very far from being in R.

Theorem (Folsom, Kohnen, R.)
Suppose that the d-dim'l polyhedral cone K has the solid angle ω_{K} at its vertex, located at the origin, and that $\mathbb{L}:=A\left(\mathbb{Z}^{d}\right)$ is an even integral lattice of full rank.

If $\frac{\omega_{K}}{|\operatorname{det} A|}$ is irrational, then $\Phi_{K, \mathcal{L}}(\tau)$ is not a modular form of weight k on any congruence subgroup, and for any $k \in \frac{1}{2} \mathbb{Z}, k \geq \frac{1}{2}$.

In the 2-dimensional case, we can classify the integer cones that have an irrational angle. As a consequence:

In the 2-dimensional case, we can classify the integer cones that have an irrational angle. As a consequence:

Theorem (Folsom, Kohnen, R.)

Suppose we are given an integer cone $K \subset \mathbb{R}^{2}$, with integer edge vectors $w_{1}, w_{2} \in \mathbb{Z}^{2}$.

Then $\Phi_{K, \mathbb{Z}^{2}}(\tau)$ is not a modular form of weight 1 for any congruence subgroup.

Open Problems

Problem 1. What are the necessary and sufficient conditions on the geometry of the cones K whose cone theta function belongs to the graded ring R ?

Open Problems

Problem 1. What are the necessary and sufficient conditions on the geometry of the cones K whose cone theta function belongs to the graded ring R ?

Problem 2. For the case that $\frac{\omega_{K}}{|\operatorname{det} A|} \in \mathbb{Q}$, we don't yet have any proofs of non-modularity for $\Phi_{K, \mathcal{L}}$, except in some special two-dim'l cases.

Open Problems

Problem 1. What are the necessary and sufficient conditions on the geometry of the cones K whose cone theta function belongs to the graded ring R ?

Problem 2. For the case that $\frac{\omega_{K}}{|\operatorname{det} A|} \in \mathbb{Q}$, we don't yet have any proofs of non-modularity for $\Phi_{K, \mathcal{L}}$, except in some special two-dim'l cases.

Problem 3. Which integer 3-dimensional cones have a rational spherical volume?
(This is closely related to the Cheeger-Simons rational simplex conjecture, so it is most likely quite challenging.)

Thank you

