Cryptographie à base de courbes elliptiques : algorithmes et implémentation

Sorina Ionica

IMB, Université de Bordeaux

Sorina Ionica (IMB)

Elliptic Curve Cryptography

Sharing a common secret over an insecure channel

Public key cryptography and groups

• Diffie-Hellman Key Exchange : (G, +, P) public

Security: the Discrete Logarithm Problem (DLP) in G • Given $P, Q \in G$ find (if it exists) λ such that

$$Q = \lambda P$$

Elliptic Curve Cryptography

- Secure implementation : DLP is hard if r = #G is a large prime number.
- Shorter keys (compared to RSA, group cryptography over finite fields)
 Sorina Ionica (IMB)
 Elliptic Curve Cryptography

4 / 23

Table : Complexity of generic attacks

method	Fastest known attack
RSA	Number Field Sieve $exp(\frac{1}{2}(logN)^{\frac{1}{3}}(log\log N)^{\frac{2}{3}})$
ECC	Pollard-rho $\sqrt{r} = exp(\frac{1}{2}\log r)$

Table : Key sizes

Security level	RSA	ECC
80 bits	1024	160
128 bits	3072	256
256 bits	15360	512

- 4 同 6 4 日 6 4 日 6

ECC in the real world

key exchange, signatures, identification

Bitcoin

(人間) トイヨト イヨト

Elliptic versus genus 2 curves

• multiplication-by-*m* map: $P \mapsto [m]P$ on $E(\mathbb{F}_q)$, $\mathcal{D} \mapsto [m]\mathcal{D}$ on $J_{\mathcal{C}}(\mathbb{F}_q)$

optimized binary double-and-add scalar multiplication:

write m in binary rep.
$$m = \sum_{i=0}^{\log m-1} m_i 2^i$$
, $m_i \in \{0, 1\}$
 $R \leftarrow P$
for i from log $m - 1$ to 0 do

 $R \leftarrow 2R$
if $m_i = 1$ then $R \leftarrow R + P$

(Doubling)
return R

• cost: log m doublings $+ \sim \frac{1}{2} \log m$ additions in average

Sorina Ionica (IMB)

Multi-scalar multiplication

$[m]P + [\ell]Q \in \mathbf{G} \subset E(\mathbb{F}_q)$

• write $m \leq \ell$ in binary rep. $m = \sum_{i=0}^{\log m-1} m_i 2^i$, $\ell = \sum_{i=0}^{\log \ell - 1} \ell_i 2^i, \ m_i, \ell_i \in \{0, 1\}$ 2 precompute T = P + Q \bigcirc if $\log \ell > \log m$ then $R \leftarrow Q$ • else $R \leftarrow T$ **o** for *i* from $\log \ell - 1$ to 0 do $\square R \leftarrow 2R$ (Doubling) 2) if $m_i = \ell_i = 1$ then $R \leftarrow R + T$ (Addition) **3** else if $m_i = 1$ and $\ell_i = 0$ then $R \leftarrow R + P$ (Addition) • else if $m_i = 0$ and $\ell_i = 1$ then $R \leftarrow R + Q$ (Addition) In the second second

• cost: $\log \ell$ doublings $+ \sim \frac{3}{4} \log \ell$ additions in average

Sorina Ionica (IMB)

Algorithme GLV pour la multiplication scalaire

Assume there is an efficient (almost free) endomorphism

$$\phi: G \to G, \ \phi(P) = \lambda_{\phi} P$$

 λ_{ϕ} is large \rightarrow decompose $m = m_0 + \lambda_{\phi} m_1 \mod r$ with $\log m_0 \sim \log m_1 \sim \log m/2$

Multi-exponentiation

Compute $mP = m_0P + m_1\phi(P)$ in $(\log m)/2$ operations.

Save half doublings for a cost of a quarter of additions.

$$E_lpha(\mathbb{F}_q): y^2=x^3+lpha x, \;\; j(E_lpha)=1$$
728 (i.e. CM by $\sqrt{-1},\; D=4)$

•
$$q \equiv 1 \mod 4$$
,
• $\operatorname{let} i \in \mathbb{F}_q \text{ s.t. } i^2 = -1 \in \mathbb{F}_q$
• $\phi : (x, y) \mapsto (-x, iy) \text{ is an endomorphism}$
• $\phi \circ \phi(x, y) = (x, -y)$
• $\phi^2 + \operatorname{Id} = 0 \text{ on } E(\mathbb{F}_q)$
• eigenvalue: $\lambda_{\phi} \equiv \sqrt{-1} \mod \# E(\mathbb{F}_q)$

• this means for P of prime-order r, $\phi(P) = [\lambda_\phi \mod r]P$

Endomorphism: Frobenius map

- Frobenius map, $E(\mathbb{F}_q)$, $(x, y) \in E(\mathbb{F}_{q^n}) \mapsto (x^q, y^q) \in E(\mathbb{F}_{q^n})$. Why ?
 - $E(\mathbb{F}_q): y^2 = x^3 + a_4x + a_6, a_4, a_6 \in \mathbb{F}_q$
 - Not directly useful in this way. Used with twisted curves (Galbraith-Lin-Scott GLS curves)

•
$$j(E) = 1728,8000, -3375 \leftrightarrow \phi = \sqrt{-1}, \sqrt{-2}, \frac{1+\sqrt{-7}}{2}.$$

- $j(E) = 0,54000, -32768 \leftrightarrow \phi = \frac{-1+\sqrt{-3}}{2}, \sqrt{-3}, \frac{1+\sqrt{-11}}{2}.$
- Galbraith-Lin-Scott (GLS) curves (2009): defined over \mathbb{F}_{q^2} instead of \mathbb{F}_q , $j \in \mathbb{F}_q$, one endomorphism $\phi : \phi^2 = -\text{Id}$ on $E(\mathbb{F}_{q^2})$.
 - but still $j \in \mathbb{F}_q$
- These are all available fast endomorphisms.

Fast algorithms for scalar multiplication: GLV

Fast group law computation

Fast modular arithmetic : special primes (ex. $p = 2^{127} - 1$)

Example: No curve E/\mathbb{F}_{q^2} with $p = 2^{127} - 1$ and GLV of dimension 4.

Challenge: the fastest implementation for a given security level

Four dimensional GLV via the Weil restriction

joint work with Aurore Guillevic

▶ ∢ ⊒ ▶

<u>Genus 1</u>

- GLV 2001 : complex multiplication by $\sqrt{-1}, \sqrt{-2}, \frac{1+\sqrt{-7}}{2}, \sqrt{-3}, \frac{1+\sqrt{-11}}{2}.$
- Galbraith-Lin-Scott 2009: curves/ \mathbb{F}_{q^2} , $j \in \mathbb{F}_q$.
- Longa-Sica 2012: 4-dim GLV+GLS

Genus 2

- Mestre, Kohel-Smith, Takashima : explicit real multiplication by √2, √5
- 4-dim. : Buhler-Koblitz, Furukawa-Takahashi

curves

Genus 1

- GLV 2001 : complex multiplication by $\sqrt{-1}, \sqrt{-2}, \frac{1+\sqrt{-7}}{2}, \sqrt{-3}, \frac{1+\sqrt{-11}}{2}.$
- Galbraith-Lin-Scott 2009: curves/ \mathbb{F}_{q^2} , $j \in \mathbb{F}_q$.
- Longa-Sica 2012: 4-dim GLV+GLS

Genus 2

- Mestre, Kohel-Smith, Takashima : explicit real multiplication by √2, √5
- 4-dim. : Buhler-Koblitz, Furukawa-Takahashi curves
- This work: 4-dim.-GLV on Satoh/Satoh-Freeman curves 2009

<u>Genus 1</u>

- GLV 2001 : complex multiplication by $\sqrt{-1}, \sqrt{-2}, \frac{1+\sqrt{-7}}{2}, \sqrt{-3}, \frac{1+\sqrt{-11}}{2}.$
- Galbraith-Lin-Scott 2009: curves/ \mathbb{F}_{q^2} , $j \in \mathbb{F}_q$.
- Longa-Sica 2012: 4-dim GLV+GLS
- This work: 4 dim.-GLV on two families of curves/ \mathbb{F}_{q^2} , but $j \in \mathbb{F}_{q^2}$.

Genus 2

- Mestre, Kohel-Smith, Takashima : explicit real multiplication by √2, √5
- 4-dim. : Buhler-Koblitz, Furukawa-Takahashi curves
- This work: 4-dim.-GLV on Satoh/Satoh-Freeman curves 2009

∃ ► < ∃ ►

4-GLV, ..., 2ⁱ-GLV: time-memory trade-off

- We would like a 4-dimensional decomposition of *m* when computing *mP*
- 2 endomophisms ϕ, ψ of eigenvalues $\lambda_{\phi}, \lambda_{\psi}$
- decompose $m \equiv m_1 + m_2 \lambda_{\phi} + m_3 \lambda_{\psi} + m_4 \lambda_{\phi} \lambda_{\psi} \mod r$ with $\log m_i \sim \frac{1}{4} \log m$
- Store $P, \phi(P), \psi(P), \phi\psi(P), \ldots \Rightarrow 16$ points
- 4-dim. multiexponentiation \rightarrow Save $\frac{3}{4} \log m$ doublings and $\sim \frac{17}{32} \log m$ additions.

Dimension 4 - Longa and Sica 2012

- Curves are ordinary, i.e. endomorphisms form a lattice of dimension 2 \Rightarrow $[1,\phi]$
- we need ψ s.t. $\lambda_{\psi} \equiv \alpha + \beta \lambda_{\phi} \mod r$ and $\alpha, \beta > r^{1/4}$ to have a decomposition

How to construct ψ efficiently computable?

Longa-Sica curves (2012)

Consider GLS curves with small $D \to 2$ endomorphisms ψ : $\psi^2 + 1 = 0$, ϕ : $\phi^2 + D = 0$ for points over \mathbb{F}_{a^2} .

 $\begin{array}{l} \mathcal{C}_1:\;y^2=x^5+ax^3+bx,\;a,b\in\mathbb{F}_q\\ J_{\mathcal{C}_1}\;\text{is the Weil restriction of}\\ E_c/\mathbb{F}_{q^2}:y^2=x^3+27(3c-10)x+108(14-9c),\;\;c=a/\sqrt{b}\end{array}$

Satoh's Jacobians

$$D = 2D' \longrightarrow E_c \frown I_2 \frown ?$$

We start by computing a degree 2 isogeny (i.e. a map between curves) \mathcal{I}_2 from E_c .

Sorina Ionica (IMB)

•
$$E_c/\mathbb{F}_{q^2}$$
: $y^2 = x^3 + 27(3c - 10)x + 108(14 - 9c)$
• E_{-c}/\mathbb{F}_{q^2} : $y^2 = x^3 + 27(-3c - 10)x + 108(14 + 9c)$

- $E_c/\mathbb{F}_{q^2}: y^2 = x^3 + 27(3c 10)x + 108(14 9c)$
- E_{-c}/\mathbb{F}_{q^2} : $y^2 = x^3 + 27(-3c 10)x + 108(14 + 9c)$
- In \mathbb{F}_{q^2} , $\pi_q(c) = -c$
- Go back from E_{-c} to E_c with the Frobenius map

$$\begin{array}{rcl} \mathcal{I}_{2}: E_{c} & \to & E_{-c} \\ (x,y) & \mapsto & \left(\frac{-x}{2} + \frac{162 + 81c}{-2(x-12)}, \frac{-y}{2\sqrt{-2}} \left(1 - \frac{162 + 81c}{(x-12)^{2}}\right)\right) \end{array}$$

- $E_c/\mathbb{F}_{q^2}: y^2 = x^3 + 27(3c 10)x + 108(14 9c)$
- E_{-c}/\mathbb{F}_{q^2} : $y^2 = x^3 + 27(-3c 10)x + 108(14 + 9c)$
- In \mathbb{F}_{q^2} , $\pi_q(c) = -c$
- Go back from E_{-c} to E_c with the Frobenius map

$$\begin{array}{rcl} \mathcal{I}_{2}: E_{c} & \to & E_{-c} \\ (x,y) & \mapsto & \left(\frac{-x}{2} + \frac{162 + 81c}{-2(x-12)}, \frac{-y}{2\sqrt{-2}} \left(1 - \frac{162 + 81c}{(x-12)^{2}}\right)\right) \end{array}$$

- E_c/\mathbb{F}_{q^2} : $y^2 = x^3 + 27(3c 10)x + 108(14 9c)$
- E_{-c}/\mathbb{F}_{q^2} : $y^2 = x^3 + 27(-3c 10)x + 108(14 + 9c)$
- In \mathbb{F}_{q^2} , $\pi_q(c) = -c$
- Go back from E_{-c} to E_c with the Frobenius map
- ϕ_2 is different from the CM

We computed with Vélu's formulas this 2-isogeny

$$\begin{array}{rcl} \mathcal{I}_{2}: E_{c} & \to & E_{-c} \\ (x,y) & \mapsto & \left(\frac{-x}{2} + \frac{162 + 81c}{-2(x-12)}, \frac{-y}{2\sqrt{-2}} \left(1 - \frac{162 + 81c}{(x-12)^{2}}\right)\right) \end{array}$$

- $E_c/\mathbb{F}_{q^2}: y^2 = x^3 + 27(3c 10)x + 108(14 9c)$
- E_{-c}/\mathbb{F}_{q^2} : $y^2 = x^3 + 27(-3c 10)x + 108(14 + 9c)$
- In \mathbb{F}_{q^2} , $\pi_q(c) = -c$
- Go back from E_{-c} to E_c with the Frobenius map
- ϕ_2 is different from the CM
- We can construct a second endomorphism from CM.

Efficient 4-dim. GLV on E_c

- second isogeny $\mathcal{I}_{D'}$ computed with Velu's formulas
- 4-dimensional decomposition using proper values of 1, ϕ_2 , $\phi_{D'}$, $\phi_2 \circ \phi_{D'}$.

•
$$\phi_2^2 \pm 2 = 0$$
, $\phi_{D'}^2 \mp D' = 0$ for points defined over \mathbb{F}_{q^2} .

- $D = 40 = 4 \cdot (2 \cdot 5)$
- $\#E_c(\mathbb{F}_{q^2})$ of the form $(-2n^2 20m^2 + 4)/4$, $4 \mid \#E_c(\mathbb{F}_{q^2})$
- search for m, n s.t. q is prime and $\#E_c(\mathbb{F}_{q^2})$ is almost prime.
- $n = 0 \times 55d23edfa6a1f7e4$
- $m = 0 \times 549906 b 3 e c a 27851$
- *t* = 0xfaca844b264dfaa353355300f9ce9d3a
- $q = 0 \times 9a2a8c914e2d05c3f2616cade9b911ad$
- $r = 0 \times 1735 ce0 c4 fbac46 c2245 c3 ce9 d8 da0244 f9059 ae9 ae4784 d6 b2 f65 b29 c444309$
- $c^2 = 0 \times 40 b634 a ec 52905949 ea 0 fe 36099 cb 21 a$

with q, r prime and $\#E_c(\mathbb{F}_{q^2}) = 4r$.

Operation count at the 128 bit security level

Curve	Method	Operation count	Global estim.
E _c	4-GLV, 16 pts.	2748 <i>m</i> +1668 <i>s</i>	4416 <i>m</i>
D = 4 [LongaSica12]	4-GLV, 16 pts.	1992 <i>m</i> +2412 <i>s</i>	4404 <i>m</i>
E _c	2-GLV, 4 pts.	4704 <i>m</i> +2976 <i>s</i>	7680 <i>m</i>
$J_{\mathcal{C}_1}$	4-GLV, 16 pts.	4500 <i>m</i> + 816 <i>s</i>	5316 <i>m</i>
$J_{\mathcal{C}_1}$	2-GLV, 4 pts.	7968 <i>m</i> +1536 <i>s</i>	9504 <i>m</i>
FKT [Bos et al. 13]	4-GLV, 16 pts.	4500 <i>m</i> + 816 <i>s</i>	5316 <i>m</i>
Kummer [Bos et al. 13]	_	3328 <i>m</i> +2048 <i>s</i>	5376 <i>m</i>

Table : Benchmarks for scalar multiplication at 128 security level

Curve	Method	Timing in ms.	
$E_{1,c}$ this work	4-GLV, 16 pts.	0.002202	
E_1 Longa-Sica	4-GLV, 16 pts.	0.001882	
$E_{1,c}$ GLV	2-GLV, 4pts.	0.004070	
$J_{\mathcal{C}_1}$ this work	4-GLV, 4 pts.	0.001831	