# Computing Cyclic Isogenies in Genus 2 with Applications in Cryptography 

Alina Dudeanu ${ }^{1}$ Dimitar Jetchev ${ }^{1}$ Damien Robert ${ }^{2}$<br>${ }^{1}$ EPF Lausanne<br>${ }^{2}$ INRIA Bordeaux

May 20, 2014

## Introduction

## Elliptic and Hyperelliptic Curves

- Applications: Public key cryptosystems (e.g. Diffie-Hellman key exchange protocol, ElGamal).


## General security assessment:

- DLP: Given a multiplicative group $G=<g>$ of large order $r$ and $h \in G$, find $x$ such that $h=g^{x}$.
- Classical DLP: $G=F_{p}^{*}$, with $p$ prime.
- Subexponential attacks.

Curve-based security assessment

- ECDLP: Given an elliptic curve $E$ (genus 1 ) over some $\mathbf{F}_{p}$, then $G=E\left(\mathbf{F}_{p}\right)$
- HECDLP: Given an hyperelliptic curve $C$ of genus $g$ over some $\mathbf{F}_{p}$ and its Jacobian $\operatorname{Jac}(C)$, then $G=\operatorname{JacF}_{p}(C)$
- Exponential attacks


## Introduction

Elliptic and Hyperelliptic Curves

- Applications: Public key cryptosystems (e.g. Diffie-Hellman key exchange protocol, ElGamal).
General security assessment:
- DLP: Given a multiplicative group $G=<g>$ of large order $r$ and $h \in G$, find $x$ such that $h=g^{x}$.
- Classical DLP: $G=\mathbf{F}_{p}^{*}$, with $p$ prime.
- Subexponential attacks.

Curve-based security assessment

- ECDLP: Given an elliptic curve $E$ (genus 1 ) over some $\mathbf{F}_{p}$, then $G=E\left(\mathbf{F}_{p}\right)$.
- HECDLP: Given an hyperelliptic curve $C$ of genus $g$ over some $\mathbf{F}_{p}$ and its Jacobian $\operatorname{Jac}(C)$, then $G=\operatorname{Jac}_{F_{p}}(C)$.
- Exponential attacks


## Introduction

Elliptic and Hyperelliptic Curves

- Applications: Public key cryptosystems (e.g. Diffie-Hellman key exchange protocol, ElGamal).
General security assessment:
- DLP: Given a multiplicative group $G=<g>$ of large order $r$ and $h \in G$, find $x$ such that $h=g^{x}$.
- Classical DLP: $G=\mathbf{F}_{p}^{*}$, with $p$ prime.
- Subexponential attacks.

Curve-based security assessment:

- ECDLP: Given an elliptic curve $E$ (genus 1 ) over some $\mathbf{F}_{p}$, then $G=E\left(\mathbf{F}_{p}\right)$.
- HECDLP: Given an hyperelliptic curve $C$ of genus $g$ over some $\mathbf{F}_{p}$ and its Jacobian $\operatorname{Jac}(C)$, then $G=\operatorname{Jac}_{\boldsymbol{F}_{p}}(C)$.
- Exponential attacks


## Genus 1 Curves

- BC:
$\mathbf{F}_{p}$, where $p$ is a prime of recommended size. an elliptic curve $E$ over $\mathbf{F}_{p}$ with given $\# E\left(\mathbf{F}_{p}\right)$.

Is the discrete logarithm problem equally hard on all curves having the same number of points?

- Answer
"Yes", with some probability and constraints for the case of ordinary elliptic curves.

Theorem (Tate)
$E_{1}, E_{2}$ defined over $\mathbf{F}_{p}$ have $\# E_{1}\left(\mathbf{F}_{p}\right)=\# E_{2}\left(\mathbf{F}_{p}\right)$ iff there exists an $\mathrm{F}_{p}$-isogeny $\phi: E_{1} \rightarrow E_{2}$

An isogeny is a morphism of the form $\phi: E_{1} \rightarrow E_{2}$ of some degree
over $\boldsymbol{F}_{p}$ (rational map, regular at any point on $E_{1}$ with


## Genus 1 Curves

- ECC:
$\mathbf{F}_{p}$, where $p$ is a prime of recommended size.
an elliptic curve $E$ over $\mathbf{F}_{p}$ with given $\# E\left(\mathbf{F}_{p}\right)$.
- Question

Is the discrete logarithm problem equally hard on all curves having the same number of points?

- Answer
"Yes", with some probability and constraints for the case of ordinary elliptic curves.


## Theorem (Tate)

$E_{1}, E_{2}$ defined over $\mathbf{F}_{p}$ have $\# E_{1}\left(\mathbf{F}_{p}\right)=\# E_{2}\left(\mathbf{F}_{p}\right)$ iff there exists an $\mathbf{F}_{p}$-isogeny $\phi: E_{1} \rightarrow E_{2}$

## Genus 1 Curves

- ECC:
$F_{p}$, where $p$ is a prime of recommended size.
an elliptic curve $E$ over $\mathbf{F}_{p}$ with given $\# E\left(\mathbf{F}_{p}\right)$.
- Question

Is the discrete logarithm problem equally hard on all curves having the same number of points?

- Answer
"Yes", with some probability and constraints for the case of ordinary elliptic curves.



## Genus 1 Curves

- ECC:
$\boldsymbol{F}_{p}$, where $p$ is a prime of recommended size.
an elliptic curve $E$ over $\mathbf{F}_{p}$ with given $\# E\left(\mathbf{F}_{p}\right)$.
- Question

Is the discrete logarithm problem equally hard on all curves having the same number of points?

- Answer
"Yes", with some probability and constraints for the case of ordinary elliptic curves.

Theorem (Tate)
$E_{1}, E_{2}$ defined over $\mathbf{F}_{p}$ have $\# E_{1}\left(\mathbf{F}_{p}\right)=\# E_{2}\left(\mathbf{F}_{p}\right)$ iff there exists an $\mathbf{F}_{p}$-isogeny $\phi: E_{1} \rightarrow E_{2}$.

An isogeny is a morphism of the form $\phi: E_{1} \rightarrow E_{2}$ of some degree over $\mathbf{F}_{p}$ (rational map, regular at any point on $E_{1}$ ) with $\phi\left(\mathcal{O}_{1}\right)=\mathcal{O}_{2}$.

## Isogeny Graph

- $\# E\left(\mathbf{F}_{p}\right)=1+p-t$ where $t$ is the trace of Frobenius $\pi$
- End $(E)$ - order in $K=\mathbf{Q}\left(\sqrt{-d_{t}}\right)$, with $c_{t}^{2} d_{t}=t^{2}-4 p$.
- $O_{K} \supseteq \operatorname{End}(E) \supseteq \mathbb{Z}[\pi]$



## Isogeny Graph

- $\# E\left(\mathbf{F}_{p}\right)=1+p-t$ where $t$ is the trace of Frobenius $\pi$ - End $(E)$ - order in $K=\mathbf{Q}\left(\sqrt{-d_{t}}\right)$, with $c_{t}^{2} d_{t}=t^{2}-4 p$. - $\mathcal{O}_{K} \supseteq \operatorname{End}(E) \supseteq \mathbf{Z}[\pi]$



## Isogeny Graph

- $\# E\left(\mathbf{F}_{p}\right)=1+p-t$ where $t$ is the trace of Frobenius $\pi$
- $\operatorname{End}(E)$ - order in $K=\mathbf{Q}\left(\sqrt{-d_{t}}\right)$, with $c_{t}^{2} d_{t}=t^{2}-4 p$.
- $\mathcal{O}_{K} \supseteq \operatorname{End}(E) \supseteq \mathbb{Z}[\pi]$



## Isogeny Graph

- $\# E\left(\mathbf{F}_{p}\right)=1+p-t$ where $t$ is the trace of Frobenius $\pi$
- $\operatorname{End}(E)$ - order in $K=\mathbf{Q}\left(\sqrt{-d_{t}}\right)$, with $c_{t}^{2} d_{t}=t^{2}-4 p$.
- $\mathcal{O}_{K} \supseteq \operatorname{End}(E) \supseteq \mathbf{Z}[\pi]$



## Genus 2 Curves

## Why?

Similar cost when doing arithmetic, smaller fields by a factor 2 .

- Jacobians of curves over $F_{p}$ that have the same characteristic polynomial of Frobenius $=$ an $\mathbf{F}_{p}$-isogeny class.
- Jacobians are principally polarised abelian varieties (together with embeddings in $\mathrm{P}^{N}$ ). An isogeny links both the varieties and their polarizations.
- A princinal nolarization is crucial in recovering a curve equation from an abelian variety that is a Jacobian.

Same Question
Is the DL equally hard on isomorphic classes of Jacobians in the same isogeny graph?

## Genus 2 Curves

## Why?

Similar cost when doing arithmetic, smaller fields by a factor 2 .

- Jacobians of curves over $\mathbf{F}_{p}$ that have the same characteristic polynomial of Frobenius $=$ an $\mathbf{F}_{p}$-isogeny class.
- Jacobians are principally polarised abelian varieties (together with embeddings in $\mathbf{P}^{N}$ ). An isogeny links both the varieties and their polarizations.
- A principal polarization is crucial in recovering a curve equation from an abelian variety that is a Jacobian.

Same Question
Is the DL equally hard on isomorphic classes of Jacobians in the
same isogeny graph?

## Genus 2 Curves

Why?
Similar cost when doing arithmetic, smaller fields by a factor 2 .

- Jacobians of curves over $\mathbf{F}_{p}$ that have the same characteristic polynomial of Frobenius $=$ an $\mathbf{F}_{p}$-isogeny class.
- Jacobians are principally polarised abelian varieties (together with embeddings in $\mathbf{P}^{N}$ ). An isogeny links both the varieties and their polarizations.
- A principal polarization is crucial in recovering a curve equation from an abelian variety that is a Jacobian.

Same Question
Is the DL equally hard on isomorphic classes of Jacobians in the
same isogeny graph?

## Genus 2 Curves

## Why?

Similar cost when doing arithmetic, smaller fields by a factor 2 .

- Jacobians of curves over $\mathbf{F}_{p}$ that have the same characteristic polynomial of Frobenius $=$ an $\mathbf{F}_{p}$-isogeny class.
- Jacobians are principally polarised abelian varieties (together with embeddings in $\mathbf{P}^{N}$ ). An isogeny links both the varieties and their polarizations.
- A principal polarization is crucial in recovering a curve equation from an abelian variety that is a Jacobian.

Same Question
Is the DL equally hard on isomorphic classes of Jacobians in the
same isogeny graph?

## Genus 2 Curves

Why?
Similar cost when doing arithmetic, smaller fields by a factor 2 .

- Jacobians of curves over $\mathbf{F}_{p}$ that have the same characteristic polynomial of Frobenius $=$ an $\mathbf{F}_{p}$-isogeny class.
- Jacobians are principally polarised abelian varieties (together with embeddings in $\mathbf{P}^{N}$ ). An isogeny links both the varieties and their polarizations.
- A principal polarization is crucial in recovering a curve equation from an abelian variety that is a Jacobian.

Same Question
Is the DL equally hard on isomorphic classes of Jacobians in the same isogeny graph?

## Isogeny Graphs of Principally Polarized Abelian Surfaces

Computing isogenies from kernel in genus 2 is a lot harder:

- Canonical coordinates
- Polarizations: prime degree isogenies do not preserve principal polarisations.
- Deciding isomorphisms: deciding if two non-polarized abelian surfaces are isomorphic is a computationally hard problem.
- Class field theory: endomorphism rings are orders in quartic number fields.

Main idea: use the theory of theta functions and the CM description of principally polarised abelian varieties

## Isogeny Graphs of Principally Polarized Abelian Surfaces

Computing isogenies from kernel in genus 2 is a lot harder:

- Canonical coordinates
- Polarizations: prime degree isogenies do not preserve principal polarisations.
- Deciding isomorphisms: deciding if two non-polarized abelian surfaces are isomorphic is a computationally hard problem.
- Class field theory: endomorphism rings are orders in quartic number fields.

Main idea: use the theory of theta functions and the CM description of principally polarised abelian varieties

## Isogeny Graphs of Principally Polarized Abelian Surfaces

Computing isogenies from kernel in genus 2 is a lot harder:

- Canonical coordinates
- Polarizations: prime degree isogenies do not preserve principal polarisations.
- Deciding isomorphisms: deciding if two non-polarized abelian surfaces are isomorphic is a computationally hard problem.
- Class field theory: endomornhism rings are orders in cuartic number fields.

Main idea: use the theory of theta functions and the CM description of principally polarised abelian varieties

## Isogeny Graphs of Principally Polarized Abelian Surfaces

Computing isogenies from kernel in genus 2 is a lot harder:

- Canonical coordinates
- Polarizations: prime degree isogenies do not preserve principal polarisations.
- Deciding isomorphisms: deciding if two non-polarized abelian surfaces are isomorphic is a computationally hard problem.
- Class field theory: endomorphism rings are orders in quartic number fields.

Main idea: use the theory of theta functions and the CM description of principally polarised abelian varieties

## Isogeny Graphs of Principally Polarized Abelian Surfaces

Computing isogenies from kernel in genus 2 is a lot harder:

- Canonical coordinates
- Polarizations: prime degree isogenies do not preserve principal polarisations.
- Deciding isomorphisms: deciding if two non-polarized abelian surfaces are isomorphic is a computationally hard problem.
- Class field theory: endomorphism rings are orders in quartic number fields.

Main idea: use the theory of theta functions and the CM description of principally polarised abelian varieties

## Isogeny Graphs of Principally Polarized Abelian Surfaces

Computing isogenies from kernel in genus 2 is a lot harder:

- Canonical coordinates
- Polarizations: prime degree isogenies do not preserve principal polarisations.
- Deciding isomorphisms: deciding if two non-polarized abelian surfaces are isomorphic is a computationally hard problem.
- Class field theory: endomorphism rings are orders in quartic number fields.

Main idea: use the theory of theta functions and the CM description of principally polarised abelian varieties

## Current State of the Art

The work of Cosset et Robert on $(\ell, \ell)$ isogenies:

- The kernel is isomorphic to $\frac{1}{\ell} \mathbf{Z}^{2} / \mathbf{Z}^{2}$
- Similar formulas to Vélu.
- The $(\ell, \ell)$ isogeny is the only isogeny that preserves the principal polarization of the source and target.
- Not all isogenies between isomorphism classes can be expressed with $(\ell, \ell)$-isogenies.
- The graph associated to the isogeny class may not be connected.


## Current State of the Art

The work of Cosset et Robert on $(\ell, \ell)$ isogenies:

- The kernel is isomorphic to $\frac{1}{\ell} \mathbf{Z}^{2} / \mathbf{Z}^{2}$.
- Similar formulas to Vélu.
- The $(\ell, \ell)$ isogeny is the only isogeny that preserves the principal polarization of the source and target.
- Not all isogenies between isomorphism classes can be expressed with $(\ell, \ell)$-isogenies.
- The graph associated to the isogeny class may not be connected.


## Current State of the Art

The work of Cosset et Robert on $(\ell, \ell)$ isogenies:

- The kernel is isomorphic to $\frac{1}{\ell} \mathbf{Z}^{2} / \mathbf{Z}^{2}$.
- Similar formulas to Vélu.
- The $(\ell, \ell)$ isogeny is the only isogeny that preserves the principal polarization of the source and target.
- Not all isogenies between isomornhism classes can be expressed with $(\ell, \ell)$-isogenies.
- The graph associated to the isogeny class may not be connected.


## Current State of the Art

The work of Cosset et Robert on $(\ell, \ell)$ isogenies:

- The kernel is isomorphic to $\frac{1}{\ell} \mathbf{Z}^{2} / \mathbf{Z}^{2}$.
- Similar formulas to Vélu.
- The $(\ell, \ell)$ isogeny is the only isogeny that preserves the principal polarization of the source and target.
- Not all isogenies between isomorphism classes can be expressed with $(\ell, \ell)$-isogenies.
- The graph associated to the isogeny class may not be connected.


## Current State of the Art

The work of Cosset et Robert on $(\ell, \ell)$ isogenies:

- The kernel is isomorphic to $\frac{1}{\ell} \mathbf{Z}^{2} / \mathbf{Z}^{2}$.
- Similar formulas to Vélu.
- The $(\ell, \ell)$ isogeny is the only isogeny that preserves the principal polarization of the source and target.
- Not all isogenies between isomorphism classes can be expressed with $(\ell, \ell)$-isogenies.
- The graph associated to the isogeny class may not be connected.


## Current State of the Art

The work of Cosset et Robert on $(\ell, \ell)$ isogenies:

- The kernel is isomorphic to $\frac{1}{\ell} \mathbf{Z}^{2} / \mathbf{Z}^{2}$.
- Similar formulas to Vélu.
- The $(\ell, \ell)$ isogeny is the only isogeny that preserves the principal polarization of the source and target.
- Not all isogenies between isomorphism classes can be expressed with $(\ell, \ell)$-isogenies.
- The graph associated to the isogeny class may not be connected.


## Algorithm of Computing Cyclic Isogenies

## Input:

- a prime $p$ and a prime $\ell$
- $C$ a hyperlliptic curve of genus 2 defined over $F_{p}$ given in Rosenhain form:

$$
y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)
$$

s. t. $\operatorname{End}_{\overline{\mathbf{F}}_{p}}(\operatorname{Jac}(C)) \simeq \mathcal{O}$ with $\mathcal{O}$ order in $K:=\mathbf{Q}(\pi)$.

The quadratic field $K_{0}=\mathbf{Q}(\sqrt{D}) \subset K$ and $\mathcal{O}_{0}:=\mathcal{O} \cap K_{0}$.

- a totally positive element $\beta \in \mathcal{O}_{0}$ of norm prime $\ell$
- a generator $P$ in Mumford coordinates of the isogeny kernel $G$ s.t. $\beta \cdot P=O$.

Output: $C^{\prime}$ - a hyperelliptic curve defined over $F_{p}$ s.t. $\operatorname{Jac}\left(C^{\prime}\right) \simeq_{F_{p}} B$, with $B$ the target of an $\ell$-isogeny of kernel $G$.

## Algorithm of Computing Cyclic Isogenies

## Input:

- a prime $p$ and a prime $\ell$
- C a hyperlliptic curve of genus 2 defined over $F_{p}$ given in Rosenhain form:

$$
y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)
$$

s. t. $\operatorname{End}_{\bar{F}_{p}}(\operatorname{Jac}(C)) \simeq \mathcal{O}$ with $\mathcal{O}$ order in $K:=\mathbf{Q}(\pi)$.

The quadratic field $K_{0}=\mathbf{Q}(\sqrt{D}) \subset K$ and $\mathcal{O}_{0}:=\mathcal{O} \cap K_{0}$

- a totally positive element $\beta \in \mathcal{O}_{0}$ of norm prime $\ell$
- a generator $P$ in Mumford coordinates of the isogeny kernel $G$ s.t. $\beta \cdot P=O$.

Output: $C^{\prime}$ - a hyperelliptic curve defined over $F_{p}$ s.t.
$\operatorname{Jac}\left(C^{\prime}\right) \simeq_{F_{p}} B$, with $B$ the target of an $\ell$-isogeny of kernel $G$.

## Algorithm of Computing Cyclic Isogenies

## Input:

- a prime $p$ and a prime $\ell$
- $C$ a hyperlliptic curve of genus 2 defined over $\mathbf{F}_{p}$ given in Rosenhain form:

$$
y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)
$$

s. t. $\operatorname{End}_{\overline{\mathbf{F}}_{p}}(\operatorname{Jac}(C)) \simeq \mathcal{O}$ with $\mathcal{O}$ order in $K:=\mathbf{Q}(\pi)$.

The quadratic field $K_{0}=\mathbf{Q}(\sqrt{D}) \subset K$ and $\mathcal{O}_{0}:=\mathcal{O} \cap K_{0}$.

Output: $C^{\prime}$ - a hyperelliptic curve defined over $F_{p}$ s.t.
$\operatorname{Jac}\left(C^{\prime}\right) \simeq_{\mathbf{F}_{p}} B$, with $B$ the target of an $\ell$-isogeny of kernel $G$

## Algorithm of Computing Cyclic Isogenies

## Input:

- a prime $p$ and a prime $\ell$
- $C$ a hyperlliptic curve of genus 2 defined over $\mathbf{F}_{p}$ given in Rosenhain form:

$$
y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)
$$

s. t. $\operatorname{End}_{\overline{\mathbf{F}}_{p}}(\operatorname{Jac}(C)) \simeq \mathcal{O}$ with $\mathcal{O}$ order in $K:=\mathbf{Q}(\pi)$.

The quadratic field $K_{0}=\mathbf{Q}(\sqrt{D}) \subset K$ and $\mathcal{O}_{0}:=\mathcal{O} \cap K_{0}$.

- a totally positive element $\beta \in \mathcal{O}_{0}$ of norm prime $\ell$

Output: $C^{\prime}$ - a hyperelliptic curve defined over $F_{p}$ s.t. $\operatorname{Jac}\left(C^{\prime}\right) \simeq_{\mathbf{F}_{p}} B$, with $B$ the target of an $\ell$-isogeny of kernel $G$

## Algorithm of Computing Cyclic Isogenies

## Input:

- a prime $p$ and a prime $\ell$
- C a hyperlliptic curve of genus 2 defined over $\mathbf{F}_{p}$ given in Rosenhain form:

$$
y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)
$$

s. t. $\operatorname{End}_{\overline{\mathbf{F}}_{p}}(\operatorname{Jac}(C)) \simeq \mathcal{O}$ with $\mathcal{O}$ order in $K:=\mathbf{Q}(\pi)$.

The quadratic field $K_{0}=\mathbf{Q}(\sqrt{D}) \subset K$ and $\mathcal{O}_{0}:=\mathcal{O} \cap K_{0}$.

- a totally positive element $\beta \in \mathcal{O}_{0}$ of norm prime $\ell$
- a generator $P$ in Mumford coordinates of the isogeny kernel $G$ s.t. $\beta \cdot P=O$.

Output: $C^{\prime}$ - a hyperelliptic curve defined over $F_{p}$ s.t.
$\operatorname{Jac}\left(C^{\prime}\right) \simeq_{F_{p}} B$, with $B$ the target of an $\ell$-isogeny of kernel $G$.

## Algorithm of Computing Cyclic Isogenies

## Input:

- a prime $p$ and a prime $\ell$
- $C$ a hyperlliptic curve of genus 2 defined over $\boldsymbol{F}_{p}$ given in Rosenhain form:

$$
y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)
$$

s. t. $\operatorname{End}_{\overline{\mathbf{F}}_{p}}(\operatorname{Jac}(C)) \simeq \mathcal{O}$ with $\mathcal{O}$ order in $K:=\mathbf{Q}(\pi)$.

The quadratic field $K_{0}=\mathbf{Q}(\sqrt{D}) \subset K$ and $\mathcal{O}_{0}:=\mathcal{O} \cap K_{0}$.

- a totally positive element $\beta \in \mathcal{O}_{0}$ of norm prime $\ell$
- a generator $P$ in Mumford coordinates of the isogeny kernel $G$ s.t. $\beta \cdot P=O$.

Output: $C^{\prime}$ - a hyperelliptic curve defined over $F_{p}$ s.t. $\operatorname{Jac}\left(C^{\prime}\right) \simeq_{\mathbf{F}_{p}} B$, with $B$ the target of an $\ell$-isogeny of kernel $G$.

## Diagram

Let $f: A \rightarrow B$. Let $\beta: A \rightarrow A$ s.t. $\operatorname{ker}(f) \subset \operatorname{ker}(\beta)$ maximal isotropic.


## Algorithm Steps

1. Compute a theta null point of $A$ of level $(2,2)$.
2. Compute a totally positive element $\beta \in \mathcal{O}_{K_{0}}$ of norm $\ell$ that corresponds to the endomorphism on $A$ whose kernel contains G.
3. Compute a theta null point of $B$ of level $(2,2)$ by applying the isogeny theorem together with Koizumi's formulae
4. Deduce an equation of a rational smooth genus 2 curve $C^{\prime}$ whose $\operatorname{Jac}\left(C^{\prime}\right) \simeq_{F_{p}} B$.

## Algorithm Steps

1. Compute a theta null point of $A$ of level $(2,2)$.
2. Compute a totally positive element $\beta \in \mathcal{O}_{K_{0}}$ of norm $\ell$ that corresponds to the endomorphism on $A$ whose kernel contains G.
3. Compute a theta null point of $B$ of level $(2,2)$ by applying the isogeny theorem together with Koizumi's formulae
4. Deduce an equation of a rational smooth genus 2 curve $C^{\prime}$ whose $\operatorname{Jac}\left(C^{\prime}\right) \simeq_{F_{p}} B$.

## Algorithm Steps

1. Compute a theta null point of $A$ of level $(2,2)$.
2. Compute a totally positive element $\beta \in \mathcal{O}_{K_{0}}$ of norm $\ell$ that corresponds to the endomorphism on $A$ whose kernel contains G.
3. Compute a theta null point of $B$ of level $(2,2)$ by applying the isogeny theorem together with Koizumi's formulae
4. Deduce an equation of a rational smooth genus 2 curve $C^{\prime}$ whose $\operatorname{Jac}\left(C^{\prime}\right) \simeq_{F_{p}} B$.

## Algorithm Steps

1. Compute a theta null point of $A$ of level $(2,2)$.
2. Compute a totally positive element $\beta \in \mathcal{O}_{K_{0}}$ of norm $\ell$ that corresponds to the endomorphism on $A$ whose kernel contains G .
3. Compute a theta null point of $B$ of level $(2,2)$ by applying the isogeny theorem together with Koizumi's formulae
4. Deduce an equation of a rational smooth genus 2 curve $C^{\prime}$ whose $\operatorname{Jac}\left(C^{\prime}\right) \simeq_{F_{p}} B$.

## Algorithm Steps

1. Compute a theta null point of $A$ of level $(2,2)$.
2. Compute a totally positive element $\beta \in \mathcal{O}_{K_{0}}$ of norm $\ell$ that corresponds to the endomorphism on $A$ whose kernel contains G .
3. Compute a theta null point of $B$ of level $(2,2)$ by applying the isogeny theorem together with Koizumi's formulae
4. Deduce an equation of a rational smooth genus 2 curve $C^{\prime}$ whose $\operatorname{Jac}\left(C^{\prime}\right) \simeq_{\mathbf{F}_{p}} B$.

Computing the theta null point of $A$

- We work over C.
- Let $A:=\operatorname{Jac}(C)$ and let $\mathcal{L}_{0}$ be a pp on $A$.
- $\exists \wedge \subset C^{2}$ lattice rank 4 s.t. $A \simeq T:=C^{2} / \wedge$.
- $\exists \mathcal{L}_{0} \Rightarrow \exists \Omega \in \mathcal{M}_{2}(C), \Omega=\Omega^{T}$ and $\mathcal{I}(\Omega)>0$ s.t. $\Lambda=$ $\Omega \mathbf{Z}^{2}+\mathbf{Z}^{2}$.
- The Riemann theta function associated to $\Omega$ is $\Theta: \mathbf{C}^{2} \rightarrow \mathbf{C}$ where

$$
\Theta(z, \Omega):=\sum_{x \in \mathbf{Z}^{2}} e^{\pi i x^{\top} \Omega x+2 \pi i x^{\top} z}
$$

Computing the theta null point of $A$

- We work over C.
- Let $A:=\operatorname{Jac}(C)$ and let $\mathcal{L}_{0}$ be a pp on $A$.
- $\exists \wedge \subset \mathbf{C}^{2}$ lattice rank 4 s.t. $A \simeq T:=\mathbf{C}^{2} / \wedge$.
- $\exists \mathcal{L}_{0} \Rightarrow \exists \Omega \in \mathcal{M}_{2}(C), \Omega=\Omega^{T}$ and $\mathcal{I}(\Omega)>0$ s.t. $\wedge=$ $\Omega Z^{2}+Z^{2}$.
- The Riemann theta function associated to $\Omega$ is $\Theta: \mathbf{C}^{2} \rightarrow \mathbf{C}$ where

$$
\Theta(z, \Omega):=\sum_{x \in Z^{2}} e^{\pi i x^{\top} \Omega x+2 \pi i x^{\top} z}
$$

Computing the theta null point of $A$

- We work over C.
- Let $A:=\operatorname{Jac}(C)$ and let $\mathcal{L}_{0}$ be a pp on $A$.
- $\exists \wedge \subset C^{2}$ lattice rank 4 s.t. $A \simeq T:=C^{2} / \wedge$.
- $\exists \mathcal{L}_{0} \Rightarrow \exists \Omega \in \mathcal{M}_{2}(C), \Omega=\Omega^{T}$ and $\mathcal{I}(\Omega)>0$ s.t. $\Lambda=$ $\Omega Z^{2}+\mathbf{Z}^{2}$.
- The Riemann theta function associated to $\Omega$ is $\Theta: \mathbf{C}^{2} \rightarrow \mathrm{C}$ where

$$
\Theta(z, \Omega):=\sum_{x \in \mathbf{Z}^{2}} e^{\pi i x^{\top} \Omega x+2 \pi i x^{\top} z} .
$$

Computing the theta null point of $A$

- We work over C.
- Let $A:=\operatorname{Jac}(C)$ and let $\mathcal{L}_{0}$ be a pp on $A$.
- $\exists \Lambda \subset \mathbf{C}^{2}$ lattice rank 4 s.t. $A \simeq T:=\mathbf{C}^{2} / \Lambda$.
$\Omega Z^{2}+Z^{2}$.
- The Riemann theta function associated to $\Omega$ is $\theta: \mathrm{C}^{2} \rightarrow \mathrm{C}$ where



## Computing the theta null point of $A$

- We work over C.
- Let $A:=\operatorname{Jac}(C)$ and let $\mathcal{L}_{0}$ be a pp on $A$.
- $\exists \Lambda \subset \mathbf{C}^{2}$ lattice rank 4 s.t. $A \simeq T:=\mathbf{C}^{2} / \Lambda$.
- $\exists \mathcal{L}_{0} \Rightarrow \exists \Omega \in \mathcal{M}_{2}(C), \Omega=\Omega^{T}$ and $\mathcal{I}(\Omega)>0$ s.t. $\Lambda=$ $\Omega \mathbf{Z}^{2}+\mathbf{Z}^{2}$.
- The Riemann theta function associated to $\Omega$ is $\Theta: \mathrm{C}^{2} \rightarrow \mathbf{C}$ where


## Computing the theta null point of $A$

- We work over C.
- Let $A:=\operatorname{Jac}(C)$ and let $\mathcal{L}_{0}$ be a pp on $A$.
- $\exists \Lambda \subset \mathbf{C}^{2}$ lattice rank 4 s.t. $A \simeq T:=\mathbf{C}^{2} / \Lambda$.
- $\exists \mathcal{L}_{0} \Rightarrow \exists \Omega \in \mathcal{M}_{2}(C), \Omega=\Omega^{T}$ and $\mathcal{I}(\Omega)>0$ s.t. $\Lambda=$ $\Omega \mathbf{Z}^{2}+\mathbf{Z}^{2}$.
- The Riemann theta function associated to $\Omega$ is $\Theta: \mathbf{C}^{2} \rightarrow \mathbf{C}$ where

$$
\Theta(z, \Omega):=\sum_{x \in \mathbf{Z}^{2}} e^{\pi i x^{\top} \Omega x+2 \pi i x^{\top} z}
$$

Computing the theta null point of $A$

- For $n \in \mathbf{Z}_{>0}$ and $i \in \mathbf{Z}(n):=\frac{1}{n} \mathbf{Z}^{2} / \mathbf{Z}^{2}$, let

$$
\theta_{i}(z):=\Theta\left(z+i, \frac{\Omega}{n}\right) .
$$

- The space generated by $\left(\theta_{i}(z)\right)_{i \in \frac{1}{n} \mathbf{Z}^{2} / Z^{2}}$ is the space of theta functions of level $n$.
- If $n=k^{2}$, there exists another basis given by theta functions of level $(k, k)$, with indexes $a, b \in \mathbf{Z}(k)$.

When $n \geq 3$ :

- $z \in T \longrightarrow\left(\theta_{i}(z)\right)_{i \in Z(n)} \in \mathbb{P}^{n^{2}-1}(C)$ is an embedding.
- $\left(\theta_{i}(0)\right)_{i \in \mathbf{Z}(n)}$ identifies the abelian variety uniquely in $\mathbb{P}^{n^{2}-1}(\mathrm{C})$.

Computing the theta null point of $A$

- For $n \in \mathbf{Z}_{>0}$ and $i \in \mathbf{Z}(n):=\frac{1}{n} \mathbf{Z}^{2} / \mathbf{Z}^{2}$, let $\theta_{i}(z):=\Theta\left(z+i, \frac{\Omega}{n}\right)$.
- The space generated by $\left(\theta_{i}(z)\right)_{i \in \frac{1}{n} \mathbf{Z}^{2} / Z^{2}}$ is the space of theta functions of level $n$.
- If $n=k^{2}$, there exists another basis given by theta functions of level $(k, k)$, with indexes $a, b \in \mathbf{Z}(k)$.

When $n \geq 3$ :

- $z \in T \longrightarrow\left(\theta_{i}(z)\right)_{i \in Z(n)} \in \mathbb{P}^{n^{2}-1}(C)$ is an embedding.
- $\left(\theta_{i}(0)\right)_{i \in \mathbf{Z}(n)}$ identifies the abelian variety uniquely in $\mathbb{P}^{n^{2}-1}(\mathrm{C})$.


## Computing the theta null point of $A$

- For $n \in \mathbf{Z}_{>0}$ and $i \in \mathbf{Z}(n):=\frac{1}{n} \mathbf{Z}^{2} / \mathbf{Z}^{2}$, let $\theta_{i}(z):=\Theta\left(z+i, \frac{\Omega}{n}\right)$.
- The space generated by $\left(\theta_{i}(z)\right)_{i \in \frac{1}{n} \mathbf{Z}^{2} / \mathbf{Z}^{2}}$ is the space of theta functions of level $n$.
- If $n=k^{2}$, there exists another basis given by theta functions of level $(k, k)$, with indexes $a, b \in \mathbf{Z}(k)$.
- $z \in T \longrightarrow\left(\theta_{i}(z)\right)_{i \in Z(n)} \in \mathbb{P}^{n^{2}-1}(\mathbf{C})$ is an embedding.
- $\left(\theta_{i}(0)\right)_{i \in \mathbf{Z}(n)}$ identifies the abelian variety uniquely in $\mathbb{P}^{n^{2}-1}(\mathbf{C})$.


## Computing the theta null point of $A$

- For $n \in \mathbf{Z}_{>0}$ and $i \in \mathbf{Z}(n):=\frac{1}{n} \mathbf{Z}^{2} / \mathbf{Z}^{2}$, let $\theta_{i}(z):=\Theta\left(z+i, \frac{\Omega}{n}\right)$.
- The space generated by $\left(\theta_{i}(z)\right)_{i \in \frac{1}{n} \mathbf{Z}^{2} / \mathbf{Z}^{2}}$ is the space of theta functions of level $n$.
- If $n=k^{2}$, there exists another basis given by theta functions of level $(k, k)$, with indexes $a, b \in \mathbf{Z}(k)$.
- $z \in T \longrightarrow\left(\theta_{i}(z)\right)_{i \in \mathbf{Z}(n)} \in \mathbb{P}^{n^{2}-1}(\mathbf{C})$ is an embedding.
- $\left(\theta_{i}(0)\right)_{i \in \mathbf{Z}(n)}$ identifies the abelian variety uniquely in $\mathbb{P}^{n^{2}-1}(\mathrm{C})$


## Computing the theta null point of $A$

- For $n \in \mathbf{Z}_{>0}$ and $i \in \mathbf{Z}(n):=\frac{1}{n} \mathbf{Z}^{2} / \mathbf{Z}^{2}$, let $\theta_{i}(z):=\Theta\left(z+i, \frac{\Omega}{n}\right)$.
- The space generated by $\left(\theta_{i}(z)\right)_{i \in \frac{1}{n} \mathbf{Z}^{2} / \mathbf{Z}^{2}}$ is the space of theta functions of level $n$.
- If $n=k^{2}$, there exists another basis given by theta functions of level $(k, k)$, with indexes $a, b \in \mathbf{Z}(k)$.

When $n \geq 3$ :

- $z \in T \longrightarrow\left(\theta_{i}(z)\right)_{i \in \mathbf{Z}(n)} \in \mathbb{P}^{n^{2}-1}(\mathbf{C})$ is an embedding.
- $\left(\theta_{i}(0)\right)_{i \in \mathbf{Z}(n)}$ identifies the abelian variety uniquely in $\mathbb{P}^{n^{2}-1}(\mathbf{C})$


## Computing the theta null point of $A$

- For $n \in \mathbf{Z}_{>0}$ and $i \in \mathbf{Z}(n):=\frac{1}{n} \mathbf{Z}^{2} / \mathbf{Z}^{2}$, let $\theta_{i}(z):=\Theta\left(z+i, \frac{\Omega}{n}\right)$.
- The space generated by $\left(\theta_{i}(z)\right)_{i \in \frac{1}{n} \mathbf{Z}^{2} / \mathbf{Z}^{2}}$ is the space of theta functions of level $n$.
- If $n=k^{2}$, there exists another basis given by theta functions of level $(k, k)$, with indexes $a, b \in \mathbf{Z}(k)$.

When $n \geq 3$ :

- $z \in T \longrightarrow\left(\theta_{i}(z)\right)_{i \in \mathbf{Z}(n)} \in \mathbb{P}^{n^{2}-1}(\mathbf{C})$ is an embedding.
- $\left(\theta_{i}(0)\right)_{i \in \mathbf{Z}(n)}$ identifies the abelian variety uniquely in $\mathbb{P}^{n^{2}-1}(\mathrm{C})$.

Computing the theta null point of $A$

- Over $\boldsymbol{F}_{p, \text { given }}\{0,1, \lambda, \mu, \nu\}$, we deduce the theta null point of level $(2,2)$ (over some extension of $\boldsymbol{F}_{p}$ ) via Thomae's formulae.
- For any $x \in A$, the algebraic theta coordinates are deduced from Mumford coordinates.
- ( $\ell, \ell)$ isogenies:

$(2,2)$
$(2 \ell, 2 \ell)$
$(2,2)$.
- $\ell$ cyclic isogenies:


$$
(2,2) \quad(2 \ell, 2) \quad(2,2)
$$

## Computing the theta null point of $A$

- Over $\mathbf{F}_{p}$, given $\{0,1, \lambda, \mu, \nu\}$, we deduce the theta null point of level $(2,2)$ (over some extension of $\mathbf{F}_{p}$ ) via Thomae's formulae.
- For any $x \in A$, the algebraic theta coordinates are deduced from Mumford coordinates.
- ( $\ell, \ell)$ isogenies:

- $\ell$ cyclic isogenies:

$$
(2,2) \quad(2 \ell, 2) \quad(2,2) .
$$

## Computing the theta null point of $A$

- Over $\mathbf{F}_{p}$, given $\{0,1, \lambda, \mu, \nu\}$, we deduce the theta null point of level $(2,2)$ (over some extension of $\mathbf{F}_{p}$ ) via Thomae's formulae.
- For any $x \in A$, the algebraic theta coordinates are deduced from Mumford coordinates.
- $(\ell, \ell)$ isogenies:

- $\ell$ cyclic isogenies:



## Computing the theta null point of $A$

- Over $\mathbf{F}_{p}$, given $\{0,1, \lambda, \mu, \nu\}$, we deduce the theta null point of level $(2,2)$ (over some extension of $\mathbf{F}_{p}$ ) via Thomae's formulae.
- For any $x \in A$, the algebraic theta coordinates are deduced from Mumford coordinates.
- $(\ell, \ell)$ isogenies: $\quad A \longleftarrow{ }^{[\ell]} B \xrightarrow{f} B$
$(2,2)$
$(2 \ell, 2 \ell)$
$(2,2)$.
- $\ell$ cyclic isogenies:



## Computing the theta null point of $A$

- Over $\mathbf{F}_{p}$, given $\{0,1, \lambda, \mu, \nu\}$, we deduce the theta null point of level $(2,2)$ (over some extension of $\mathbf{F}_{p}$ ) via Thomae's formulae.
- For any $x \in A$, the algebraic theta coordinates are deduced from Mumford coordinates.
- $(\ell, \ell)$ isogenies: $\quad A \stackrel{[\ell]}{\longleftarrow} A \xrightarrow{f} B$

$$
(2,2) \quad(2 \ell, 2 \ell) \quad(2,2) .
$$

- $\ell$ cyclic isogenies:

$(2,2)$
$(2 \ell, 2)$
$(2,2)$.

Computing a theta null point of the target $B$

- Compute the action of $\beta$ on $A$ by applying a Koizumi type formulas with $F \in G L_{r}\left(K_{0}\right)$ s. t. $F^{T} F=\beta I d$.
- Compute the action of $F$ on $A$ and on the sets of indexes of theta functions.
- Compute the theta null point of $B$ from the theta point of level $(2 \ell, 2)$.

For $x=0$, we consider any index $i$ and $\left(j_{1}, j_{2}\right)$ the preimage of $(i, 0)$ by $F$

$$
\begin{equation*}
\theta_{i}^{B}(f(x)) \theta_{0}^{B}(0)=\lambda_{a x} \lambda_{b x} \sum_{t \in G} \theta_{j_{1}}^{A}(a x+a t) \theta_{j_{2}}^{A}(b x+b t) \tag{2}
\end{equation*}
$$

## Computing a theta null point of the target $B$

- Compute the action of $\beta$ on $A$ by applying a Koizumi type formulas with $F \in \mathrm{GL}_{r}\left(K_{0}\right)$ s. t. $F^{T} F=\beta l d$.
- Compute the action of $F$ on $A$ and on the sets of indexes of theta functions.
- Compute the theta null point of $B$ from the theta point of level (2l, 2).

For $x=0$, we consider any index $i$ and $\left(j_{1}, j_{2}\right)$ the preimage of
$(i, 0)$ by $F$

$$
\begin{equation*}
\theta_{i}^{B}(f(x)) \theta_{0}^{B}(0)=\lambda_{a x} \lambda_{b x} \sum_{t \in G} \theta_{j_{1}}^{A}(a x+a t) \theta_{j_{2}}^{A}(b x+b t), \tag{2}
\end{equation*}
$$

## Computing a theta null point of the target $B$

- Compute the action of $\beta$ on $A$ by applying a Koizumi type formulas with $F \in \mathrm{GL}_{r}\left(K_{0}\right)$ s. t. $F^{T} F=\beta l d$.
- Compute the action of $F$ on $A$ and on the sets of indexes of theta functions.
- Compute the theta null point of $B$ from the theta point of level $(2 \ell, 2)$

For $x=0$, we consider any index $i$ and $\left(j_{1}, j_{2}\right)$ the preimage of $(i, 0)$ by $F$

$$
\theta_{i}^{B}(f(x)) \theta_{0}^{B}(0)=\lambda_{a x} \lambda_{b x} \sum_{t \in G} \theta_{j_{1}}^{A}(a x+a t) \theta_{j_{2}}^{A}(b x+b t),
$$



## Computing a theta null point of the target $B$

- Compute the action of $\beta$ on $A$ by applying a Koizumi type formulas with $F \in \mathrm{GL}_{r}\left(K_{0}\right)$ s. t. $F^{T} F=\beta l d$.
- Compute the action of $F$ on $A$ and on the sets of indexes of theta functions.
- Compute the theta null point of $B$ from the theta point of level (2 $\ell, 2$ ).

For $x=0$, we consider any index $i$ and $\left(j_{1}, j_{2}\right)$ the preimage of $\theta_{i}^{B}(f(x)) \theta_{0}^{B}(0)=\lambda_{a x} \lambda_{b x} \sum_{t \in G} \theta_{j_{1}}^{A}(a x+a t) \theta_{j 2}^{A}(b x+b t)$,

## Computing a theta null point of the target $B$

- Compute the action of $\beta$ on $A$ by applying a Koizumi type formulas with $F \in \mathrm{GL}_{r}\left(K_{0}\right)$ s. t. $F^{T} F=\beta l d$.
- Compute the action of $F$ on $A$ and on the sets of indexes of theta functions.
- Compute the theta null point of $B$ from the theta point of level $(2 \ell, 2)$.

For $x=0$, we consider any index $i$ and $\left(j_{1}, j_{2}\right)$ the preimage of $(i, 0)$ by $F$

$$
\begin{equation*}
\theta_{i}^{B}(f(x)) \theta_{0}^{B}(0)=\lambda_{a x} \lambda_{b x} \sum_{t \in G} \theta_{j_{1}}^{A}(a x+a t) \theta_{j_{2}}^{A}(b x+b t), \tag{2}
\end{equation*}
$$

Computing the image of $x$ on the target $B$

- Equation (2) depends on $x$, hence we cannot work with projective points.
- There is no canonical way of defining affine theta coordinates over $\boldsymbol{F}_{p}$.
- We need to choose the affine lifts in a compatible way, i.e., each product on the right hand side should have the same $\lambda$.
- The affine lifts should not depend on $t$.


## Computing the image of $x$ on the target $B$

- Equation (2) depends on $x$, hence we cannot work with projective points.
- There is no canonical way of defining affine theta coordinates over $\mathbf{F}_{p}$.
- We need to choose the affine lifts in a compatible way, i.e., each product on the right hand side should have the same $\lambda$.
- The affine lifts should not depend on $t$


## Computing the image of $x$ on the target $B$

- Equation (2) depends on $x$, hence we cannot work with projective points.
- There is no canonical way of defining affine theta coordinates over $\mathbf{F}_{p}$.
- We need to choose the affine lifts in a compatible way, i.e., each product on the right hand side should have the same $\lambda$.
- The affine lifts should not depend on $t$.


## Computing the image of $x$ on the target $B$

- Equation (2) depends on $x$, hence we cannot work with projective points.
- There is no canonical way of defining affine theta coordinates over $\mathbf{F}_{p}$.
- We need to choose the affine lifts in a compatible way, i.e., each product on the right hand side should have the same $\lambda$.
- The affine lifts should not depend on $t$.


## Computing the image of $x$ on the target $B$

- Equation (2) depends on $x$, hence we cannot work with projective points.
- There is no canonical way of defining affine theta coordinates over $\mathbf{F}_{p}$.
- We need to choose the affine lifts in a compatible way, i.e., each product on the right hand side should have the same $\lambda$.
- The affine lifts should not depend on $t$.

Computing the image of $x$ via $f$ on the target $B$

- $a, b \in K_{0}$ can be expressed in terms of Frobenius $\pi$ over $\mathbf{F}_{p^{k}}$, for $k$ the extension degree s.t. the theta null point is over $\mathbf{F}_{p^{k}}$.
- Fix embeddings End ${ }_{Q} \rightarrow K \rightarrow C$.
- $\sqrt{D}$ can be written as a degree 3 polynomial in complex root $\pi$ of

$$
X^{4}-s_{1} X^{3}+\left(s_{2}+2 q\right) X^{2}-q s_{1} X+q^{2}
$$

where $q=p^{k}$, for some $k, s_{1}^{2}-4 s_{2}>0, s_{2}+4 q>2\left|s_{1}\right| \sqrt{q}$, $\left|s_{1}\right| \leq 4 \sqrt{q}$ and $\left|s_{2}\right| \leq 4 q$.

- When computing the action of $F$ on $\ell$ torsion points, computations modulo $\ell \Rightarrow$ the matrix elements are polynomials in $\mathbf{Z} / \ell \mathbf{Z}[X]$.
- When computing the action of $F$ on 4 torsion points, the matrix has elements modulo 4.


## Computing the image of $x$ via $f$ on the target $B$

- $a, b \in K_{0}$ can be expressed in terms of Frobenius $\pi$ over $\boldsymbol{F}_{p^{k}}$, for $k$ the extension degree s.t. the theta null point is over $\mathbf{F}_{p^{k}}$.
- Fix embeddings End $Q_{\mathrm{Q}} \rightarrow \mathrm{K} \rightarrow \mathrm{C}$.
- $\sqrt{D}$ can be written as a degree 3 polynomial in complex root $\pi$ of

where $q=p^{k}$, for some $k, s_{1}^{2}-4 s_{2}>0, s_{2}+4 q>2\left|s_{1}\right| \sqrt{q}$, $\left|s_{1}\right| \leq 4 \sqrt{q}$ and $\left|s_{2}\right| \leq 4 q$.
- When computing the action of $F$ on $\ell$ torsion points, computations modulo $\ell \Rightarrow$ the matrix elements are polynomials in $\mathbf{Z} / \ell \mathbf{Z}[X]$.
- When computing the action of F on 4 torsion points, the matrix has elements modulo 4.


## Computing the image of $x$ via $f$ on the target $B$

- $a, b \in K_{0}$ can be expressed in terms of Frobenius $\pi$ over $\mathbf{F}_{p^{k}}$, for $k$ the extension degree s.t. the theta null point is over $\mathbf{F}_{p^{k}}$.
- Fix embeddings End $_{\mathbf{Q}} \rightarrow K \rightarrow \mathbf{C}$.
- $\sqrt{D}$ can be written as a degree 3 polynomial in complex root

where $q=p^{k}$, for some $k, s_{1}^{2}-4 s_{2}>0, s_{2}+4 q>2\left|s_{1}\right| \sqrt{q}$, $\left|s_{1}\right| \leq 4 \sqrt{q}$ and $\left|s_{2}\right| \leq 4 q$.
- When computing the action of $F$ on $\ell$ torsion points, computations modulo $\ell \Rightarrow$ the matrix elements are polynomials in $\mathbf{Z} / \ell \mathbf{Z}[X]$
- When computing the action of F on 4 torsion points, the matrix has elements modulo 4.


## Computing the image of $x$ via $f$ on the target $B$

- $a, b \in K_{0}$ can be expressed in terms of Frobenius $\pi$ over $\mathbf{F}_{p^{k}}$, for $k$ the extension degree s.t. the theta null point is over $\mathbf{F}_{p^{k}}$.
- Fix embeddings End $_{\mathbf{Q}} \rightarrow K \rightarrow \mathbf{C}$.
- $\sqrt{D}$ can be written as a degree 3 polynomial in complex root $\pi$ of

$$
X^{4}-s_{1} X^{3}+\left(s_{2}+2 q\right) X^{2}-q s_{1} X+q^{2}
$$

where $q=p^{k}$, for some $k, s_{1}^{2}-4 s_{2}>0, s_{2}+4 q>2\left|s_{1}\right| \sqrt{q}$, $\left|s_{1}\right| \leq 4 \sqrt{q}$ and $\left|s_{2}\right| \leq 4 q$.

- When computing the action of $F$ on $\ell$ torsion points, computations modulo $\ell \Rightarrow$ the matrix elements are polynomials in $\mathbf{Z} / \ell \mathbf{Z}[X]$.
- When computing the action of F on 4 torsion points, the matrix has elements modulo 4


## Computing the image of $x$ via $f$ on the target $B$

- $a, b \in K_{0}$ can be expressed in terms of Frobenius $\pi$ over $\mathbf{F}_{p^{k}}$, for $k$ the extension degree s.t. the theta null point is over $\mathbf{F}_{p^{k}}$.
- Fix embeddings End $\mathbf{Q}_{\mathbf{Q}} \rightarrow K \rightarrow \mathbf{C}$.
- $\sqrt{D}$ can be written as a degree 3 polynomial in complex root $\pi$ of

$$
X^{4}-s_{1} X^{3}+\left(s_{2}+2 q\right) X^{2}-q s_{1} X+q^{2}
$$

where $q=p^{k}$, for some $k, s_{1}^{2}-4 s_{2}>0, s_{2}+4 q>2\left|s_{1}\right| \sqrt{q}$, $\left|s_{1}\right| \leq 4 \sqrt{q}$ and $\left|s_{2}\right| \leq 4 q$.

- When computing the action of F on $\ell$ torsion points, computations modulo $\ell \Rightarrow$ the matrix elements are polynomials in $\mathbf{Z} / \ell \mathbf{Z}[X]$.
- When computing the action of F on 4 torsion points, the matrix has elements modulo 4


## Computing the image of $x$ via $f$ on the target $B$

- $a, b \in K_{0}$ can be expressed in terms of Frobenius $\pi$ over $\mathbf{F}_{p^{k}}$, for $k$ the extension degree s.t. the theta null point is over $\mathbf{F}_{p^{k}}$.
- Fix embeddings End $\mathbf{Q}_{\mathbf{Q}} \rightarrow K \rightarrow \mathbf{C}$.
- $\sqrt{D}$ can be written as a degree 3 polynomial in complex root $\pi$ of

$$
X^{4}-s_{1} X^{3}+\left(s_{2}+2 q\right) X^{2}-q s_{1} X+q^{2}
$$

where $q=p^{k}$, for some $k, s_{1}^{2}-4 s_{2}>0, s_{2}+4 q>2\left|s_{1}\right| \sqrt{q}$, $\left|s_{1}\right| \leq 4 \sqrt{q}$ and $\left|s_{2}\right| \leq 4 q$.

- When computing the action of $F$ on $\ell$ torsion points, computations modulo $\ell \Rightarrow$ the matrix elements are polynomials in $\mathbf{Z} / \ell \mathbf{Z}[X]$.
- When computing the action of $F$ on 4 torsion points, the matrix has elements modulo 4.

Computing the image of $x$ via $f$ on the target $B$

- Let $a:=\sum_{k=0}^{3} a_{k} \pi^{k}$, with $a_{k} \in \mathbf{Z} / m \mathbf{Z}$.
- When working with affine coordinates, we need to keep track of the projective factors after each operation.
- To compute $P+Q$, we need $P, Q, P-Q$ ( pseudo-addition).
- s. $P, \pi P$ are easy to compute.
- We can compute $a(x+t)$ if we have all combinations of two points. They depend on
- x: normal addition, arbitrary factor
- $t: \lambda_{t}^{\ell}=\alpha_{t}$, for some known $\alpha_{t}$
- $x$ and $t$ : find $t^{\prime} \in G$ s.t. $x$ and $t^{\prime}$ have the same coefficient.

Computing the image of $x$ via $f$ on the target $B$

- Let $a:=\sum_{k=0}^{3} a_{k} \pi^{k}$, with $a_{k} \in \mathbf{Z} / m \mathbf{Z}$.
- When working with affine coordinates, we need to keep track of the projective factors after each operation.
- To compute $P+Q$, we need $P, Q, P-Q$ ( pseudo-addition).
- s. $P, \pi P$ are easy to compute.
- We can compute $a(x+t)$ if we have all combinations of two points. They depend on
- x: normal addition, arbitrary factor
- $t: \lambda_{t}^{\ell}=\alpha_{t}$, for some known $\alpha_{t}$
- $x$ and $t$ : find $t^{\prime} \in G$ s.t. $x$ and $t^{\prime}$ have the same coefficient.


## Computing the image of $x$ via $f$ on the target $B$

- Let $a:=\sum_{k=0}^{3} a_{k} \pi^{k}$, with $a_{k} \in \mathbf{Z} / m \mathbf{Z}$.
- When working with affine coordinates, we need to keep track of the projective factors after each operation.



## Computing the image of $x$ via $f$ on the target $B$

- Let $a:=\sum_{k=0}^{3} a_{k} \pi^{k}$, with $a_{k} \in \mathbf{Z} / m \mathbf{Z}$.
- When working with affine coordinates, we need to keep track of the projective factors after each operation.
- To compute $P+Q$, we need $P, Q, P-Q$ ( pseudo-addition).
- s. $P, \pi P$ are easy to compute.
- We can compute $a(x+t)$ if we have all combinations of two points. They depend on
- x: normal addition, arbitrary factor
- $t: \lambda_{t}^{\ell}=\alpha_{t}$, for some known $\alpha_{t}$
- $x$ and $t$ : find $t^{\prime} \in G$ s.t. $x$ and $t^{\prime}$ have the same coefficient


## Computing the image of $x$ via $f$ on the target $B$

- Let $a:=\sum_{k=0}^{3} a_{k} \pi^{k}$, with $a_{k} \in \mathbf{Z} / m \mathbf{Z}$.
- When working with affine coordinates, we need to keep track of the projective factors after each operation.
- To compute $P+Q$, we need $P, Q, P-Q$ ( pseudo-addition).
- s. $P, \pi P$ are easy to compute.
- We can compute $a(x+t)$ if we have all combinations of two points. They depend on
- x: normal addition, arbitrary factor - $t: \lambda_{t}^{\ell}=\alpha_{t}$, for some known $\alpha_{t}$ - $x$ and $t$ : find $t^{\prime} \in G$ s.t. $x$ and $t^{\prime}$ have the same coefficient.


## Computing the image of $x$ via $f$ on the target $B$

- Let $a:=\sum_{k=0}^{3} a_{k} \pi^{k}$, with $a_{k} \in \mathbf{Z} / m \mathbf{Z}$.
- When working with affine coordinates, we need to keep track of the projective factors after each operation.
- To compute $P+Q$, we need $P, Q, P-Q$ ( pseudo-addition).
- $s \cdot P, \pi P$ are easy to compute.
- We can compute $a(x+t)$ if we have all combinations of two points. They depend on
- x omoma adedition, abtitay factor

- $x$ and $t$ : find $t^{\prime} \in G$ s.t. $x$ and $t^{\prime}$ have the same coefficient.


## Computing the image of $x$ via $f$ on the target $B$

- Let $a:=\sum_{k=0}^{3} a_{k} \pi^{k}$, with $a_{k} \in \mathbf{Z} / m \mathbf{Z}$.
- When working with affine coordinates, we need to keep track of the projective factors after each operation.
- To compute $P+Q$, we need $P, Q, P-Q$ ( pseudo-addition).
- $s \cdot P, \pi P$ are easy to compute.
- We can compute $a(x+t)$ if we have all combinations of two points. They depend on
- x: normal addition, arbitrary factor
- $x$ and $t$ : find $t^{\prime} \in G$ s.t. $x$ and $t^{\prime}$ have the same coefficient.


## Computing the image of $x$ via $f$ on the target $B$

- Let $a:=\sum_{k=0}^{3} a_{k} \pi^{k}$, with $a_{k} \in \mathbf{Z} / m \mathbf{Z}$.
- When working with affine coordinates, we need to keep track of the projective factors after each operation.
- To compute $P+Q$, we need $P, Q, P-Q$ ( pseudo-addition).
- $s \cdot P, \pi P$ are easy to compute.
- We can compute $a(x+t)$ if we have all combinations of two points. They depend on
- x: normal addition, arbitrary factor
- $t: \lambda_{t}^{\ell}=\alpha_{t}$, for some known $\alpha_{t}$


## Computing the image of $x$ via $f$ on the target $B$

- Let $a:=\sum_{k=0}^{3} a_{k} \pi^{k}$, with $a_{k} \in \mathbf{Z} / m \mathbf{Z}$.
- When working with affine coordinates, we need to keep track of the projective factors after each operation.
- To compute $P+Q$, we need $P, Q, P-Q$ ( pseudo-addition).
- $s \cdot P, \pi P$ are easy to compute.
- We can compute $a(x+t)$ if we have all combinations of two points. They depend on
- x: normal addition, arbitrary factor
- $t: \lambda_{t}^{\ell}=\alpha_{t}$, for some known $\alpha_{t}$
- $x$ and $t$ : find $t^{\prime} \in G$ s.t. $x$ and $t^{\prime}$ have the same coefficient.


## Computing the equation of the target curve

We deduce a Rosenhain form of the target hyperelliptic curve of the form $y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)$ by using the theta constants of level $(2,2)$ :

$$
\lambda=\frac{\theta_{0}^{2} \theta_{8}^{2}}{\theta_{4}^{2} \theta_{12}^{2}}, \quad \mu=\frac{\theta_{8}^{2} \theta_{2}^{2}}{\theta_{12}^{2} \theta_{6}^{2}}, \quad \nu=\frac{\theta_{2}^{2} \theta_{0}^{2}}{\theta_{6}^{2} \theta_{4}^{2}} .
$$

In case the hyperelliptic curve is over an extension field, we apply Mestre's algorithm.

Algorithm complexity Polynomial in $\ell$ and further, in $\log p$.

## Computing the equation of the target curve

We deduce a Rosenhain form of the target hyperelliptic curve of the form $y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-\nu)$ by using the theta constants of level $(2,2)$ :

$$
\lambda=\frac{\theta_{0}^{2} \theta_{8}^{2}}{\theta_{4}^{2} \theta_{12}^{2}}, \quad \mu=\frac{\theta_{8}^{2} \theta_{2}^{2}}{\theta_{12}^{2} \theta_{6}^{2}}, \quad \nu=\frac{\theta_{2}^{2} \theta_{0}^{2}}{\theta_{6}^{2} \theta_{4}^{2}} .
$$

In case the hyperelliptic curve is over an extension field, we apply Mestre's algorithm.

Algorithm complexity Polynomial in $\ell$ and further, in $\log p$.

## Random Self-Reducibility of Discrete Logarithms - genus 1

- Using vertical isogenies, reduce the problem to two curves on the top layer $\mathcal{O}_{K}$
- Via complex multiplication theory, the curves on the top layer (after liftings to characteristic zero) correspond to $\mathbf{C} / \mathfrak{a}$ where $\in \mathrm{Cl}\left(\mathcal{O}_{K}\right)$
- Get a Cayley graph whose vertices are the curves in the top layer (in bijection with $\operatorname{Pic}\left(\mathcal{O}_{K}\right)$ and whose edges correspond to prime ideals of small norm of $\mathcal{O}_{K}$
- Conclusion: via random walks, discrete log is, with some probability, comparatively hard on all curves in an isogeny class (Jao-Miller-Venkatesan'05)

Goal: what can we say about curves of genus 2?

## Random Self-Reducibility of Discrete Logarithms - genus 1

- Using vertical isogenies, reduce the problem to two curves on the top layer $\mathcal{O}_{K}$
- Via complex multiplication theory, the curves on the top layer (after liftings to characteristic zero) correspond to $\mathbf{C} / \mathfrak{a}$ where $\in \mathrm{Cl}\left(\mathcal{O}_{K}\right)$
- Get a Cayley graph whose vertices are the curves in the top layer (in bijection with $\operatorname{Pic}\left(\mathcal{O}_{K}\right)$ and whose edges correspond to prime ideals of small norm of $\mathcal{O}_{K}$
- Conclusion: via random walks, discrete log is, with some probability, comparatively hard on all curves in an isogeny class (Jao-Miller-Venkatesan'05)

Goal: what can we say about curves of genus 2?

## Random Self-Reducibility of Discrete Logarithms - genus 1

- Using vertical isogenies, reduce the problem to two curves on the top layer $\mathcal{O}_{K}$
- Via complex multiplication theory, the curves on the top layer (after liftings to characteristic zero) correspond to $\mathbf{C} / \mathfrak{a}$ where $\in \mathrm{Cl}\left(\mathcal{O}_{K}\right)$
- Get a Cayley graph whose vertices are the curves in the top layer (in bijection with $\operatorname{Pic}\left(\mathcal{O}_{K}\right)$ and whose edges correspond to prime ideals of small norm of $\mathcal{O}_{K}$
- Conclusion: via random walks, discrete log is, with some probability, comparatively hard on all curves in an isogeny class (Jao-Miller-Venkatesan'05)

Goal: what can we say about curves of genus 2?

## Random Self-Reducibility of Discrete Logarithms - genus 1

- Using vertical isogenies, reduce the problem to two curves on the top layer $\mathcal{O}_{K}$
- Via complex multiplication theory, the curves on the top layer (after liftings to characteristic zero) correspond to $\mathbf{C} / \mathfrak{a}$ where $\in \mathrm{Cl}\left(\mathcal{O}_{K}\right)$
- Get a Cayley graph whose vertices are the curves in the top layer (in bijection with $\operatorname{Pic}\left(\mathcal{O}_{K}\right)$ and whose edges correspond to prime ideals of small norm of $\mathcal{O}_{K}$
- Conclusion: via random walks, discrete log is, with some probability, comparatively hard on all curves in an isogeny class (Jao-Miller-Venkatesan'05)

Goal: what can we say about curves of genus 2 ?

## Isogeny Graph and the random-self reducibility of DLP

Application: DLP on $A$ can be reduced in polynomial time to the DLP on $B$.
Claim: Under GRH, the DLP in genus 2 is random-self reducible: Given a fixed order $\mathcal{O}$ in $K$, given any algorithm Alg that solves the DL on some $1 /($ polynomial in $\log p)$ percentage of Jacobians of e.r $\mathcal{O}$, one can solve probabilistically the DL on any Jacobian of e.r. $\mathcal{O}$ in polynomial in $\log p$ expected queries to Alg with random inputs.

## Isogeny Graph and the random-self reducibility of DLP

Application: DLP on $A$ can be reduced in polynomial time to the DLP on $B$.
Claim: Under GRH, the DLP in genus 2 is random-self reducible: Given a fixed order $\mathcal{O}$ in $K$, given any algorithm Alg that solves the DL on some $1 /($ polynomial in $\log p$ ) percentage of Jacobians of e.r. $\mathcal{O}$, one can solve probabilistically the DL on any Jacobian of e.r. $\mathcal{O}$ in polynomial in $\log p$ expected queries to Alg with random inputs.

Thank you.


