Spaces of sections on algebraic surfaces Being (the other) half of a (relatively) recently defended thesis...

Hamish Ivey-Law

Supervisor: David Kohel

Institut de Mathématiques de Luminy Université d'Aix-Marseille

School of Mathematics and Statistics University of Sydney

Co-supervisor: Claus Fieker

Soutenance de thèse en cotutelle 14 December 2012

Spaces of sections on algebraic surfaces

Algebraic surfaces

- The Néron-Severi group of C^2 and S
- Subgroups of NS(C²) and NS(S)

2 Cohomology of divisors on surfaces

- Fundamental exact sequence
- Spaces of sections of divisors on C^2 and S

3 Explicit bases of sections

- Eigenspace decomposition
- In a neighbourhood of Δ
- Generating the explicit basis

Applications and generalisations

- Applications
- Avenues for generalisation

Algebraic surfaces

Cohomology of divisors on surfaces Explicit bases of sections Applications and generalisations The Néron-Severi group of C^2 and SSubgroups of $NS(C^2)$ and NS(S)

Introduction

- Given a divisor *D* on a curve *C*, the Riemann-Roch problem for *D* is the problem of calculating the dimension and determining a basis for the space of functions *L*(*C*, *nD*) in terms of *n*.
- We will consider the analogous problem on certain classes of surfaces: Given a formal linear combination $mD_1 + nD_2$ of curves on a surface X, we calculate the dimension and determine a basis of the space of functions $H^0(X, mD_1 + nD_2)$ in terms of m and n.
- We consider the two cases: X = C × C and X = Sym²(C) where C is a hyperelliptic curve of genus g ≥ 2.

Algebraic surfaces

Cohomology of divisors on surfaces Explicit bases of sections Applications and generalisations The Néron-Severi group of C^2 and SSubgroups of $NS(C^2)$ and NS(S)

Definitions: Square of the curve

- k a field of characteristic not 2.
- C a hyperelliptic curve of genus $g \ge 2$.
- $C^2 = C \times C$ the square of C.
- Fix a Weierstrass point $\infty \in \mathcal{C}(\overline{k})$
- $V_{\infty} = \{\infty\} \times C$ the vertical embedding of C in C^2 .
- $H_{\infty} = C \times \{\infty\}$ the horizontal embedding of C in C^2 .
- $F = 2(V_{\infty} + H_{\infty}).$
- Δ and ∇ the diagonal and antidiagonal embeddings of C in C^2 .
- $D_{\infty} = 2(\infty)$ or $D_{\infty} = (\infty^+) + (\infty^-)$ depending on whether C has one or two points at infinity.
- Let D_{∇} be the image of D_{∞} on ∇ .

The Néron-Severi group of C^2 and SSubgroups of $NS(C^2)$ and NS(S)

Definitions: Symmetric square of the curve

•
$$S = C^2/\langle \sigma
angle$$
 the symmetric square of C and

$$\pi: C^2 \to S$$

is the quotient map.

- $\Delta_{\mathcal{S}} = \pi(\Delta)$,
- $\nabla_{S} = \pi(\nabla)$ and
- $\Theta_{S} = \pi(V_{\infty}) = \pi(H_{\infty})$ are the (scheme-theoretic) images under the quotient map.
- Note that $2\Theta_S$ is a *k*-rational divisor even though Θ_S is not *k*-rational in general.

The Néron-Severi group of C^2 and SSubgroups of $NS(C^2)$ and NS(S)

The Néron-Severi group

- Recall that the *Picard group* of a variety *X*, denoted by Pic(*X*), is the group of divisors of *X* modulo rational (linear) equivalence, and Pic⁰(*X*) is the subgroup of divisors algebraically equivalent to zero.
- The Néron-Severi group is

$$NS(X) = Pic(X) / Pic^{0}(X);$$

equivalently it is the group of divisors of X modulo algebraic equivalence.

- Néron-Severi Theorem: The Néron-Severi group is a finitely generated abelian group.
- Matsusaka's Theorem: The torsion subgroup of the Néron-Severi group is finite.

The Néron-Severi group of C^2 and SSubgroups of $NS(C^2)$ and NS(S)

The Néron-Severi group of C^2

- If C is a curve, then $NS(C) \cong \mathbb{Z}$ (isomorphism given by the degree map).
- For any two curves C_1 and C_2 , we have

 $\mathsf{NS}(C_1 \times C_2) \cong \mathsf{NS}(C_1) \times \mathsf{NS}(C_2) \times \mathsf{Hom}(J_{C_1}, J_{C_2}).$

• So $NS(C_1 \times C_2) \cong \mathbb{Z}^{2+\rho}$ where $1 \leqslant \rho \leqslant 4g_1g_2$.

Algebraic surfaces

Cohomology of divisors on surfaces Explicit bases of sections Applications and generalisations The Néron-Severi group of C^2 and SSubgroups of $NS(C^2)$ and NS(S)

The Néron-Severi group of S

Proposition

With S as above,

$$\mathsf{NS}(S) \cong \mathbb{Z}^{1+
ho} imes (\mathbb{Z}/2\mathbb{Z})^{ au}$$

where $1 \leqslant \rho \leqslant 4g^2$ and $0 \leqslant \tau < \infty$.

- Questions I didn't get around to answering:
 - When is $\tau > 0$? How big can it be?
 - What is in NS(S)tors? (Wild guess: Maybe divisors corresponding to non-scalar, self-dual endomorphisms of J_C?)

The Néron-Severi group of C^2 and SSubgroups of $NS(C^2)$ and NS(S)

Subgroups of $NS(C^2)$ and NS(S)

Let m and r be non-negative integers.

- (The classes of) V_{∞} , H_{∞} and ∇ are linearly independent in NS(C^2).
- We will consider the divisors of the form $mF + r\nabla$ in $Div(C^2)$ (where $F = 2(V_{\infty} + H_{\infty})$).
- Divisors of this form don't span $NS(C^2)$.
- There is a relation

$$\mathsf{F}\sim \Delta+
abla$$

coming from the function $x_1 - x_2$ on C^2 where $k(C^2) = k(x_1, y_1, x_2, y_2)$.

The Néron-Severi group of C^2 and SSubgroups of $NS(C^2)$ and NS(S)

Subgroups of $Div(C^2)$ and Div(S)

Let m and r be non-negative integers.

- (The classes of) Θ_S and ∇_S are linearly independent in NS(S).
- We will consider divisors of the form $2m\Theta_S + r\nabla_S$ in Div(S).
- Divisors of this form don't span NS(S).
- There is a relation

 $4\Theta_{\textbf{S}}\sim\Delta_{\textbf{S}}+2\nabla_{\textbf{S}}$

coming from the function $(x_1 - x_2)^2$ on S.

Fundamental exact sequence Spaces of sections of divisors on C^2 and S

Fundamental exact sequence

Throughout we fix $\gamma = g - 1$.

Let m and r be non-negative integers. Then

$$0 \to \mathscr{O}_{C^2}(mF + (r-1)\nabla)$$

 $\to \mathscr{O}_{C^2}(mF + r\nabla)$
 $\to \mathscr{O}_{\nabla}((2m - \gamma r)D_{\nabla}) \to 0$

is an exact sequence (because $\mathscr{O}_{C^2}(mF + r\nabla) \otimes \mathscr{O}_{\nabla} \cong \mathscr{O}_{\nabla}((2m - \gamma r)D_{\nabla})).$

Fundamental exact sequence Spaces of sections of divisors on C^2 and S

Fundamental exact sequence

We thus obtain a long exact sequence of cohomology

$$\begin{aligned} 0 &\to H^0(C^2, mF + (r-1)\nabla) \\ &\to H^0(C^2, mF + r\nabla) \\ &\to H^0(\nabla, (2m - \gamma r)D_{\nabla}) \\ &\to H^1(C^2, mF + (r-1)\nabla) \\ &\to H^1(C^2, mF + r\nabla) \\ &\to H^1(\nabla, (2m - \gamma r)D_{\nabla}) \to \cdots \end{aligned}$$

The easy cases (i): $2m - \gamma r > 0$

- If 2m − γr > 0, then we can show that H¹(C², mF + (r − 1)∇) = 0 by showing that it is surrounded by zeros in the long exact sequence of cohomolgy:
 - r = 1: Apply the Künneth formula to obtain

$$H^1(C^2, mF) \cong (H^0_C \otimes H^1_C) \oplus (H^1_C \otimes H^0_C)$$

where H_{C}^{i} denotes $H^{i}(C, mD_{\infty})$. Then $H_{C}^{1} = 0$ by Serre duality (since $m > \gamma$).

• $r \ge 2$: Assume for induction that $H^1(C^2, mF + (r-2)\nabla) = 0$. Then from the long exact sequence of cohomology, it suffices to prove that

$$H^1(\nabla, (2m - \gamma(r-1))D_{\nabla}) = 0.$$

But this follows from Serre duality since

$$K_{\nabla} - (2m - \gamma(r-1))D_{\nabla} = -(2m - \gamma r)D_{\nabla}.$$

• Thus the sequence splits:

$$egin{aligned} &\mathcal{H}^0(\mathcal{C}^2, mF + r
abla) \ &\cong &\mathcal{H}^0(\mathcal{C}^2, mF + (r-1)
abla) \oplus &\mathcal{H}^0(
abla, (2m-\gamma r) D_
abla). \end{aligned}$$

Fundamental exact sequence Spaces of sections of divisors on C^2 and S

The easy cases (ii): $2m - \gamma r < 0$

• Since D_{∇} is effective, $H^0(\nabla, (2m - \gamma r)D_{\nabla}) = 0$ if $2m - \gamma r < 0$. Thus in this case

$$H^0(C^2, mF + (r-1)\nabla) \cong H^0(C^2, mF + r\nabla).$$

• It remains to consider the case $2m - \gamma r = 0$.

The split long exact sequence

Suppose $2m - \gamma r = 0$.

- $H^{0}(\nabla, (2m \gamma r)D_{\nabla}) = H^{0}(\nabla, \mathscr{O}_{\nabla})$ has dimension 1.
- $H^1(C^2, mF + (r-1)\nabla)$ is not necessarily zero.
- In the next section, we will describe an algorithm that calculates an explicit basis for $H^0(C^2, mF + r\nabla)$ for any *particular* curve, thus allowing us to verify exactness in any particular case.
- Unfortunately I was unable to prove exactness in this case in general.
- Testing using the aforementioned algorithm has not turned up a counterexample after many (1000s of) tries. Hence...

Conjecture

When $2m - \gamma r = 0$, the map $H^0(\nabla, \mathscr{O}_{\nabla}) \to H^1(C^2, mF + (r-1)\nabla)$ is zero and so we obtain an exact sequence

$$0 \to H^0(\mathcal{C}^2, \textit{mF} + (r-1)\nabla) \to H^0(\mathcal{C}^2, \textit{mF} + r\nabla) \to H^0(\nabla, \mathscr{O}_\nabla) \to 0.$$

To simplify the exposition, we assume henceforth that the conjecture holds.

Fundamental exact sequence Spaces of sections of divisors on C^2 and S

Structure of $H^0(C^2, mF + r\nabla)$

Theorem (I.-L.)

Let m and r be integers satisfying $m > \gamma$ and $r \ge 0$. We have

$$H^{0}(C^{2}, mF + r\nabla)$$

$$\cong H^{0}(C^{2}, mF) \oplus \bigoplus_{i=1}^{r} H^{0}(\nabla, (2m - \gamma i)D_{\nabla}).$$

Corollary (I.-L.)

$$h^{0}(C^{2}, mF + r\nabla) = \begin{cases} (2m - \gamma)^{2} + 4mr - \gamma r(r+2) & \text{if } \gamma < 2m - \gamma r, \\ (2m - \gamma)^{2} + 4mr - \gamma r(r+1) - 2m + g & \text{if } 0 < 2m - \gamma r \leqslant \gamma, \\ (2m - \gamma)^{2} + 2m(r-2) + g + 1 & \text{if } 2m - \gamma r = 0, \text{ and} \\ h^{0}(C^{2}, mF + \left\lfloor \frac{2m}{\gamma} \right\rfloor \nabla) & \text{if } 2m - \gamma r < 0. \end{cases}$$

Fundamental exact sequence Spaces of sections of divisors on C^2 and S

Intermezzo: Intersection pairing and Euler characteristic

Recall that Riemann-Roch for surfaces says that for any divisor D on a surface X we have

$$egin{aligned} \chi(D) &= h^0(X,D) - h^1(X,D) + h^2(X,D) \ &= rac{1}{2}D \cdot (D - \mathcal{K}_X) + \chi(\mathscr{O}_X) \end{aligned}$$

where K_X is a canonical divisor on X and

 $\cdot: \mathsf{Div}(X) imes \mathsf{Div}(X) o \mathbb{Z}$

is the *intersection pairing* on X.

Fundamental exact sequence Spaces of sections of divisors on C^2 and S

Intersection pairing and Euler characteristic

Proposition

The intersection pairing on $Div(C^2) \times Div(C^2)$ is given by the following table:

Let $D = mV_{\infty} + nH_{\infty} + r\nabla$ be a divisor on C^2 . Then

$$\chi(D) = (m - \gamma)(n - \gamma) + r(m + n) - \gamma r(r + 2).$$

Fundamental exact sequence Spaces of sections of divisors on C^2 and S

The higher cohomology groups...

Corollary

Let $m > \gamma$ and $r \ge 0$ be integers. Then

$$h^{1}(C^{2}, mF + r\nabla) = \begin{cases} 0 & \text{if } \gamma < 2m - \gamma r, \\ g - (2m - \gamma r) & \text{if } 0 < 2m - \gamma r \leqslant \gamma, \\ g + 1 & \text{if } 2m - \gamma r = 0, \text{ and} \\ h^{1}(C^{2}, mF + \left\lfloor \frac{2m}{\gamma} \right\rfloor \nabla) & \text{if } 2m - \gamma r < 0. \end{cases}$$

and

 $h^2(C^2, mF + r\nabla) = 0$

Fundamental exact sequence Spaces of sections of divisors on C^2 and S

Structure of $H^0(S, 2m\Theta_S + r\nabla_S)$

h

Theorem (I.-L.)

Let *m* be an integer with $m > \gamma$. Then for all integers $r \ge 0$,

$${}^{p^0}(S,2m\Theta_S+r
abla_S) \oplus igoplus_{i=1}^r H^0(\mathbb{P}^1,(2m-\gamma i)(\infty)).$$

Corollary (I.-L.)

If $2m - \gamma r \ge 0$, then $h^0(S, 2m\Theta)$

$${}^{0}(S, 2m\Theta_{S} + r\nabla_{S})$$

= $\frac{(2m - \gamma)(2m - \gamma + 1)}{2} + r(2m + 1) - \gamma \frac{r(r+1)}{2}$

Otherwise

$$h^{0}(S, 2m\Theta_{S} + r\nabla) = h^{0}(S, 2m\Theta_{S} + \left\lfloor \frac{2m}{\gamma} \right\rfloor \nabla).$$

Fundamental exact sequence Spaces of sections of divisors on C^2 and S

Intersection pairing and Euler characteristic

Proposition

The intersection pairing on $Div(S) \times Div(S)$ is given by the following table:

·	Θ_S	Δ_{S}	∇s
Θ_S	1	2	1
Δ_S	2	4 - 4g	2 + 2g
∇s	1	2 + 2g	1 - g

If $D = m\Theta_S + r\nabla_S$ is an element of Div(S), then

$$\chi(D) = \frac{(m-\gamma)(m-\gamma+1)}{2} + r(m+1) - \gamma \frac{r(r+1)}{2}$$

Fundamental exact sequence Spaces of sections of divisors on C^2 and S

The higher cohomology groups...

Corollary

Let $m > \gamma$ and $r \ge 0$ be integers. Then

$$h^1(S, 2m\Theta_S + r\nabla_S) = (r - r')(\frac{\gamma}{2}(r + r' + 1) - (2m + 1))$$

where $r' = \min\{r, \lfloor \frac{2m}{\gamma} \rfloor\}$. In particular, $h^1(S, 2m\Theta_S + r\nabla_S) = 0$ if $0 \leq 2m - \gamma r$. Furthermore,

$$h^2(S, 2m\Theta_S + r\nabla_S) = 0.$$

Eigenspace decomposition In a neighbourhood of Δ Generating the explicit basis

Eigenspace decomposition

Goal: an explicit basis for $H^0(S, 2m\Theta_S + r\nabla_S)$.

Proposition

For any divisor D on $S = C^2 / \langle \sigma \rangle$,

$$H^0(S,D)\cong H^0(C^2,\pi^*D)^{\langle\sigma\rangle}.$$

Since $\pi^*(2m\Theta_S + r\nabla_S) = mF + r\nabla$, we reduce to the problem of computing $H^0(C^2, mF + r\nabla)^{\langle \sigma \rangle}$.

Eigenspace decomposition In a neighbourhood of Δ Generating the explicit basis

Eigenspace decomposition

Lemma

Let $W_{m,r}^{\varepsilon}$ denote the subspace of $H^{0}(C^{2}, mF - r\Delta)$ on which σ acts by $\varepsilon = \pm 1$. Then $H^{0}(C^{2}, mF + r\nabla)^{\langle \sigma \rangle} \cong W_{m+r,r}^{(-1)r}$.

This follows from the isomorphism

$$H^0(C^2, mF + r\nabla) \cong H^0(C^2, (m+r)F - r\Delta)$$

obtained from the relation $F \sim \Delta + \nabla$.

- We have reduced the problem to finding a basis of $W_{m+r,r}^{(-1)r}$.
- We can show that

$$\begin{split} & W_{m+r,r}^{+1} = H^0(C^2, (m+r)F - r\Delta)^{\langle \sigma \rangle} \\ & W_{m+r,r}^{-1} = (x_1 - x_2)H^0(C^2, (m+r-1)F - r\Delta)^{\langle \sigma \rangle} \end{split}$$

are subspaces of $H^0(C^2, (m+r)F) \cong H^0(C, (m+r)D_{\infty})^{\otimes 2}$ of sections with valuation at least r on Δ .

Eigenspace decomposition In a neighbourhood of Δ Generating the explicit basis

Hasse derivatives

Let A be a ring and let j ≥ 0 be an integer. The jth Hasse derivative of a polynomial w = ∑_{i=0}ⁿ a_itⁱ in A[t] is defined to be

$$D_t^{(j)}w = \sum_{i=j}^n {i \choose j} a_i t^{i-j}$$

- When char(A) is coprime to j! we have $D_t^{(j)}w = \frac{1}{j!}\frac{d^j}{dt^j}w$, where $\frac{d}{dt}w$ is the usual formal derivative of a polynomial. In particular, $D_t^{(0)}w = w$ and $D_t^{(1)}w = \frac{d}{dt}w$ for all w in A[t], however $D_t^{(i)}D_t^{(j)}w \neq D_t^{(i+j)}w$ in general.
- Let A be a ring, let a be in A, and let w be an element of A[t]. Then

$$w=\sum_{i=0}^{\operatorname{deg}(w)}(D_t^{(i)}w)(a)(t-a)^i.$$

Eigenspace decomposition In a neighbourhood of Δ Generating the explicit basis

Hasse derivatives

Proposition (I.-L.)

As before let C be the curve $y^2 - f(x)$, let $k(C^2) = k(x_1, x_2, y_1, y_2)$ be the function field of C^2 and set $t = \frac{1}{2}(x_1 - x_2) \in k(C^2)$. For i = 1, 2 and for all j > 0 we have

$$D_t^{(j)} x_1^m = {m \choose j} x_1^{m-j}$$

$$D_t^{(j)} x_2^m = (-1)^j {m \choose j} x_2^{m-j}$$

$$D_t^{(j)} y_i = \frac{1}{2f(x_i)} \Big(D_t^{(j)} f(x_i) - \sum_{\ell=1}^{j-1} D_t^{(\ell)} y_i D_t^{(j-\ell)} y_j \Big) y_i$$

$$= \frac{G_i^{(j)}(x_i)}{(2f(x_i))^j} y_i$$

where $G_i^{(j)}$ is a polynomial in $k[x_i]$ of degree at most $j(\deg(f) - 1)$.

Eigenspace decomposition In a neighbourhood of Δ Generating the explicit basis

In a neighbourhood of Δ

• Any section $w \in H^0(C^2, mF)$ has the form

$$w = a + by_1 + cy_2 + dy_1y_2$$

where a, b, c, d are polynomials in $k[x_1, x_2]$ (of degree bounded by m). • For any $w \in H^0(C^2, (m + r)F)$ we can consider the formal expansion

$$w = \sum_{i=0}^{\infty} \left. D_t^{(i)} w \right|_{\Delta} t^i$$

in a neighbourhood of Δ . Here

• $t = \frac{1}{2}(x_1 - x_2)$ generates the maximal ideal \mathfrak{m}_{Δ} in the local ring $\mathscr{O}_{C^2,\Delta}$, and • $D_t^{(i)}w\Big|_{\Delta}$ denotes the image of $D_t^{(i)}w$ under the quotient

$$\mathscr{O}_{C^2,\Delta} \to \mathscr{O}_{C^2,\Delta}/\mathfrak{m}_{\Delta} \cong k(\Delta).$$

• A section with valuation at least r on Δ is one for which $D^{(i)}w\Big|_{\Delta} = 0$ for i = 0, ..., r - 1.

Eigenspace decomposition In a neighbourhood of Δ Generating the explicit basis

An explicit description of the basis

Define

$$\varphi_i: W_{m+r,0}^{(-1)^r} \to k(\Delta)$$

by sending a section $w \in W_{m+r,0}^{(-1)^r} \subset H^0(\mathbb{P}^n, \mathscr{O}_{\mathbb{P}^n}(s))$ to $D^{(i)}w\Big|_{\Delta}$ (here s is of order m).

- The image lies in a finitely generated subring.
- φ_i is linear (being just a derivative and evaluation) and (after fixing bases) is given by a vector in k^u for some u (of order m^2).

Proposition (I.-L.)

$$W_{m+r,r}^{(-1)^r} = \bigcap_{i=0}^{r-1} \operatorname{Ker}(\varphi_i).$$

Applications

- Having an explicit basis allows us to verify the conjecture of the previous section in any particular case.
- If C has genus g = 2, we obtain (a projective linear transformation of) the well-known embedding of J_C in \mathbb{P}^{15} published by Cassels and Flynn. In the present work, this corresponds to calculating a basis of the space $H^0(S, 4\Theta_S + 4\nabla_S)$.
- The Fujita conjecture (proved for surfaces by Reider) says:
 - Let X be a smooth projective variety of dimension n, let K_X be a canonical divisor on X and let H be an ample divisor on X. Then K_X + λH is very ample if and only if λ ≥ n + 2.
 - We can show that $K_{C^2} = \gamma F$ is a canonical divisor on C^2 and $K_S = 2(g-2)\Theta_S + \nabla_S$ is a canonical divisor on S.
 - Hence we can now explicitly give several new embeddings of C^2 and S.
- Codes on C² and S:
 - Bases of $H^0(C^2, mF + r\nabla)$ and $H^0(S, 2m\Theta_S + r\nabla_S)$ can be used to define codes.
 - This opens the door to studying codes on these surfaces.

Applications Avenues for generalisation

Avenues for generalisation

There are several possible generalisations we might pursue:

- Similar results for elliptic curves are probably trivial to determine.
- Similar results for non-hyperelliptic curves are probably easy to determine: Difference is that ∇ is more complicated.
- Given a relatively explicit description of End(*J_C*) in terms of the intersection theory of the correspondences, can we find dimension formulae and explicit bases for arbitrary divisors on these surfaces? At least the Frobenius divisor in positive characteristic?
- Characteristic 2 will require new techniques.
- Higher symmetric products would allow us produce the birational maps $C^{(g)} \rightarrow J_C$ to the Jacobian, but requires a much more sophisticated theory.

Applications Avenues for generalisation

Merci pour votre attention!

Thank you for your attention.