The class number one problem for curves of genus 2

Pınar Kılıçer

Universiteit Leiden - Université de Bordeaux

March 18, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

There exist exactly 20 isomorphism classes of cyclic quartic CM-fields K for which \mathbf{C}_{Φ^r} is trivial. There exist exactly 63 isomorphism classes of non-Galois quartic CM-fields K for which \mathbf{C}_{Φ^r} is trivial.

Proof

Non-Galois quartic case:

Let K be a non-Galois quartic CM-field of type Φ with intermediate field F and (K^r, Φ^r) be reflex of (K, Φ) .

- If \mathbf{C}_{Φ^r} is trivial, then
 - (i) $F = \mathbb{Q}(\sqrt{p})$ and $F^r = \mathbb{Q}(\sqrt{q})$ where p and q are primes and $q \not\equiv 3 \pmod{4}$,
 - (ii) $h_{K^r}/h_{F^r} = 2^{t-1}$ where t is the number of ramified primes in K^r/F^r ,
 - (iii) (p/q) = (q/p) = 1 and the ramified primes $r_i \neq p$ in K^r/F^r satisfy $(r_i/p) = (r_i/q) = -1$.

Proof

• (Louboutin) Let N be the normal closure of K^r . If the discriminant $d_N \ge 222^8$, we have the lower bound

$$h_{K^r}/h_{F^r} \ge \frac{2}{\sqrt{e\pi^2}} \frac{\sqrt{d_{K^r}/d_{F^r}}}{(\log(d_{K^r}/d_{F^r}) + 5\kappa/4)^2},$$

where $\kappa = 0.046191417 \cdots$.

- For example, if $p \equiv q \equiv 1 \pmod{4}$ and 2 does not ramify in K^r . Then by (iii), $d_{K^r}/d_{F^r} = pqr_1^2 \cdots r_{t-1}^2$.
- For $t \ge 0$, let Δ_t denote the product of the first t odd primes. Then $d_{K^r}/d_{F^r} \ge pq(\Delta_{t-1})^2$.
- Divide the both sides of the inequality by 2^{t-1}. Then the LHS is 1 and the RHS goes to ∞ as t → ∞.

• In fact t < 8 and hence $d_{K^r}/d_{F^r} \leq 12 \cdot 10^{10}$.

Proof

• SAGE:

- Construct all non-Galois quartic CM-fields K^r with either

- $d_N \leq 222^8$ or
- $d_{K^r}/d_{F^r} \le 12 \cdot 10^{10}$ and t < 8

that contain the real quadratic subfield $F^r=\mathbb{Q}(\sqrt{q})$ and have $F=\mathbb{Q}(\sqrt{p})$ as the real quadratic subfield of K such that

- p and q are prime numbers with $q \not\equiv 3 \pmod{4}$ and (p/q) = (q/p) = 1,
- $(r_i/p) = (r_i/q) = -1$ where r_i 's are prime numbers that ramify in K^r/F^r .
- Eliminate fields K by finding totally split primes under the bound $\frac{\sqrt{d_K/d_F^2}}{4}$. (Most of the fields are eliminated in this step.)
- Eliminate fields K^r that have prime ideals in $I_{K^r} \setminus H_{\Phi^r}$ with norm below the bound $12 \cdot \log(|d_{K^r}|)^2$.
- Compute class groups and check whether \mathbf{C}_{Φ^r} is trivial.

Further Directions

• Genus-2 CM curves for which J(C) is isogenous to $E_1 \times E_2$,

うして ふゆう ふほう ふほう ふしつ

- CM Picard curves: $y^3 = f(x)$ with $\deg(f) = 4$,
- CM hyperelliptic curves of genus 3,
- arbitrary CM curves of genus 3.