Cryptographie à base de courbes elliptiques : algorithmes et implémentation

Sorina Ionica

IMB , Université de Bordeaux

Public key cryptography

Sharing a common secret over an insecure channel

- Diffie-Hellman Key Exchange : $(G,+, P)$ public

$$
\begin{aligned}
& \underset{a, P_{A}=a P}{\text { Alice }} \underset{P_{B}}{\stackrel{P_{A}}{\rightleftarrows}} \underset{P_{B}, P_{B}=b P}{\text { Bob }} \\
& K=\underbrace{a P_{B}}_{K}=\overparen{a b P} \quad K=b P_{B}
\end{aligned}
$$

Security: the Discrete Logarithm Problem (DLP) in G

- Given $P, Q \in G$ find (if it exists) λ such that

$$
Q=\lambda P
$$

Elliptic Curve Cryptography

Consider $\mathbb{F}_{q}, \operatorname{char}\left(\mathbb{F}_{q}\right) \neq 2,3$

$$
\begin{aligned}
& \text { Weierstrass form } \\
& y^{2}=x^{3}+a x+b
\end{aligned}
$$

- Secure implementation: DLP is hard if $r=\# G$ is a large prime number.
- Shorter keys (compared to RSA, group cryptography over finite fields)

Table: Complexity of generic attacks

method	Fastest known attack
RSA	Number Field Sieve $\exp \left(\frac{1}{2}(\log N)^{\frac{1}{3}}(\log \log N)^{\frac{2}{3}}\right)$
ECC	Pollard-rho $\sqrt{r}=\exp \left(\frac{1}{2} \log r\right)$

Table: Key sizes

Security level	RSA	ECC
80 bits	1024	160
128 bits	3072	256
256 bits	15360	512

key exchange, signatures, identification

Bbitcoin

Elliptic versus genus 2 curves

Genus 1 addition

$E\left(\mathbb{F}_{q}\right): y^{2}=x^{3}-3 x+1$

Genus 2 addition

$\mathcal{C}_{1}\left(\mathbb{F}_{q}\right): y^{2}=x^{5}-3 x^{3}+x$,

Scalar multiplication

multiplication-by- m map: $\quad P \mapsto[m] P$ on $E\left(\mathbb{F}_{q}\right)$,

$$
\mathcal{D} \mapsto[m] \mathcal{D} \text { on } J_{\mathcal{C}}\left(\mathbb{F}_{q}\right)
$$

- optimized binary double-and-add scalar multiplication:
(1) write m in binary rep. $m=\sum_{i=0}^{\log m-1} m_{i} 2^{i}, m_{i} \in\{0,1\}$
(2) $R \leftarrow P$
(3) for i from $\log m-1$ to 0 do
(1) $R \leftarrow 2 R$
(Doubling)
(2) if $m_{i}=1$ then $R \leftarrow R+P$
(9) return R
- cost: $\log m$ doublings $+\sim \frac{1}{2} \log m$ additions in average

Multi-scalar multiplication

$$
[m] P+[\ell] Q \in \mathbf{G} \subset E\left(\mathbb{F}_{q}\right)
$$

(1) write $m \leqslant \ell$ in binary rep. $m=\sum_{i=0}^{\log m-1} m_{i} 2^{i}$,

$$
\ell=\sum_{i=0}^{\log \ell-1} \ell_{i} 2^{i}, m_{i}, \ell_{i} \in\{0,1\}
$$

(2) precompute $T=P+Q$
(3) if $\log \ell>\log m$ then $R \leftarrow Q$
(c) else $R \leftarrow T$
(0) for i from $\log \ell-1$ to 0 do
(1) $R \leftarrow 2 R$
(2) if $m_{i}=\ell_{i}=1$ then $R \leftarrow R+T$
(3) else if $m_{i}=1$ and $\ell_{i}=0$ then $R \leftarrow R+P$
(1) else if $m_{i}=0$ and $\ell_{i}=1$ then $R \leftarrow R+Q$
(Doubling)
(Addition)
(Addition)
(Addition)
(6) return R

- cost: $\log \ell$ doublings $+\sim \frac{3}{4} \log \ell$ additions in average

Algorithme GLV pour la multiplication scalaire

Assume there is an efficient (almost free) endomorphism

$$
\phi: G \rightarrow G, \quad \phi(P)=\lambda_{\phi} P
$$

λ_{ϕ} is large \rightarrow decompose $m=m_{0}+\lambda_{\phi} m_{1} \bmod r$ with $\log m_{0} \sim \log m_{1} \sim \log m / 2$

Multi-exponentiation

Compute
$m P=m_{0} P+m_{1} \phi(P)$ in
$(\log m) / 2$ operations.

Save half doublings for a cost of a quarter of additions.

Endomorphisms: an example

$E_{\alpha}\left(\mathbb{F}_{q}\right): y^{2}=x^{3}+\alpha x, j\left(E_{\alpha}\right)=1728(i . e . \mathrm{CM}$ by $\sqrt{-1}, D=4)$

- $q \equiv 1 \bmod 4$,
- let $i \in \mathbb{F}_{q}$ s.t. $i^{2}=-1 \in \mathbb{F}_{q}$
- $\phi:(x, y) \mapsto(-x, i y)$ is an endomorphism
- $\phi \circ \phi(x, y)=(x,-y)$
- $\phi^{2}+\mathrm{Id}=0$ on $E\left(\mathbb{F}_{q}\right)$
- eigenvalue: $\lambda_{\phi} \equiv \sqrt{-1} \bmod \# E\left(\mathbb{F}_{q}\right)$
- this means for P of prime-order $r, \phi(P)=\left[\lambda_{\phi} \bmod r\right] P$

Endomorphism: Frobenius map

- Frobenius map, $E\left(\mathbb{F}_{q}\right),(x, y) \in E\left(\mathbb{F}_{q^{n}}\right) \mapsto\left(x^{q}, y^{q}\right) \in E\left(\mathbb{F}_{q^{n}}\right)$. Why ?
- $E\left(\mathbb{F}_{q}\right): y^{2}=x^{3}+a_{4} x+a_{6}, a_{4}, a_{6} \in \mathbb{F}_{q}$
- Not directly useful in this way. Used with twisted curves (Galbraith-Lin-Scott GLS curves)
- $j(E)=1728,8000,-3375 \longleftrightarrow \phi=\sqrt{-1}, \sqrt{-2}, \frac{1+\sqrt{-7}}{2}$.
- $j(E)=0,54000,-32768 \longleftrightarrow \phi=\frac{-1+\sqrt{-3}}{2}, \sqrt{-3}, \frac{1+\sqrt{-11}}{2}$.
- Galbraith-Lin-Scott (GLS) curves (2009): defined over $\mathbb{F}_{q^{2}}$ instead of $\mathbb{F}_{q}, j \in \mathbb{F}_{q}$, one endomorphism $\phi: \phi^{2}=-$ Id on $E\left(\mathbb{F}_{q^{2}}\right)$.
- but still $j \in \mathbb{F}_{q}$
- These are all available fast endomorphisms.

Implementation

Fast algorithms for scalar multiplication: GLV

Fast group law computation

Fast modular arithmetic: special primes (ex. $p=2^{127}-1$)

Example: No curve $E / \mathbb{F}_{q^{2}}$ with $p=2^{127}-1$ and GLV of dimension 4.

Challenge: the fastest implementation for a given security level

Our contribution

Four dimensional GLV via the Weil restriction

joint work with Aurore Guillevic

GLV friendly curve zoo

Genus 1

- GLV 2001 : complex multiplication by
$\sqrt{-1}, \sqrt{-2}, \frac{1+\sqrt{-7}}{2}$, $\sqrt{-3}, \frac{1+\sqrt{-11}}{2}$.
- Galbraith-Lin-Scott 2009: curves $/ \mathbb{F}_{q^{2}}, j \in \mathbb{F}_{q}$.
- Longa-Sica 2012: 4-dim GLV+GLS

Genus 2

- Mestre, Kohel-Smith, Takashima : explicit real multiplication by $\sqrt{2}, \sqrt{5}$
- 4-dim. : Buhler-Koblitz, Furukawa-Takahashi curves

GLV friendly curve zoo

Genus 1

- GLV 2001 : complex multiplication by
$\sqrt{-1}, \sqrt{-2}, \frac{1+\sqrt{-7}}{2}$, $\sqrt{-3}, \frac{1+\sqrt{-11}}{2}$.
- Galbraith-Lin-Scott 2009: curves $/ \mathbb{F}_{q^{2}}, j \in \mathbb{F}_{q}$.
- Longa-Sica 2012: 4-dim GLV+GLS

Genus 2

- Mestre, Kohel-Smith, Takashima : explicit real multiplication by $\sqrt{2}, \sqrt{5}$
- 4-dim. : Buhler-Koblitz, Furukawa-Takahashi curves
- This work: 4-dim.-GLV on Satoh/Satoh-Freeman curves 2009

GLV friendly curve zoo

Genus 1

- GLV 2001 : complex multiplication by
$\sqrt{-1}, \sqrt{-2}, \frac{1+\sqrt{-7}}{2}$, $\sqrt{-3}, \frac{1+\sqrt{-11}}{2}$.
- Galbraith-Lin-Scott 2009:
curves $/ \mathbb{F}_{q^{2}}, j \in \mathbb{F}_{q}$.
- Longa-Sica 2012: 4-dim GLV+GLS
- This work: 4 dim.-GLV on two families of curves $/ \mathbb{F}_{q^{2}}$, but $j \in \mathbb{F}_{q^{2}}$.

Genus 2

- Mestre, Kohel-Smith, Takashima : explicit real multiplication by $\sqrt{2}, \sqrt{5}$
- 4-dim. : Buhler-Koblitz, Furukawa-Takahashi curves
- This work: 4-dim.-GLV on Satoh/Satoh-Freeman curves 2009

4-GLV, ..., 2^{i}-GLV: time-memory trade-off

- We would like a 4-dimensional decomposition of m when computing $m P$
- 2 endomophisms ϕ, ψ of eigenvalues $\lambda_{\phi}, \lambda_{\psi}$
- decompose $m \equiv m_{1}+m_{2} \lambda_{\phi}+m_{3} \lambda_{\psi}+m_{4} \lambda_{\phi} \lambda_{\psi} \bmod r$ with $\log m_{i} \sim \frac{1}{4} \log m$
- Store $P, \phi(P), \psi(P), \phi \psi(P), \ldots \Rightarrow 16$ points
- 4-dim. multiexponentiation \rightarrow Save $\frac{3}{4} \log m$ doublings and $\sim \frac{17}{32} \log m$ additions.

Dimension 4 - Longa and Sica 2012

- Curves are ordinary, i.e. endomorphisms form a lattice of dimension $2 \Rightarrow[1, \phi]$
- we need ψ s.t. $\lambda_{\psi} \equiv \alpha+\beta \lambda_{\phi} \bmod r$ and $\alpha, \beta>r^{1 / 4}$ to have a decomposition

How to construct ψ efficiently computable?

Longa-Sica curves (2012)

Consider GLS curves with small $D \rightarrow 2$ endomorphisms $\psi: \psi^{2}+1=0, \phi: \phi^{2}+D=0$ for points over $\mathbb{F}_{q^{2}}$.

$$
\begin{aligned}
& J_{\mathcal{C}_{1}}\left(\mathbb{F}_{q^{8}}\right) \\
& E_{c} \times E_{c}\left(\mathbb{F}_{q^{2}}\right) \\
& \mathcal{C}_{1}: y_{c} \times E_{c}\left(\mathbb{F}_{q^{8}}\right) \\
& J_{\mathcal{C}_{1}}\left(\mathbb{F}_{q}\right) \\
& E_{c} / \mathbb{F}_{q^{2}}: y^{2}+a x^{3}+b x, a, b \in \mathbb{F}_{q} \\
& x^{3}+27(3 c-10) x+108(14-9 c), \quad c=a / \sqrt{b}
\end{aligned}
$$

$$
D=2 D^{\prime} \quad \longrightarrow \quad E_{c}-\bar{I}_{2} ?
$$

We start by computing a degree 2 isogeny (i.e. a map between curves) \mathcal{I}_{2} from E_{c}.

4-dim GLV on elliptic curves

We computed with Vélu's formulas this 2-isogeny

$$
\begin{aligned}
\mathcal{I}_{2}: E_{c} & \rightarrow E_{-c} \\
(x, y) & \mapsto \\
& \\
& E_{c} \quad I_{2}
\end{aligned}
$$

- $E_{c} / \mathbb{F}_{q^{2}}: y^{2}=x^{3}+27(3 c-10) x+108(14-9 c)$
- $E_{-c} / \mathbb{F}_{q^{2}}: y^{2}=x^{3}+27(-3 c-10) x+108(14+9 c)$

4-dim GLV on elliptic curves

We computed with Vélu's formulas this 2-isogeny

$$
\begin{aligned}
\mathcal{I}_{2}: E_{c} & \rightarrow E_{-c} \\
(x, y) & \mapsto \\
& \\
& E_{c} \quad \mathcal{I}_{2}
\end{aligned}
$$

- $E_{c} / \mathbb{F}_{q^{2}}: y^{2}=x^{3}+27(3 c-10) x+108(14-9 c)$
- $E_{-c} / \mathbb{F}_{q^{2}}: y^{2}=x^{3}+27(-3 c-10) x+108(14+9 c)$
- $\ln \mathbb{F}_{q^{2}}, \pi_{q}(c)=-c$
- Go back from E_{-c} to E_{c} with the Frobenius map

4-dim GLV on elliptic curves

We computed with Vélu's formulas this 2-isogeny

$$
\begin{aligned}
\mathcal{I}_{2}: E_{c} & \rightarrow E_{-c} \\
(x, y) & \mapsto\left(\frac{-x}{2}+\frac{162+81 c}{-2(x-12)}, \frac{-y}{2 \sqrt{-2}}\left(1-\frac{162+81 c}{(x-12)^{2}}\right)\right) \\
& \pi_{q} \circ \mathcal{I}_{2} \\
& =\phi_{2} \quad C E_{c} \longleftarrow \frac{I_{2}}{\pi_{q}} E_{-c} \\
& \equiv[\sqrt{ \pm 2}]
\end{aligned}
$$

- $E_{c} / \mathbb{F}_{q^{2}}: y^{2}=x^{3}+27(3 c-10) x+108(14-9 c)$
- $E_{-c} / \mathbb{F}_{q^{2}}: y^{2}=x^{3}+27(-3 c-10) x+108(14+9 c)$
- $\ln \mathbb{F}_{q^{2}}, \pi_{q}(c)=-c$
- Go back from E_{-c} to E_{c} with the Frobenius map

4-dim GLV on elliptic curves

We computed with Vélu's formulas this 2-isogeny

$$
\begin{aligned}
\mathcal{I}_{2}: E_{c} & \rightarrow E_{-c} \\
(x, y) & \mapsto\left(\frac{-x}{2}+\frac{162+81 c}{-2(x-12)}, \frac{-y}{2 \sqrt{-2}}\left(1-\frac{162+81 c}{(x-12)^{2}}\right)\right) \\
& \pi_{q} \circ \mathcal{I}_{2} \\
& =\phi_{2} \quad C E_{c} \longleftarrow \frac{I_{2}}{\pi_{q}} E_{-c} \\
& \equiv[\sqrt{ \pm 2}]
\end{aligned}
$$

- $E_{c} / \mathbb{F}_{q^{2}}: y^{2}=x^{3}+27(3 c-10) x+108(14-9 c)$
- $E_{-c} / \mathbb{F}_{q^{2}}: y^{2}=x^{3}+27(-3 c-10) x+108(14+9 c)$
- $\ln \mathbb{F}_{q^{2}}, \pi_{q}(c)=-c$
- Go back from E_{-c} to E_{c} with the Frobenius map
- ϕ_{2} is different from the CM

4-dim GLV on elliptic curves

We computed with Vélu's formulas this 2-isogeny

$$
\begin{aligned}
\mathcal{I}_{2}: E_{c} & \rightarrow E_{-c} \\
(x, y) & \mapsto\left(\frac{-x}{2}+\frac{162+81 c}{-2(x-12)}, \frac{-y}{2 \sqrt{-2}}\left(1-\frac{162+81 c}{(x-12)^{2}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{q} \circ I_{2} \\
& =\phi_{2} \\
& \equiv[\sqrt{ \pm 2}]
\end{aligned} \subset E_{c} \stackrel{I_{2}}{\because \cdots \pi_{q I_{D^{\prime}},--7}} E_{-c}
$$

- $E_{c} / \mathbb{F}_{q^{2}}: y^{2}=x^{3}+27(3 c-10) x+108(14-9 c)$
- $E_{-c} / \mathbb{F}_{q^{2}}: y^{2}=x^{3}+27(-3 c-10) x+108(14+9 c)$
- $\ln \mathbb{F}_{q^{2}}, \pi_{q}(c)=-c$
- Go back from E_{-c} to E_{c} with the Frobenius map
- ϕ_{2} is different from the CM
- We can construct a second endomorphism from CM.

Efficient 4-dim. GLV on E_{c}

- second isogeny $\mathcal{I}_{D^{\prime}}$ computed with Velu's formulas
- 4-dimensional decomposition using proper values of $1, \phi_{2}, \phi_{D^{\prime}}$, $\phi_{2} \circ \phi_{D^{\prime}}$.
- $\phi_{2}^{2} \pm 2=0, \phi_{D^{\prime}}^{2} \mp D^{\prime}=0$ for points defined over $\mathbb{F}_{q^{2}}$.

Example with $D=40$

- $D=40=4 \cdot(2 \cdot 5)$
- $\# E_{c}\left(\mathbb{F}_{q^{2}}\right)$ of the form $\left(-2 n^{2}-20 m^{2}+4\right) / 4,4 \mid \# E_{c}\left(\mathbb{F}_{q^{2}}\right)$
- search for m, n s.t. q is prime and $\# E_{c}\left(\mathbb{F}_{q^{2}}\right)$ is almost prime.

```
\(n=0 \times 55 \mathrm{~d} 23 \mathrm{edfa}\) 6a1f7e4
\(m=0 \times 549906\) b3eca27851
    \(t=-0 x f a c a 844 b 264 d f a a 353355300 f 9 \mathrm{ce} 9 \mathrm{~d} 3 \mathrm{a}\)
\(q=0 \times 9 a 2 a 8 c 914 e 2 d 05 c 3 f 2616 c a d e 9 b 911 a d\)
    \(r=0 \times 1735 c e 0 c 4 f b a c 46 c 2245 c 3 c e 9 d 8 d a 0244 f 9059 a e 9 a e 4784 d 6 b 2 f 65 b 29 c 444309\)
\(c^{2}=0 \times 40 \mathrm{~b} 634 \mathrm{aec} 52905949 \mathrm{ea}\) Ofe36099cb21a
```

with q, r prime and $\# E_{c}\left(\mathbb{F}_{q^{2}}\right)=4 r$.

Operation count at the 128 bit security level

Curve	Method	Operation count	Global estim.
E_{c}	4-GLV, 16 pts.	$2748 m+1668 \mathrm{~s}$	4416 m
$D=4$ [LongaSica12]	4-GLV, 16 pts.	$1992 m+2412 s$	4404 m
E_{c}	2-GLV, 4 pts.	$4704 m+2976 \mathrm{~s}$	7680 m
$J_{\mathcal{C}_{1}}$	$4-\mathrm{GLV}, 16 \mathrm{pts}$.	$4500 m+816 \mathrm{~s}$	5316 m
$J_{\mathcal{C}_{1}}$	2-GLV, 4 pts.	$7968 m+1536 \mathrm{~s}$	$9504 m$
FKT [Bos et al. 13]	4-GLV, 16 pts.	$4500 m+816 s$	$5316 m$
Kummer [Bos et al. 13]	-	$3328 m+2048 s$	$5376 m$

Table: Benchmarks for scalar multiplication at 128 security level

Curve	Method	Timing in ms.
$E_{1, c}$ this work	4-GLV, 16 pts.	0.002202
E_{1} Longa-Sica	4-GLV, 16 pts.	0.001882
$E_{1, c}$ GLV	2-GLV, 4pts.	0.004070
$J_{\mathcal{C}_{1}}$ this work	4-GLV, 4 pts.	0.001831

