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Introduction
Elliptic and Hyperelliptic Curves

@ Applications: Public key cryptosystems (e.g. Diffie-Hellman
key exchange protocol, ElGamal).

General security assessment:

e DLP: Given a multiplicative group G =< g > of large order r
and h € G, find x such that h = g*.

o Classical DLP: G = Fy, with p prime.
@ Subexponential attacks.
Curve-based security assessment:
e ECDLP: Given an elliptic curve E (genus 1 ) over some F,
then G = E(F,).
e HECDLP: Given an hyperelliptic curve C of genus g over
some F, and its Jacobian Jac(C), then G = Jacg,(C).

@ Exponential attacks
2/21
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Genus 1 Curves

e ECC:
F,. where p is a prime of recommended size.
an elliptic curve E over F, with given #E(F)).

@ Question
Is the discrete logarithm problem equally hard on all curves
having the same number of points?

@ Answer
"Yes", with some probability and constraints for the case of
ordinary elliptic curves.

Theorem (Tate)
E1, E; defined over Fj, have #E;1(Fp) = #Ex(F;) iff there exists an
F,-isogeny ¢: E; — E>.

An isogeny is a morphism of the form ¢ : E; — E» of some degree
over F, (rational map, regular at any point on Ej) with

¢(Ol) = 02- 3/21
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Isogeny Graph
o #E(F,) =1+ p— t where t is the trace of Frobenius 7

@ End(E) - order in K = Q(v/—d;), with c?d; = t*> — 4p.
e Ok D End(E) D Z[n]
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Genus 2 Curves

Why?
Similar cost when doing arithmetic, smaller fields by a factor 2.

@ Jacobians of curves over F, that have the same characteristic
polynomial of Frobenius = an F,-isogeny class.

@ Jacobians are principally polarised abelian varieties (together
with embeddings in PV). An isogeny links both the varieties
and their polarizations.

@ A principal polarization is crucial in recovering a curve
equation from an abelian variety that is a Jacobian.

Same Question
Is the DL equally hard on isomorphic classes of Jacobians in the
same isogeny graph?
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Isogeny Graphs of Principally Polarized Abelian Surfaces

Computing isogenies from kernel in genus 2 is a lot harder:

@ Canonical coordinates

@ Polarizations: prime degree isogenies do not preserve principal
polarisations.

@ Deciding isomorphisms: deciding if two non-polarized abelian
surfaces are isomorphic is a computationally hard problem.

@ Class field theory: endomorphism rings are orders in quartic
number fields.

Main idea: use the theory of theta functions and the CM
description of principally polarised abelian varieties
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Current State of the Art

The work of Cosset et Robert on (¢, ¢) isogenies:

The kernel is isomorphic to $Z2/Z2.
Similar formulas to Vélu.

The (¢, ¢) isogeny is the only isogeny that preserves the
principal polarization of the source and target.

Not all isogenies between isomorphism classes can be
expressed with (¢, ¢)-isogenies.

The graph associated to the isogeny class may not be
connected.
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Algorithm of Computing Cyclic Isogenies
Input:
@ a prime p and a prime /

@ C a hyperlliptic curve of genus 2 defined over F, given in
Rosenhain form:

Y2 = x(x = 1)(x = \)(x — p)(x — )
s. t. EndfP(Jac(C)) ~ O with O order in K := Q(m).
The quadratic field Ky = Q(v/D) € K and Qg := O N K.
@ a totally positive element 5 € Oy of norm prime ¢

@ a generator P in Mumford coordinates of the isogeny kernel G
st. B-P=0.
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Algorithm of Computing Cyclic Isogenies
Input:
@ a prime p and a prime /

@ C a hyperlliptic curve of genus 2 defined over F, given in
Rosenhain form:

y? = x(x = 1)(x = \)(x = p)(x —v)

s. t. EndfP(Jac(C)) ~ O with O order in K := Q(m).
The quadratic field Ky = Q(v/D) € K and Qg := O N K.
@ a totally positive element 5 € Oy of norm prime ¢

@ a generator P in Mumford coordinates of the isogeny kernel G
st. B-P=0.

Output: C'- a hyperelliptic curve defined over F, s.t.
Jac(C') ~f, B, with B the target of an /-isogeny of kernel G.
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Diagram

Let f: A— B. Let f: A— As.t. ker(f) C ker(3) maximal
isotropic.

[
£*

A* «+——— B*.
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Algorithm Steps

1. Compute a theta null point of A of level (2,2).

2. Compute a totally positive element 8 € Ok, of norm / that

corresponds to the endomorphism on A whose kernel contains
G.

3. Compute a theta null point of B of level (2,2) by applying the
isogeny theorem together with Koizumi's formulae

4. Deduce an equation of a rational smooth genus 2 curve C’
whose Jac(C') ~f, B.

10/21
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Computing the theta null point of A

@ We work over C.

o Let A:= Jac(C) and let Ly be a pp on A.

e JA C C? lattice rank 4 s.t. A~ T := C2/A.

0 3L =3Qc My(C),2=Q" and Z(Q) > 0st. A=
Qz2 + 72

@ The Riemann theta function associated to Q is © : C> — C
where

. T . T
e(z’ Q) — Z e™ix Qx+2mix z

xeZ?
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Computing the theta null point of A

o Forne Z.gand i€ Z(n):=122/72, let
0i(z) :==O(z+1i,%9).

@ The space generated by (9,-(2)),-6%22/22 is the space of theta
functions of level n.

o If n = k2, there exists another basis given by theta functions
of level (k, k), with indexes a, b € Z(k).

When n > 3:

0 ze T — (0i(2))icz(n) € P"™~1(C) is an embedding.

@ (0i(0))icz(n) identifies the abelian variety uniquely in
P7-1(C).

12/21
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formulae.

@ For any x € A, the algebraic theta coordinates are deduced
from Mumford coordinates.
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Computing the theta null point of A

e Over F,, given {0,1, A, i1, v}, we deduce the theta null point
of level (2,2) (over some extension of F,) via Thomae's
formulae.

@ For any x € A, the algebraic theta coordinates are deduced
from Mumford coordinates.

o (¢,0) isogenies: A 4 A f B
(2,2) (2¢,20) (2,2).
. . B f
@ / cyclic isogenies: A A B

(2,2) (2¢,2) (2,2).
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Computing a theta null point of the target B

@ Compute the action of 8 on A by applying a Koizumi type
formulas with F € GL,(Kp) s. t. FTF = jId.

@ Compute the action of F on A and on the sets of indexes of
theta functions.

@ Compute the theta null point of B from the theta point of

level (24,2).
For x = 0, we consider any index i and (j1,/2) the preimage of
(i,0) by F
0P (F(x))06(0) = XaxAx Y 07 (ax + at)0h(bx + bt),  (2)

teG

14/21
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Computing the image of x on the target B

e Equation (2) depends on x, hence we cannot work with
projective points.

@ There is no canonical way of defining affine theta coordinates
over Fp.

@ We need to choose the affine lifts in a compatible way, i.e.,
each product on the right hand side should have the same .

@ The affine lifts should not depend on t.

15/21
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@ a,b € Ko can be expressed in terms of Frobenius 7 over F 5,
for k the extension degree s.t. the theta null point is over F .

@ Fix embeddings Endq — K — C.

@ /D can be written as a degree 3 polynomial in complex root
m of

X —51X3 + (s +29)X?% — gs1 X + ¢°,
where g = p¥, for some k,512 —4s5 >0, 52 +4q > 2|s1],/q,
|s1] < 4,/q and |s;| < 4q.

@ When computing the action of F on £ torsion points,
computations modulo £ = the matrix elements are
polynomials in Z/(Z[X].

@ When computing the action of F on 4 torsion points, the
matrix has elements modulo 4.
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Computing the image of x via f on the target B

Let a:= 2,3(:0 axmk, with ax € Z/mZ.
@ When working with affine coordinates, we need to keep
track of the projective factors after each operation.

To compute P + Q, we need P, Q, P — Q ( pseudo-addition).

s- P, mP are easy to compute.

We can compute a(x + t) if we have all combinations of two
points. They depend on

e x: normal addition, arbitrary factor
o t: N = ay, for some known a;
e xand t: find t' € G s.t. x and t’ have the same coefficient.
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Computing the equation of the target curve

We deduce a Rosenhain form of the target hyperelliptic curve of
the form y? = x(x — 1)(x — A)(x — u)(x — v) by using the theta
constants of level (2,2):

N .
o, e T

In case the hyperelliptic curve is over an extension field, we apply
Mestre's algorithm.
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Computing the equation of the target curve

We deduce a Rosenhain form of the target hyperelliptic curve of
the form y? = x(x — 1)(x — A)(x — u)(x — v) by using the theta
constants of level (2,2):

N TR T -
= s ,LL = 5 = .
036% 01205 059

In case the hyperelliptic curve is over an extension field, we apply
Mestre's algorithm.

Algorithm complexity Polynomial in £ and further, in log p.
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Random Self-Reducibility of Discrete Logarithms - genus 1

@ Using vertical isogenies, reduce the problem to two curves on
the top layer Ok

@ Via complex multiplication theory, the curves on the top layer
(after liftings to characteristic zero) correspond to C/a where
eCl(Ok)

@ Get a Cayley graph whose vertices are the curves in the top
layer (in bijection with Pic(Ok) and whose edges correspond
to prime ideals of small norm of Ok

@ Conclusion: via random walks, discrete log is, with some
probability, comparatively hard on all curves in an isogeny
class (Jao—Miller-Venkatesan'05)

Goal: what can we say about curves of genus 27
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Isogeny Graph and the random-self reducibility of DLP
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Isogeny Graph and the random-self reducibility of DLP

Application: DLP on A can be reduced in polynomial time to the
DLP on B.

Claim: Under GRH, the DLP in genus 2 is random-self reducible:
Given a fixed order O in K, given any algorithm Alg that solves the
DL on some 1/(polynomial in log p) percentage of Jacobians of e.r.
O, one can solve probabilistically the DL on any Jacobian of e.r. O
in polynomial in log p expected queries to Alg with random inputs.
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Thank you.
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