The class number one problem for curves of genus 2

Pınar Kılıçer
Universiteit Leiden - Université de Bordeaux

March 18, 2014

Proposition

There exist exactly 20 isomorphism classes of cyclic quartic CM-fields K for which $\mathbf{C}_{\Phi^{r}}$ is trivial.
There exist exactly 63 isomorphism classes of non-Galois quartic CM-fields K for which $\mathbf{C}_{\Phi^{r}}$ is trivial.

Proof

Non-Galois quartic case:
Let K be a non-Galois quartic CM-field of type Φ with intermediate field F and $\left(K^{r}, \Phi^{r}\right)$ be reflex of (K, Φ).

- If $\mathbf{C}_{\Phi^{r}}$ is trivial, then
(i) $F=\mathbb{Q}(\sqrt{p})$ and $F^{r}=\mathbb{Q}(\sqrt{q})$ where p and q are primes and $q \not \equiv 3(\bmod 4)$,
(ii) $h_{K^{r}} / h_{F^{r}}=2^{t-1}$ where t is the number of ramified primes in K^{r} / F^{r},
(iii) $(p / q)=(q / p)=1$ and the ramified primes $r_{i} \neq p$ in K^{r} / F^{r} satisfy $\left(r_{i} / p\right)=\left(r_{i} / q\right)=-1$.

Proof

- (Louboutin) Let N be the normal closure of K^{r}. If the discriminant $d_{N} \geq 222^{8}$, we have the lower bound

$$
h_{K^{r}} / h_{F^{r}} \geq \frac{2}{\sqrt{e} \pi^{2}} \frac{\sqrt{d_{K^{r}} / d_{F^{r}}}}{\left(\log \left(d_{K^{r}} / d_{F^{r}}\right)+5 \kappa / 4\right)^{2}},
$$

where $\kappa=0.046191417 \cdots$.

- For example, if $p \equiv q \equiv 1(\bmod 4)$ and 2 does not ramify in K^{r}. Then by (iii), $d_{K^{r}} / d_{F^{r}}=p q r_{1}^{2} \cdots r_{t-1}^{2}$.
- For $t \geq 0$, let Δ_{t} denote the product of the first t odd primes. Then $d_{K^{r}} / d_{F^{r}} \geq p q\left(\Delta_{t-1}\right)^{2}$.
- Divide the both sides of the inequality by 2^{t-1}. Then the LHS is 1 and the RHS goes to ∞ as $t \rightarrow \infty$.
- In fact $t<8$ and hence $d_{K^{r}} / d_{F^{r}} \leq 12 \cdot 10^{10}$.

Proof

- SAGE:
- Construct all non-Galois quartic CM-fields K^{r} with either
- $d_{N} \leq 222^{8}$ or
- $d_{K^{r}} / d_{F^{r}} \leq 12 \cdot 10^{10}$ and $t<8$
that contain the real quadratic subfield $F^{r}=\mathbb{Q}(\sqrt{q})$ and have $F=\mathbb{Q}(\sqrt{p})$ as the real quadratic subfield of K such that
- p and q are prime numbers with $q \not \equiv 3(\bmod 4)$ and $(p / q)=(q / p)=1$,
- $\left(r_{i} / p\right)=\left(r_{i} / q\right)=-1$ where r_{i} 's are prime numbers that ramify in K^{r} / F^{r}.
- Eliminate fields K by finding totally split primes under the bound $\frac{\sqrt{d_{K} / d_{F}^{2}}}{4}$. (Most of the fields are eliminated in this step.)
- Eliminate fields K^{r} that have prime ideals in $I_{K^{r}} \backslash H_{\Phi^{r}}$ with norm below the bound $12 \cdot \log \left(\left|d_{K^{r}}\right|\right)^{2}$.
- Compute class groups and check whether $\mathbf{C}_{\Phi^{r}}$ is trivial.

Further Directions

- Genus-2 CM curves for which $J(C)$ is isogenous to $E_{1} \times E_{2}$,
- CM Picard curves: $y^{3}=f(x)$ with $\operatorname{deg}(f)=4$,
- CM hyperelliptic curves of genus 3,
- arbitrary CM curves of genus 3 .

