Spaces of sections on algebraic surfaces

 Being (the other) half of a (relatively) recently defended thesis. .Hamish Ivey-Law

Supervisor: David Kohel

Institut de Mathématiques de Luminy
Université d'Aix-Marseille
(Aix $*$ Marseille
université

School of Mathematics and Statistics

Soutenance de thèse en cotutelle 14 December 2012

Spaces of sections on algebraic surfaces

(1) Algebraic surfaces

- The Néron-Severi group of C^{2} and S
- Subgroups of NS (C^{2}) and NS(S)
(2) Cohomology of divisors on surfaces
- Fundamental exact sequence
- Spaces of sections of divisors on C^{2} and S
(3) Explicit bases of sections
- Eigenspace decomposition
- In a neighbourhood of Δ
- Generating the explicit basis

4 Applications and generalisations

- Applications
- Avenues for generalisation

Introduction

- Given a divisor D on a curve C, the Riemann-Roch problem for D is the problem of calculating the dimension and determining a basis for the space of functions $L(C, n D)$ in terms of n.
- We will consider the analogous problem on certain classes of surfaces: Given a formal linear combination $m D_{1}+n D_{2}$ of curves on a surface X, we calculate the dimension and determine a basis of the space of functions $H^{0}\left(X, m D_{1}+n D_{2}\right)$ in terms of m and n.
- We consider the two cases: $X=C \times C$ and $X=\operatorname{Sym}^{2}(C)$ where C is a hyperelliptic curve of genus $g \geqslant 2$.

Definitions: Square of the curve

- k a field of characteristic not 2 .
- C a hyperelliptic curve of genus $g \geqslant 2$.
- $C^{2}=C \times C$ the square of C.
- Fix a Weierstrass point $\infty \in C(\bar{k})$
- $V_{\infty}=\{\infty\} \times C$ the vertical embedding of C in C^{2}.
- $H_{\infty}=C \times\{\infty\}$ the horizontal embedding of C in C^{2}.
- $F=2\left(V_{\infty}+H_{\infty}\right)$.
- Δ and ∇ the diagonal and antidiagonal embeddings of C in C^{2}.
- $D_{\infty}=2(\infty)$ or $D_{\infty}=\left(\infty^{+}\right)+\left(\infty^{-}\right)$depending on whether C has one or two points at infinity.
- Let D_{∇} be the image of D_{∞} on ∇.

Definitions: Symmetric square of the curve

- $S=C^{2} /\langle\sigma\rangle$ the symmetric square of C and

$$
\pi: C^{2} \rightarrow S
$$

is the quotient map.

- $\Delta_{S}=\pi(\Delta)$,
- $\nabla_{s}=\pi(\nabla)$ and
- $\Theta_{s}=\pi\left(V_{\infty}\right)=\pi\left(H_{\infty}\right)$ are the (scheme-theoretic) images under the quotient map.
- Note that $2 \Theta_{s}$ is a k-rational divisor even though Θ_{s} is not k-rational in general.

The Néron-Severi group

- Recall that the Picard group of a variety X, denoted by $\operatorname{Pic}(X)$, is the group of divisors of X modulo rational (linear) equivalence, and $\operatorname{Pic}^{0}(X)$ is the subgroup of divisors algebraically equivalent to zero.
- The Néron-Severi group is

$$
\mathrm{NS}(X)=\operatorname{Pic}(X) / \operatorname{Pic}^{0}(X)
$$

equivalently it is the group of divisors of X modulo algebraic equivalence.

- Néron-Severi Theorem: The Néron-Severi group is a finitely generated abelian group.
- Matsusaka's Theorem: The torsion subgroup of the Néron-Severi group is finite.

The Néron-Severi group of C^{2}

- If C is a curve, then $\mathrm{NS}(C) \cong \mathbb{Z}$ (isomorphism given by the degree map).
- For any two curves C_{1} and C_{2}, we have

$$
\operatorname{NS}\left(C_{1} \times C_{2}\right) \cong \operatorname{NS}\left(C_{1}\right) \times \operatorname{NS}\left(C_{2}\right) \times \operatorname{Hom}\left(J_{C_{1}}, J_{C_{2}}\right)
$$

- So $\operatorname{NS}\left(C_{1} \times C_{2}\right) \cong \mathbb{Z}^{2+\rho}$ where $1 \leqslant \rho \leqslant 4 g_{1} g_{2}$.

The Néron-Severi group of S

Proposition

With S as above,

$$
\mathrm{NS}(S) \cong \mathbb{Z}^{1+\rho} \times(\mathbb{Z} / 2 \mathbb{Z})^{\tau}
$$

where $1 \leqslant \rho \leqslant 4 g^{2}$ and $0 \leqslant \tau<\infty$.

- Questions I didn't get around to answering:
- When is $\tau>0$? How big can it be?
- What is in NS $(S)_{\text {tors }}$? (Wild guess: Maybe divisors corresponding to non-scalar, self-dual endomorphisms of J_{C} ?)

Subgroups of NS (C^{2}) and NS(S)

Let m and r be non-negative integers.

- (The classes of) V_{∞}, H_{∞} and ∇ are linearly independent in $\operatorname{NS}\left(C^{2}\right)$.
- We will consider the divisors of the form $m F+r \nabla$ in $\operatorname{Div}\left(C^{2}\right)$ (where $\left.F=2\left(V_{\infty}+H_{\infty}\right)\right)$.
- Divisors of this form don't span $\operatorname{NS}\left(C^{2}\right)$.
- There is a relation

$$
F \sim \Delta+\nabla
$$

coming from the function $x_{1}-x_{2}$ on C^{2} where $k\left(C^{2}\right)=k\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$.

Subgroups of $\operatorname{Div}\left(C^{2}\right)$ and $\operatorname{Div}(S)$

Let m and r be non-negative integers.

- (The classes of) Θ_{s} and ∇_{S} are linearly independent in NS(S).
- We will consider divisors of the form $2 m \Theta_{s}+r \nabla_{s}$ in $\operatorname{Div}(S)$.
- Divisors of this form don't span NS(S).
- There is a relation

$$
4 \Theta_{s} \sim \Delta_{s}+2 \nabla_{s}
$$

coming from the function $\left(x_{1}-x_{2}\right)^{2}$ on S.

Fundamental exact sequence

Throughout we fix $\gamma=g-1$.
Let m and r be non-negative integers. Then

$$
\begin{aligned}
0 \rightarrow \mathscr{O}_{C^{2}} & (m F+(r-1) \nabla) \\
& \rightarrow \mathscr{O}_{C^{2}}(m F+r \nabla) \\
& \rightarrow \mathscr{O}_{\nabla}\left((2 m-\gamma r) D_{\nabla}\right) \rightarrow 0
\end{aligned}
$$

is an exact sequence (because $\left.\mathscr{O}_{C^{2}}(m F+r \nabla) \otimes \mathscr{O}_{\nabla} \cong \mathscr{O}_{\nabla}\left((2 m-\gamma r) D_{\nabla}\right)\right)$.

Fundamental exact sequence

We thus obtain a long exact sequence of cohomology

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(C^{2}, m F+(r-1) \nabla\right) \\
& \quad \rightarrow H^{0}\left(C^{2}, m F+r \nabla\right) \\
& \quad \rightarrow H^{0}\left(\nabla,(2 m-\gamma r) D_{\nabla}\right) \\
& \quad \rightarrow H^{1}\left(C^{2}, m F+(r-1) \nabla\right) \\
& \quad \rightarrow H^{1}\left(C^{2}, m F+r \nabla\right) \\
& \quad \rightarrow H^{1}\left(\nabla,(2 m-\gamma r) D_{\nabla}\right) \rightarrow \cdots
\end{aligned}
$$

The easy cases (i): $2 m-\gamma r>0$

- If $2 m-\gamma r>0$, then we can show that $H^{1}\left(C^{2}, m F+(r-1) \nabla\right)=0$ by showing that it is surrounded by zeros in the long exact sequence of cohomolgy:
- $r=1$: Apply the Künneth formula to obtain

$$
H^{1}\left(C^{2}, m F\right) \cong\left(H_{C}^{0} \otimes H_{C}^{1}\right) \oplus\left(H_{C}^{1} \otimes H_{C}^{0}\right)
$$

where H_{C}^{i} denotes $H^{i}\left(C, m D_{\infty}\right)$. Then $H_{C}^{1}=0$ by Serre duality (since $m>\gamma$).

- $r \geqslant 2$: Assume for induction that $H^{1}\left(C^{2}, m F+(r-2) \nabla\right)=0$. Then from the long exact sequence of cohomology, it suffices to prove that

$$
H^{1}\left(\nabla,(2 m-\gamma(r-1)) D_{\nabla}\right)=0
$$

But this follows from Serre duality since

$$
K_{\nabla}-(2 m-\gamma(r-1)) D_{\nabla}=-(2 m-\gamma r) D_{\nabla}
$$

- Thus the sequence splits:

$$
\begin{aligned}
& H^{0}\left(C^{2}, m F+r \nabla\right) \\
& \quad \cong H^{0}\left(C^{2}, m F+(r-1) \nabla\right) \oplus H^{0}\left(\nabla,(2 m-\gamma r) D_{\nabla}\right)
\end{aligned}
$$

The easy cases (ii): $2 m-\gamma r<0$

- Since D_{∇} is effective, $H^{0}\left(\nabla,(2 m-\gamma r) D_{\nabla}\right)=0$ if $2 m-\gamma r<0$. Thus in this case

$$
H^{0}\left(C^{2}, m F+(r-1) \nabla\right) \cong H^{0}\left(C^{2}, m F+r \nabla\right) .
$$

- It remains to consider the case $2 m-\gamma r=0$.

The split long exact sequence

Suppose $2 m-\gamma r=0$.

- $H^{0}\left(\nabla,(2 m-\gamma r) D_{\nabla}\right)=H^{0}\left(\nabla, \mathscr{O}_{\nabla}\right)$ has dimension 1 .
- $H^{1}\left(C^{2}, m F+(r-1) \nabla\right)$ is not necessarily zero.
- In the next section, we will describe an algorithm that calculates an explicit basis for $H^{0}\left(C^{2}, m F+r \nabla\right)$ for any particular curve, thus allowing us to verify exactness in any particular case.
- Unfortunately I was unable to prove exactness in this case in general.
- Testing using the aforementioned algorithm has not turned up a counterexample after many (1000s of) tries. Hence...

Conjecture

When $2 m-\gamma r=0$, the map $H^{0}\left(\nabla, \mathscr{O}_{\nabla}\right) \rightarrow H^{1}\left(C^{2}, m F+(r-1) \nabla\right)$ is zero and so we obtain an exact sequence

$$
0 \rightarrow H^{0}\left(C^{2}, m F+(r-1) \nabla\right) \rightarrow H^{0}\left(C^{2}, m F+r \nabla\right) \rightarrow H^{0}\left(\nabla, \mathscr{O}_{\nabla}\right) \rightarrow 0
$$

To simplify the exposition, we assume henceforth that the conjecture holds.

Structure of $H^{0}\left(C^{2}, m F+r \nabla\right)$

Theorem (I.-L.)

Let m and r be integers satisfying $m>\gamma$ and $r \geqslant 0$. We have

$$
\begin{aligned}
& H^{0}\left(C^{2}, m F+r \nabla\right) \\
& \quad \cong H^{0}\left(C^{2}, m F\right) \oplus \bigoplus_{i=1}^{r} H^{0}\left(\nabla,(2 m-\gamma i) D_{\nabla}\right)
\end{aligned}
$$

Corollary (I.-L.)

$$
\begin{aligned}
& h^{0}\left(C^{2}, m F+r \nabla\right) \\
& \quad= \begin{cases}(2 m-\gamma)^{2}+4 m r-\gamma r(r+2) & \text { if } \gamma<2 m-\gamma r \\
(2 m-\gamma)^{2}+4 m r-\gamma r(r+1)-2 m+g & \text { if } 0<2 m-\gamma r \leqslant \gamma, \\
(2 m-\gamma)^{2}+2 m(r-2)+g+1 & \text { if } 2 m-\gamma r=0, \text { and } \\
h^{0}\left(C^{2}, m F+\left\lfloor\frac{2 m}{\gamma}\right\rfloor \nabla\right) & \text { if } 2 m-\gamma r<0 .\end{cases}
\end{aligned}
$$

Intermezzo: Intersection pairing and Euler characteristic

Recall that Riemann-Roch for surfaces says that for any divisor D on a surface X we have

$$
\begin{aligned}
\chi(D) & =h^{0}(X, D)-h^{1}(X, D)+h^{2}(X, D) \\
& =\frac{1}{2} D \cdot\left(D-K_{X}\right)+\chi\left(\mathscr{O}_{X}\right)
\end{aligned}
$$

where K_{X} is a canonical divisor on X and

$$
\cdot: \operatorname{Div}(X) \times \operatorname{Div}(X) \rightarrow \mathbb{Z}
$$

is the intersection pairing on X.

Intersection pairing and Euler characteristic

Proposition

The intersection pairing on $\operatorname{Div}\left(C^{2}\right) \times \operatorname{Div}\left(C^{2}\right)$ is given by the following table:

\cdot	V_{∞}	H_{∞}	Δ	∇
V_{∞}	0	1	1	1
H_{∞}	1	0	1	1
Δ	1	1	$2-2 g$	$2+2 g$
∇	1	1	$2+2 g$	$2-2 g$

Let $D=m V_{\infty}+n H_{\infty}+r \nabla$ be a divisor on C^{2}. Then

$$
\chi(D)=(m-\gamma)(n-\gamma)+r(m+n)-\gamma r(r+2) .
$$

The higher cohomology groups...

Corollary

Let $m>\gamma$ and $r \geqslant 0$ be integers. Then

$$
h^{1}\left(C^{2}, m F+r \nabla\right)= \begin{cases}0 & \text { if } \gamma<2 m-\gamma r \\ g-(2 m-\gamma r) & \text { if } 0<2 m-\gamma r \leqslant \gamma \\ g+1 & \text { if } 2 m-\gamma r=0, \text { and } \\ h^{1}\left(C^{2}, m F+\left\lfloor\frac{2 m}{\gamma}\right\rfloor \nabla\right) & \text { if } 2 m-\gamma r<0\end{cases}
$$

and

$$
h^{2}\left(C^{2}, m F+r \nabla\right)=0
$$

Structure of $H^{0}\left(S, 2 m \Theta_{S}+r \nabla_{S}\right)$

Theorem (I.-L.)

Let m be an integer with $m>\gamma$. Then for all integers $r \geqslant 0$,

$$
\begin{aligned}
H^{0}(S & \left.2 m \Theta_{s}+r \nabla_{s}\right) \\
& \cong H^{0}\left(S, 2 m \Theta_{s}\right) \oplus \bigoplus_{i=1}^{r} H^{0}\left(\mathbb{P}^{1},(2 m-\gamma i)(\infty)\right)
\end{aligned}
$$

Corollary (I.-L.)

If $2 m-\gamma r \geqslant 0$, then

$$
\begin{aligned}
& h^{0}(S, 2 m \Theta s+r \nabla s) \\
& \quad=\frac{(2 m-\gamma)(2 m-\gamma+1)}{2}+r(2 m+1)-\gamma \frac{r(r+1)}{2} .
\end{aligned}
$$

Otherwise

$$
h^{0}\left(S, 2 m \Theta_{s}+r \nabla\right)=h^{0}\left(S, 2 m \Theta_{s}+\left\lfloor\frac{2 m}{\gamma}\right\rfloor \nabla\right)
$$

Intersection pairing and Euler characteristic

Proposition

The intersection pairing on $\operatorname{Div}(S) \times \operatorname{Div}(S)$ is given by the following table:

\cdot	Θ_{s}	Δ_{s}	∇_{s}
Θ_{s}	1	2	1
Δ_{s}	2	$4-4 g$	$2+2 g$
∇_{s}	1	$2+2 g$	$1-g$

If $D=m \Theta_{s}+r \nabla_{s}$ is an element of $\operatorname{Div}(S)$, then

$$
\chi(D)=\frac{(m-\gamma)(m-\gamma+1)}{2}+r(m+1)-\gamma \frac{r(r+1)}{2} .
$$

The higher cohomology groups...

Corollary

Let $m>\gamma$ and $r \geqslant 0$ be integers. Then

$$
h^{1}\left(S, 2 m \Theta_{s}+r \nabla_{s}\right)=\left(r-r^{\prime}\right)\left(\frac{\gamma}{2}\left(r+r^{\prime}+1\right)-(2 m+1)\right)
$$

where $r^{\prime}=\min \left\{r,\left\lfloor\frac{2 m}{\gamma}\right\rfloor\right\}$. In particular, $h^{1}\left(S, 2 m \Theta_{s}+r \nabla_{s}\right)=0$ if $0 \leqslant 2 m-\gamma r$. Furthermore,

$$
h^{2}\left(S, 2 m \Theta_{s}+r \nabla_{s}\right)=0
$$

Eigenspace decomposition

Goal: an explicit basis for $H^{0}\left(S, 2 m \Theta_{s}+r \nabla s\right)$.

Proposition

For any divisor D on $S=C^{2} /\langle\sigma\rangle$,

$$
H^{0}(S, D) \cong H^{0}\left(C^{2}, \pi^{*} D\right)^{\langle\sigma\rangle}
$$

Since $\pi^{*}\left(2 m \Theta_{s}+r \nabla_{s}\right)=m F+r \nabla$, we reduce to the problem of computing $H^{0}\left(C^{2}, m F+r \nabla\right)^{\langle\sigma\rangle}$.

Eigenspace decomposition

Lemma

Let $W_{m, r}^{\varepsilon}$ denote the subspace of $H^{0}\left(C^{2}, m F-r \Delta\right)$ on which σ acts by $\varepsilon= \pm 1$. Then

$$
H^{0}\left(C^{2}, m F+r \nabla\right)^{\langle\sigma\rangle} \cong W_{m+r, r}^{(-1)^{r}}
$$

This follows from the isomorphism

$$
H^{0}\left(C^{2}, m F+r \nabla\right) \cong H^{0}\left(C^{2},(m+r) F-r \Delta\right)
$$

obtained from the relation $F \sim \Delta+\nabla$.

- We have reduced the problem to finding a basis of $W_{m+r, r}^{(-1)^{r}}$.
- We can show that

$$
\begin{aligned}
& W_{m+r, r}^{+1}=H^{0}\left(C^{2},(m+r) F-r \Delta\right)^{\langle\sigma\rangle} \\
& W_{m+r, r}^{-1}=\left(x_{1}-x_{2}\right) H^{0}\left(C^{2},(m+r-1) F-r \Delta\right)^{\langle\sigma\rangle}
\end{aligned}
$$

are subspaces of $H^{0}\left(C^{2},(m+r) F\right) \cong H^{0}\left(C,(m+r) D_{\infty}\right)^{\otimes 2}$ of sections with valuation at least r on Δ.

Hasse derivatives

- Let A be a ring and let $j \geqslant 0$ be an integer. The j th Hasse derivative of a polynomial $w=\sum_{i=0}^{n} a_{i} t^{i}$ in $A[t]$ is defined to be

$$
D_{t}^{(j)} w=\sum_{i=j}^{n}\binom{i}{j} a_{i} t^{i-j}
$$

- When $\operatorname{char}(A)$ is coprime to j ! we have $D_{t}^{(j)} w=\frac{1}{j!} \frac{d^{j}}{d t} w$, where $\frac{d}{d t} w$ is the usual formal derivative of a polynomial. In particular, $D_{t}^{(0)} w=w$ and $D_{t}^{(1)} w=\frac{d}{d t} w$ for all w in $A[t]$, however $D_{t}^{(i)} D_{t}^{(j)} w \neq D_{t}^{(i+j)} w$ in general.
- Let A be a ring, let a be in A, and let w be an element of $A[t]$. Then

$$
w=\sum_{i=0}^{\operatorname{deg}(w)}\left(D_{t}^{(i)} w\right)(a)(t-a)^{i}
$$

Hasse derivatives

Proposition (I.-L.)

As before let C be the curve $y^{2}-f(x)$, let $k\left(C^{2}\right)=k\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ be the function field of C^{2} and set $t=\frac{1}{2}\left(x_{1}-x_{2}\right) \in k\left(C^{2}\right)$. For $i=1,2$ and for all $j>0$ we have

$$
\begin{aligned}
D_{t}^{(j)} x_{1}^{m} & =\binom{m}{j} x_{1}^{m-j} \\
D_{t}^{(j)} x_{2}^{m} & =(-1)^{j}\binom{m}{j} x_{2}^{m-j} \\
D_{t}^{(j)} y_{i} & =\frac{1}{2 f\left(x_{i}\right)}\left(D_{t}^{(j)} f\left(x_{i}\right)-\sum_{\ell=1}^{j-1} D_{t}^{(\ell)} y_{i} D_{t}^{(j-\ell)} y_{i}\right) y_{i} \\
& =\frac{G_{i}^{(j)}\left(x_{i}\right)}{\left(2 f\left(x_{i}\right)\right)^{j}} y_{i}
\end{aligned}
$$

where $G_{i}^{(j)}$ is a polynomial in $k\left[x_{i}\right]$ of degree at most $j(\operatorname{deg}(f)-1)$.

In a neighbourhood of Δ

- Any section $w \in H^{0}\left(C^{2}, m F\right)$ has the form

$$
w=a+b y_{1}+c y_{2}+d y_{1} y_{2}
$$

where a, b, c, d are polynomials in $k\left[x_{1}, x_{2}\right]$ (of degree bounded by m).

- For any $w \in H^{0}\left(C^{2},(m+r) F\right)$ we can consider the formal expansion

$$
w=\left.\sum_{i=0}^{\infty} D_{t}^{(i)} w\right|_{\Delta} t^{i}
$$

in a neighbourhood of Δ. Here

- $t=\frac{1}{2}\left(x_{1}-x_{2}\right)$ generates the maximal ideal \mathfrak{m}_{Δ} in the local ring $\mathscr{O}_{C^{2}, \Delta}$, and
- $\left.D_{t}^{(i)} w\right|_{\Delta}$ denotes the image of $D_{t}^{(i)} w$ under the quotient

$$
\mathscr{O}_{C^{2}, \Delta} \rightarrow \mathscr{O}_{C^{2}, \Delta} / \mathfrak{m}_{\Delta} \cong k(\Delta)
$$

- A section with valuation at least r on Δ is one for which $\left.D^{(i)} w\right|_{\Delta}=0$ for $i=0, \ldots, r-1$.

An explicit description of the basis

- Define

$$
\varphi_{i}: W_{m+r, 0}^{(-1)^{r}} \rightarrow k(\Delta)
$$

by sending a section $w \in W_{m+r, 0}^{(-1)^{r}} \subset H^{0}\left(\mathbb{P}^{n}, \mathscr{O}_{\mathbb{P}^{n}}(s)\right)$ to $\left.D^{(i)} w\right|_{\Delta}$ (here s is of order m).

- The image lies in a finitely generated subring.
- φ_{i} is linear (being just a derivative and evaluation) and (after fixing bases) is given by a vector in k^{u} for some u (of order m^{2}).

Proposition (I.-L.)

$$
W_{m+r, r}^{(-1)^{r}}=\bigcap_{i=0}^{r-1} \operatorname{Ker}\left(\varphi_{i}\right)
$$

Applications

- Having an explicit basis allows us to verify the conjecture of the previous section in any particular case.
- If C has genus $g=2$, we obtain (a projective linear transformation of) the well-known embedding of J_{C} in \mathbb{P}^{15} published by Cassels and Flynn. In the present work, this corresponds to calculating a basis of the space $H^{0}\left(S, 4 \Theta_{s}+4 \nabla_{s}\right)$.
- The Fujita conjecture (proved for surfaces by Reider) says:
- Let X be a smooth projective variety of dimension n, let K_{X} be a canonical divisor on X and let H be an ample divisor on X. Then $K_{X}+\lambda H$ is very ample if and only if $\lambda \geqslant n+2$.
- We can show that $K_{C^{2}}=\gamma F$ is a canonical divisor on C^{2} and $K_{S}=2(g-2) \Theta_{s}+\nabla_{S}$ is a canonical divisor on S.
- Hence we can now explicitly give several new embeddings of C^{2} and S.
- Codes on C^{2} and S :
- Bases of $H^{0}\left(C^{2}, m F+r \nabla\right)$ and $H^{0}\left(S, 2 m \Theta_{S}+r \nabla_{S}\right)$ can be used to define codes.
- This opens the door to studying codes on these surfaces.

Avenues for generalisation

There are several possible generalisations we might pursue:

- Similar results for elliptic curves are probably trivial to determine.
- Similar results for non-hyperelliptic curves are probably easy to determine: Difference is that ∇ is more complicated.
- Given a relatively explicit description of End $\left(J_{C}\right)$ in terms of the intersection theory of the correspondences, can we find dimension formulae and explicit bases for arbitrary divisors on these surfaces? At least the Frobenius divisor in positive characteristic?
- Characteristic 2 will require new techniques.
- Higher symmetric products would allow us produce the birational maps $C^{(g)} \rightarrow J_{C}$ to the Jacobian, but requires a much more sophisticated theory.

Merci pour votre attention!

Thank you for your attention.

