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Introduction
Elliptic and Hyperelliptic Curves

Applications: Public key cryptosystems (e.g. Diffie-Hellman
key exchange protocol, ElGamal).

General security assessment:

DLP: Given a multiplicative group G =< g > of large order r
and h ∈ G , find x such that h = g x .

Classical DLP: G = F∗p, with p prime.

Subexponential attacks.

Curve-based security assessment:

ECDLP: Given an elliptic curve E (genus 1 ) over some Fp,
then G = E (Fp).

HECDLP: Given an hyperelliptic curve C of genus g over
some Fp and its Jacobian Jac(C ), then G = JacFp(C ).

Exponential attacks
2/21
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Genus 1 Curves
ECC:
Fp, where p is a prime of recommended size.
an elliptic curve E over Fp with given #E (Fp).
Question
Is the discrete logarithm problem equally hard on all curves
having the same number of points?
Answer
”Yes”, with some probability and constraints for the case of
ordinary elliptic curves.

Theorem (Tate)

E1,E2 defined over Fp have #E1(Fp) = #E2(Fp) iff there exists an
Fp-isogeny φ : E1 → E2.

An isogeny is a morphism of the form φ : E1 → E2 of some degree
over Fp (rational map, regular at any point on E1) with
φ(O1) = O2. 3/21
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Isogeny Graph

#E (Fp) = 1 + p − t where t is the trace of Frobenius π

End(E ) - order in K = Q(
√
−dt), with c2

t dt = t2 − 4p.

OK ⊇ End(E ) ⊇ Z[π]
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Genus 2 Curves

Why?
Similar cost when doing arithmetic, smaller fields by a factor 2.

Jacobians of curves over Fp that have the same characteristic
polynomial of Frobenius = an Fp-isogeny class.

Jacobians are principally polarised abelian varieties (together
with embeddings in PN). An isogeny links both the varieties
and their polarizations.

A principal polarization is crucial in recovering a curve
equation from an abelian variety that is a Jacobian.

Same Question
Is the DL equally hard on isomorphic classes of Jacobians in the
same isogeny graph?
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Isogeny Graphs of Principally Polarized Abelian Surfaces

Computing isogenies from kernel in genus 2 is a lot harder:

Canonical coordinates

Polarizations: prime degree isogenies do not preserve principal
polarisations.

Deciding isomorphisms: deciding if two non-polarized abelian
surfaces are isomorphic is a computationally hard problem.

Class field theory: endomorphism rings are orders in quartic
number fields.

Main idea: use the theory of theta functions and the CM
description of principally polarised abelian varieties
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Current State of the Art

The work of Cosset et Robert on (`, `) isogenies:

The kernel is isomorphic to 1
`Z2/Z2.

Similar formulas to Vélu.

The (`, `) isogeny is the only isogeny that preserves the
principal polarization of the source and target.

Not all isogenies between isomorphism classes can be
expressed with (`, `)-isogenies.

The graph associated to the isogeny class may not be
connected.
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Algorithm of Computing Cyclic Isogenies

Input:

a prime p and a prime `

C a hyperlliptic curve of genus 2 defined over Fp given in
Rosenhain form:

y2 = x(x − 1)(x − λ)(x − µ)(x − ν)

s. t. EndFp
(Jac(C )) ' O with O order in K := Q(π).

The quadratic field K0 = Q(
√
D) ⊂ K and O0 := O ∩ K0.

a totally positive element β ∈ O0 of norm prime `

a generator P in Mumford coordinates of the isogeny kernel G
s.t. β · P = O.

Output: C ′- a hyperelliptic curve defined over Fp s.t.
Jac(C ′) 'Fp B, with B the target of an `-isogeny of kernel G .
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Diagram

Let f : A→ B. Let β : A→ A s.t. ker(f ) ⊂ ker(β) maximal
isotropic.

A

ϕL0   

A
β

oo f // B

ϕM0
��

A∗ B∗.
f ∗oo

(1)
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Algorithm Steps

1. Compute a theta null point of A of level (2, 2).

2. Compute a totally positive element β ∈ OK0 of norm ` that
corresponds to the endomorphism on A whose kernel contains
G .

3. Compute a theta null point of B of level (2, 2) by applying the
isogeny theorem together with Koizumi’s formulae

4. Deduce an equation of a rational smooth genus 2 curve C ′

whose Jac(C ′) 'Fp B.
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Computing the theta null point of A

We work over C.

Let A := Jac(C ) and let L0 be a pp on A.

∃Λ ⊂ C2 lattice rank 4 s.t. A ' T := C2/Λ.

∃L0 ⇒ ∃Ω ∈M2(C ), Ω = ΩT and I(Ω) > 0 s.t. Λ =
ΩZ2 + Z2.

The Riemann theta function associated to Ω is Θ : C2 → C
where

Θ(z ,Ω) :=
∑
x∈Z2

eπix
T Ωx+2πixT z .

11/21
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Computing the theta null point of A

For n ∈ Z>0 and i ∈ Z(n) := 1
nZ2/Z2, let

θi (z) := Θ(z + i , Ω
n ).

The space generated by (θi (z))i∈ 1
n

Z2/Z2 is the space of theta

functions of level n.

If n = k2, there exists another basis given by theta functions
of level (k , k), with indexes a, b ∈ Z(k).

When n ≥ 3:

z ∈ T −→ (θi (z))i∈Z(n) ∈ Pn2−1(C) is an embedding.

(θi (0))i∈Z(n) identifies the abelian variety uniquely in

Pn2−1(C).
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When n ≥ 3:
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Computing the theta null point of A

Over Fp, given {0, 1, λ, µ, ν}, we deduce the theta null point
of level (2, 2) (over some extension of Fp) via Thomae’s
formulae.

For any x ∈ A, the algebraic theta coordinates are deduced
from Mumford coordinates.

(`, `) isogenies: A A
[`]

oo f // B

(2, 2) (2`, 2`) (2, 2).

` cyclic isogenies: A A
β

oo f // B

(2, 2) (2`, 2) (2, 2).
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Computing a theta null point of the target B

Compute the action of β on A by applying a Koizumi type
formulas with F ∈ GLr (K0) s. t. FTF = βId .

Compute the action of F on A and on the sets of indexes of
theta functions.

Compute the theta null point of B from the theta point of
level (2`, 2).

For x = 0, we consider any index i and (j1, j2) the preimage of
(i , 0) by F

θBi (f (x))θB0 (0) = λaxλbx
∑
t∈G

θAj1(ax + at)θAj2(bx + bt), (2)
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Computing the image of x on the target B

Equation (2) depends on x , hence we cannot work with
projective points.

There is no canonical way of defining affine theta coordinates
over Fp.

We need to choose the affine lifts in a compatible way, i.e.,
each product on the right hand side should have the same λ.

The affine lifts should not depend on t.
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Computing the image of x via f on the target B

a, b ∈ K0 can be expressed in terms of Frobenius π over Fpk ,
for k the extension degree s.t. the theta null point is over Fpk .

Fix embeddings EndQ → K → C.√
D can be written as a degree 3 polynomial in complex root

π of
X 4 − s1X

3 + (s2 + 2q)X 2 − qs1X + q2,

where q = pk , for some k ,s2
1 − 4s2 > 0, s2 + 4q > 2|s1|

√
q,

|s1| ≤ 4
√
q and |s2| ≤ 4q.

When computing the action of F on ` torsion points,
computations modulo `⇒ the matrix elements are
polynomials in Z/`Z[X ].

When computing the action of F on 4 torsion points, the
matrix has elements modulo 4.

16/21



Computing the image of x via f on the target B

a, b ∈ K0 can be expressed in terms of Frobenius π over Fpk ,
for k the extension degree s.t. the theta null point is over Fpk .

Fix embeddings EndQ → K → C.√
D can be written as a degree 3 polynomial in complex root

π of
X 4 − s1X

3 + (s2 + 2q)X 2 − qs1X + q2,

where q = pk , for some k ,s2
1 − 4s2 > 0, s2 + 4q > 2|s1|

√
q,

|s1| ≤ 4
√
q and |s2| ≤ 4q.

When computing the action of F on ` torsion points,
computations modulo `⇒ the matrix elements are
polynomials in Z/`Z[X ].

When computing the action of F on 4 torsion points, the
matrix has elements modulo 4.

16/21



Computing the image of x via f on the target B

a, b ∈ K0 can be expressed in terms of Frobenius π over Fpk ,
for k the extension degree s.t. the theta null point is over Fpk .

Fix embeddings EndQ → K → C.√
D can be written as a degree 3 polynomial in complex root

π of
X 4 − s1X

3 + (s2 + 2q)X 2 − qs1X + q2,

where q = pk , for some k ,s2
1 − 4s2 > 0, s2 + 4q > 2|s1|

√
q,

|s1| ≤ 4
√
q and |s2| ≤ 4q.

When computing the action of F on ` torsion points,
computations modulo `⇒ the matrix elements are
polynomials in Z/`Z[X ].

When computing the action of F on 4 torsion points, the
matrix has elements modulo 4.

16/21



Computing the image of x via f on the target B

a, b ∈ K0 can be expressed in terms of Frobenius π over Fpk ,
for k the extension degree s.t. the theta null point is over Fpk .

Fix embeddings EndQ → K → C.√
D can be written as a degree 3 polynomial in complex root

π of
X 4 − s1X

3 + (s2 + 2q)X 2 − qs1X + q2,

where q = pk , for some k ,s2
1 − 4s2 > 0, s2 + 4q > 2|s1|

√
q,

|s1| ≤ 4
√
q and |s2| ≤ 4q.

When computing the action of F on ` torsion points,
computations modulo `⇒ the matrix elements are
polynomials in Z/`Z[X ].

When computing the action of F on 4 torsion points, the
matrix has elements modulo 4.

16/21



Computing the image of x via f on the target B

a, b ∈ K0 can be expressed in terms of Frobenius π over Fpk ,
for k the extension degree s.t. the theta null point is over Fpk .

Fix embeddings EndQ → K → C.√
D can be written as a degree 3 polynomial in complex root

π of
X 4 − s1X

3 + (s2 + 2q)X 2 − qs1X + q2,

where q = pk , for some k ,s2
1 − 4s2 > 0, s2 + 4q > 2|s1|

√
q,

|s1| ≤ 4
√
q and |s2| ≤ 4q.

When computing the action of F on ` torsion points,
computations modulo `⇒ the matrix elements are
polynomials in Z/`Z[X ].

When computing the action of F on 4 torsion points, the
matrix has elements modulo 4.

16/21



Computing the image of x via f on the target B

a, b ∈ K0 can be expressed in terms of Frobenius π over Fpk ,
for k the extension degree s.t. the theta null point is over Fpk .

Fix embeddings EndQ → K → C.√
D can be written as a degree 3 polynomial in complex root

π of
X 4 − s1X

3 + (s2 + 2q)X 2 − qs1X + q2,

where q = pk , for some k ,s2
1 − 4s2 > 0, s2 + 4q > 2|s1|

√
q,

|s1| ≤ 4
√
q and |s2| ≤ 4q.

When computing the action of F on ` torsion points,
computations modulo `⇒ the matrix elements are
polynomials in Z/`Z[X ].

When computing the action of F on 4 torsion points, the
matrix has elements modulo 4.

16/21



Computing the image of x via f on the target B

Let a :=
∑3

k=0 akπ
k , with ak ∈ Z/mZ.

When working with affine coordinates, we need to keep
track of the projective factors after each operation.

To compute P + Q, we need P,Q,P − Q ( pseudo-addition).

s · P, πP are easy to compute.

We can compute a(x + t) if we have all combinations of two
points. They depend on

x : normal addition, arbitrary factor
t : λ`t = αt , for some known αt

x and t : find t ′ ∈ G s.t. x and t ′ have the same coefficient.
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Computing the equation of the target curve

We deduce a Rosenhain form of the target hyperelliptic curve of
the form y2 = x(x − 1)(x − λ)(x − µ)(x − ν) by using the theta
constants of level (2, 2):

λ =
θ2

0θ
2
8

θ2
4θ

2
12

, µ =
θ2

8θ
2
2

θ2
12θ

2
6

, ν =
θ2

2θ
2
0

θ2
6θ

2
4

.

In case the hyperelliptic curve is over an extension field, we apply
Mestre’s algorithm.

Algorithm complexity Polynomial in ` and further, in log p.
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Random Self-Reducibility of Discrete Logarithms - genus 1

Using vertical isogenies, reduce the problem to two curves on
the top layer OK

Via complex multiplication theory, the curves on the top layer
(after liftings to characteristic zero) correspond to C/a where
∈Cl(OK )

Get a Cayley graph whose vertices are the curves in the top
layer (in bijection with Pic(OK ) and whose edges correspond
to prime ideals of small norm of OK

Conclusion: via random walks, discrete log is, with some
probability, comparatively hard on all curves in an isogeny
class (Jao–Miller–Venkatesan’05)

Goal: what can we say about curves of genus 2?
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Isogeny Graph and the random-self reducibility of DLP

Application: DLP on A can be reduced in polynomial time to the
DLP on B.
Claim: Under GRH, the DLP in genus 2 is random-self reducible:
Given a fixed order O in K , given any algorithm Alg that solves the
DL on some 1/(polynomial in log p) percentage of Jacobians of e.r.
O, one can solve probabilistically the DL on any Jacobian of e.r. O
in polynomial in log p expected queries to Alg with random inputs.
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Thank you.
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