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Lattices

Lattice in C: a discrete (additive) group of rank 2

Example: {a + bi : a,b ∈ Z} = 〈i ,1〉.

Isomorphism of lattices: Λ ∼= Λ′ if Λ′ = αΛ, α ∈ C.

I Every lattice is isomorphic to 〈τ,1〉 , Im τ > 0
I 〈τ,1〉 ∼= 〈τ ′,1〉 if and only if τ ′ = aτ+b

cτ+d ,
[

a b
c d

]
∈ SL2(Z)

I {lattices up to isomorphism} = SL2(Z)\H

H = {τ ∈ C : Im τ > 0} “Poincaré (half)plane”
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j-invariant

I j-invariant: SL2(Z)-automorphic function on H satisfying
j(i) = 1728, j

(
1+
√
−3

2

)
= 0, j(∞) =∞

I “ SL2(Z)-automorphic” means: j(τ) = j
(

aτ+b
cτ+d

)
,[

a b
c d

]
∈ SL2(Z)

I “Fourier expansion”
j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . . ,

q = q(τ) = e2πiτ

I (remark important in the sequel)
|q| small when Im τ large

=⇒ |j(τ)| large when Im τ large
I j-invariant “classifies lattices”:
〈τ,1〉 ∼= 〈τ ′,1〉 ⇐⇒ j(τ) = j(τ ′)
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Complex Multiplication

I End(Λ) = {α ∈ C : αΛ ⊆ Λ};

EndΛ ⊇ Z

I Λ has Complex Multiplication if EndΛ ) Z
I Λ = 〈τ,1〉 has CM⇐⇒ [Q(τ) : Q] = 2
I In this case:

I O = EndΛ is an order in K = Q(τ) of discriminant ∆ = Df 2;
I D = DK < 0 the fundamental discriminant;
I f = [OK : O] the conductor;
I O = Z + fOK = Z

[
∆+
√

∆
2

]
=: O∆;

I if τ is root of at2 + bt + c ∈ Z[t ], (a,b, c) = 1 then
∆ = b2 − 4ac and τ = −b+

√
∆

2a .
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Class Field Theory

I j(τ) algebraic number (even algebraic integer)

I K (j(τ)) is abelian extension of K = Q(τ) (the “Ring Class
Field”)

I [K (j(τ)) : K ] = [Q(j(τ)) : Q] = h(∆)

I h(∆) the class number of the order O∆

I moreover: Gal(K (j(τ))/K ) = Cl(∆)
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The Class Number

I h(∆)→∞ as |∆| → ∞ (Siegel)

I In other words, for h ∈ Z>0 there exist finitely many ∆ with
h(∆) = h.

I In particular (Heegner-Stark) there exist thirteen ∆ with
h(∆) = 1 (the corresponding j belong to Z):

∆ −3 −3 · 22 −3 · 33 −4 −4 · 22 −7 −7 · 22 −8
j 0 243353 −2153 · 53 2633 2333113 −3353 3353173 2653

∆ −11 −19 −43 −67 −163
j −215 −21533 −2183353 −2153353113 −2183353233293

I A funny example (Hermite):
eπ
√

163 = 262537412640768743.99999999999925007 . . .

I τ = 1+
√
−163
2

I eπ
√

163 = −e2πiτ ≈ −j(τ) + 744 ∈ Z

I Currently all ∆ with h∆ ≤ 100 are known (Watkins 2006).
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The Class Number

I h(∆)→∞ as |∆| → ∞ (Siegel)
I In other words, for h ∈ Z>0 there exist finitely many ∆ with

h(∆) = h.
I In particular (Heegner-Stark) there exist thirteen ∆ with

h(∆) = 1 (the corresponding j belong to Z):

∆ −3 −3 · 22 −3 · 33 −4 −4 · 22 −7 −7 · 22 −8
j 0 243353 −2153 · 53 2633 2333113 −3353 3353173 2653

∆ −11 −19 −43 −67 −163
j −215 −21533 −2183353 −2153353113 −2183353233293

I A funny example (Hermite):
eπ
√

163 = 262537412640768743.99999999999925007 . . .

I τ = 1+
√
−163
2

I eπ
√

163 = −e2πiτ ≈ −j(τ) + 744 ∈ Z

I Currently all ∆ with h∆ ≤ 100 are known (Watkins 2006).



The Class Number

I h(∆)→∞ as |∆| → ∞ (Siegel)
I In other words, for h ∈ Z>0 there exist finitely many ∆ with

h(∆) = h.
I In particular (Heegner-Stark) there exist thirteen ∆ with

h(∆) = 1 (the corresponding j belong to Z):

∆ −3 −3 · 22 −3 · 33 −4 −4 · 22 −7 −7 · 22 −8
j 0 243353 −2153 · 53 2633 2333113 −3353 3353173 2653

∆ −11 −19 −43 −67 −163
j −215 −21533 −2183353 −2153353113 −2183353233293

I A funny example (Hermite):
eπ
√

163 = 262537412640768743.99999999999925007 . . .

I τ = 1+
√
−163
2

I eπ
√

163 = −e2πiτ ≈ −j(τ) + 744 ∈ Z

I Currently all ∆ with h∆ ≤ 100 are known (Watkins 2006).



The Class Number

I h(∆)→∞ as |∆| → ∞ (Siegel)
I In other words, for h ∈ Z>0 there exist finitely many ∆ with

h(∆) = h.
I In particular (Heegner-Stark) there exist thirteen ∆ with

h(∆) = 1 (the corresponding j belong to Z):

∆ −3 −3 · 22 −3 · 33 −4 −4 · 22 −7 −7 · 22 −8
j 0 243353 −2153 · 53 2633 2333113 −3353 3353173 2653

∆ −11 −19 −43 −67 −163
j −215 −21533 −2183353 −2153353113 −2183353233293

I A funny example (Hermite):
eπ
√

163 = 262537412640768743.99999999999925007 . . .
I τ = 1+

√
−163
2

I eπ
√

163 = −e2πiτ ≈ −j(τ) + 744 ∈ Z

I Currently all ∆ with h∆ ≤ 100 are known (Watkins 2006).



The Class Number

I h(∆)→∞ as |∆| → ∞ (Siegel)
I In other words, for h ∈ Z>0 there exist finitely many ∆ with

h(∆) = h.
I In particular (Heegner-Stark) there exist thirteen ∆ with

h(∆) = 1 (the corresponding j belong to Z):

∆ −3 −3 · 22 −3 · 33 −4 −4 · 22 −7 −7 · 22 −8
j 0 243353 −2153 · 53 2633 2333113 −3353 3353173 2653

∆ −11 −19 −43 −67 −163
j −215 −21533 −2183353 −2153353113 −2183353233293

I A funny example (Hermite):
eπ
√

163 = 262537412640768743.99999999999925007 . . .
I τ = 1+

√
−163
2

I eπ
√

163 = −e2πiτ ≈ −j(τ) + 744 ∈ Z

I Currently all ∆ with h∆ ≤ 100 are known (Watkins 2006).



The Class Number

I h(∆)→∞ as |∆| → ∞ (Siegel)
I In other words, for h ∈ Z>0 there exist finitely many ∆ with

h(∆) = h.
I In particular (Heegner-Stark) there exist thirteen ∆ with

h(∆) = 1 (the corresponding j belong to Z):

∆ −3 −3 · 22 −3 · 33 −4 −4 · 22 −7 −7 · 22 −8
j 0 243353 −2153 · 53 2633 2333113 −3353 3353173 2653

∆ −11 −19 −43 −67 −163
j −215 −21533 −2183353 −2153353113 −2183353233293

I A funny example (Hermite):
eπ
√

163 = 262537412640768743.99999999999925007 . . .
I τ = 1+

√
−163
2

I eπ
√

163 = −e2πiτ ≈ −j(τ) + 744 ∈ Z

I Currently all ∆ with h∆ ≤ 100 are known (Watkins 2006).



Complex Multiplication
Lattices
j-invariant
Complex Multiplication
Class Field Theory
The Class Number

Theorem of André
Special Points and Special Curves
Theorem of André

CM-Points on Straight Lines
Kühne’s “uniformity observation”
CM-Points on Straight Lines

The Proof
Equality of CM-fields
The Proof

Proof of Theorem ECMF
Discriminants with Class Group Annihilated by 2
Proof of Theorem ECMF



Special Points and Special Curves

τ imaginary quadratic⇒ j(τ) ∈ Q̄

CM-point or special point on C2:
(
j(τ1), j(τ2)

)
.

Question: can an irreducible plane curve F (x1, x2) = 0 contain
infinitely many CM-points?

Special curves:

I vertical line x1 = j(τ1)

I horizontal line x2 = j(τ2)

I Y0(N) realized as ΦN(x1, x2) = 0
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Modular Curves and Modular Polynomials
I ΦN(x1, x2) Nth “modular polynomial”: ΦN

(
j(z), j(Nz)

)
= 0

I
(
j(τ), j(Nτ)

)
∈ Y0(N) for every τ .

I More generally:
for γ ∈ GL2(Q) there exists N such that(
j(τ), j(γτ)

)
∈ Y0(N) for every τ .

Polynomials ΦN , N ≤ 3

Φ1(x, y) = x − y

Φ2(x, y) =− x2y2 + x3 + y3 + 1488x2y + 1488xy2 + 40773375xy

− 162000x2 − 162000y2 + 8748000000x + 8748000000y − 157464000000000

Φ3(x, y) = x4 + y4 − x3y3 + 2232x3y2 + 2232x2y3 − 1069956x3y − 1069956xy3

+ 36864000x3 + 36864000y3 + 2587918086x2y2

+ 8900222976000x2y + 8900222976000xy2 + 452984832000000x2 + 452984832000000y2

− 770845966336000000xy + 1855425871872000000000x + 1855425871872000000000y
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Theorem of André
Theorem (André, 1998) A non-special irreducible plane curve
can have only finitely many special points.

Different proofs:

I André (1998)
I Edixhoven (1998, GRH)
I Pila (2009, extends to higher dimension)

All non-effective, use Siegel-Brauer
I Breuer (2001, GRH, effective)
I B., Masser, Zannier (2013, effective)
I Kühne (2012, 2013, effective)

Particular cases:

I no CM-points on x1 + x2 = 1 (Kühne 2013)
I no CM-points on x1x2 = 1 (B., Masser, Zannier 2013)
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Kühne’s “uniformity observation”

Kühne (2013):

I If (j(τ1), j(τ2)) belongs to a non-special straight line over a
n.f. L, then |∆1|, |∆2| ≤ ceff([L : Q]).

(∆i discriminant of the CM-order End〈τi ,1〉)
I In particular: all CM-points belonging to non-special

straight lines defined over Q can (in principle) be listed
explicitly.

I Bajolet (2014): software to determine all CM-points on a
given line.



Kühne’s “uniformity observation”

Kühne (2013):

I If (j(τ1), j(τ2)) belongs to a non-special straight line over a
n.f. L, then |∆1|, |∆2| ≤ ceff([L : Q]).
(∆i discriminant of the CM-order End〈τi ,1〉)

I In particular: all CM-points belonging to non-special
straight lines defined over Q can (in principle) be listed
explicitly.

I Bajolet (2014): software to determine all CM-points on a
given line.



Kühne’s “uniformity observation”

Kühne (2013):

I If (j(τ1), j(τ2)) belongs to a non-special straight line over a
n.f. L, then |∆1|, |∆2| ≤ ceff([L : Q]).
(∆i discriminant of the CM-order End〈τi ,1〉)

I In particular: all CM-points belonging to non-special
straight lines defined over Q can (in principle) be listed
explicitly.

I Bajolet (2014): software to determine all CM-points on a
given line.



Kühne’s “uniformity observation”

Kühne (2013):

I If (j(τ1), j(τ2)) belongs to a non-special straight line over a
n.f. L, then |∆1|, |∆2| ≤ ceff([L : Q]).
(∆i discriminant of the CM-order End〈τi ,1〉)

I In particular: all CM-points belonging to non-special
straight lines defined over Q can (in principle) be listed
explicitly.

I Bajolet (2014): software to determine all CM-points on a
given line.



CM-Points on Straight Lines

Special straight lines:

I vertical x1 = j(τ1) and horizontal x2 = j(τ2) lines;
I x1 = x2 (which is Y0(1)).

Obvious cases (j(τ1), j(τ2)) belongs to a non-special straight
line over Q in one of the following cases:

I j(τ1), j(τ2) ∈ Q;
I j(τ1) 6= j(τ2), Q(j(τ1)) = Q(j(τ2)) = K , [K : Q] = 2.

(Can be easily listed.)

Theorem (A., B., Pizarro; May 2014) If a CM-points belongs to
a non-special straight line over Q then we have one of the two
cases above.
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Equality of CM-fields

Theorem ECMF (based on ideas of André, Edixhoven and
Kühne) Assume that L = Q(j(τ1)) = Q(j(τ2)).

I If Q(τ1) 6= Q(τ2) then L is the table:

Field L ∆ Cl(∆)
Q −3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163 trivial
Q(
√

2) −24,−32,−64,−88 Z/2Z
Q(
√

3) −36,−48 Z/2Z
Q(
√

5) −15,−20,−35,−40,−60,−75,−100,−115,−235 Z/2Z
Q(
√

13) −52,−91,−403 Z/2Z
Q(
√

17) −51,−187 Z/2Z
Q(
√

2,
√

3) −96,−192,−288 (Z/2Z)2

Q(
√

3,
√

5) −180,−240 (Z/2Z)2

Q(
√

5,
√

13) −195,−520,−715 (Z/2Z)2

Q(
√

2,
√

5) −120,−160,−280,−760 (Z/2Z)2

Q(
√

5,
√

17) −340,−595 (Z/2Z)2

Q(
√

2,
√

3,
√

5) −480,−960 (Z/2Z)3

I If Q(τ1) = Q(τ2) then ∆1/∆2 ∈ {1,4,1/4} or
∆1,∆2 ∈ {−3,−12,−27}.
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The Proof
May assume:

I τi = −bi +
√

∆i
2ai

;

I Q(j(τ1)) = Q(j(τ2)) = L
I [L : Q] = h(∆1) = h(∆2) ≥ 3
I j(τ1) 6= j(τ2).

Crucial steps:

I Q(τ1) = Q(τ2);
I a1 = a2 = 1;

Consequences:

I ∆1 = ∆, ∆2 = ∆ or 4∆.

I τ1 = −b1+
√

∆
2 , τ2 = −b2+

√
∆

2 or τ2 = −b2+2
√

∆
2

I In the first case j(τ1) = j(τ2)

I In the second case (j(τ1), j(τ2)) ∈ Y0(2).
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The Proof (continued)

I Y0(2) is curve of degree 4

I Hence |Y0(2) ∩ (straight line)| ≤ 4
I Hence 3 ≤ h(∆) = h(4∆) ≤ 4
I There is only five ∆ with this property:

h = 3: −23, −31;
h = 4: −7 · 32, −39, −55.

One rules them out using PARI.
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Discriminants with Class Group Annihilated by 2

Known ∆ with Cl(∆)2 = 1

− 3,−3 · 22
,−3 · 32

,−3 · 42
,−3 · 52

,−3 · 72
,−3 · 82

,−4,−4 · 22
,−4 · 32

,−4 · 42
,−4 · 52

,

− 7,−7 · 22
,−7 · 42

,−7 · 82
,−8,−8 · 22

,−8 · 32
,−8 · 62

,−11,−11 · 32
,

− 15,−15 · 22
,−15 · 42

,−15 · 82
,−19,−20,−20 · 32

,−24,−24 · 22
,−35,−35 · 32

,−40,−40 · 22
,

− 43,−51,−52,−67,−84,−88,−88 · 22
,−91,−115,−120,−120 · 22

,−123,−132,−148,−163,

− 168,−168 · 22
,−187,−195,−228,−232,−232 · 22

,−235,−267,−280,−280 · 22
,−312,−312 · 22

,

− 340,−372,−403,−408,−408 · 22
,−420,−427,−435,−483,−520,−520 · 22

,−532,−555,−595,

− 627,−660,−708,−715,−760,−760 · 22
,−795,−840,−840 · 22

,−1012,−1092,−1155,

− 1320,−1320 · 22
,−1380,−1428,−1435,−1540,−1848,−1848 · 22

,−1995,−3003,−3315,−5460.

I Weinberger (1973): All field discriminants D with Cl(D)2 = 1 belong to the list above with at most one
exception.

I Corollary: There exists D∗ such that: if ∆ = Df 2 with Cl(∆)2 = 1 is not in the list then D = D∗.

I Class numbers of discriminants from the list are at most 16.
I Watkins (2006): the list contains all ∆ with |Cl(∆)2| = 1 and h(∆) ≤ 64.

I Hence: if ∆ with Cl(∆)2 = 1 is not in the list then h(∆) ≥ 128.
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Proof of Theorem ECMF

I Assume that Q(τ1) 6= Q(τ2) and Q(j(τ1)) = Q(j(τ2)).

I Set M = Q(τ1, τ2, j(τ1)) = Q(τ1, τ2, j(τ2)).

I André, Edixhoven (1998): G = Gal(M/Q(τ1, τ2)) is annihilated by 2.

Q(τ1)
Cl(∆1)

Q(τ1, j(τ1))

Q Q(τ1, τ2)
G

M

Q(τ2)
Cl(∆2)

Q(τ2, j(τ2))

I Consequence: each Cl(∆i ) is of type Z/4× Z/2× · · · × Z/2 or Z/2× · · · × Z/2.

I Simple group theory: first type is impossible. Hence both Cl(∆i ) are annihilated by 2.

I Weinberger: since D1 6= D2

one of ∆1, ∆2 is in the list.

I Hence the other is in the list as well.
I Verification with PARI completes the proof.
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