CM-Points on Straight Lines A joint work with Amalia Pizarro-Madariaga

Bill Allombert & Yuri Bilu

Bordeaux September 23, 2014

Lattices

j-invariant

Complex Multiplication

Class Field Theory

The Class Number

Theorem of André

Special Points and Special Curves

Theorem of André

CM-Points on Straight Lines

Kühne's "uniformity observation"

CM-Points on Straight Lines

The Proof

Equality of CM-fields

The Proof

Proof of Theorem ECMF

Discriminants with Class Group Annihilated by 2

Proof of Theorem ECMF

Lattices

j-invariant

Complex Multiplication

Class Field Theory

The Class Number

Theorem of André

Special Points and Special Curves

Theorem of André

CM-Points on Straight Lines

Kühne's "uniformity observation"

CM-Points on Straight Lines

The Proof

Equality of CM-fields

The Proof

Proof of Theorem ECMF

Discriminants with Class Group Annihilated by 2

Proof of Theorem ECMF

Lattice in \mathbb{C} : a discrete (additive) group of rank 2

Lattice in \mathbb{C} : a discrete (additive) group of rank 2

Example: $\{a + bi : a, b \in \mathbb{Z}\} = \langle i, 1 \rangle$.

Lattice in \mathbb{C} : a discrete (additive) group of rank 2

Example: $\{a + bi : a, b \in \mathbb{Z}\} = \langle i, 1 \rangle$.

Isomorphism of lattices: $\Lambda \cong \Lambda'$ if $\Lambda' = \alpha \Lambda$, $\alpha \in \mathbb{C}$.

Lattice in \mathbb{C} : a discrete (additive) group of rank 2

Example: $\{a + bi : a, b \in \mathbb{Z}\} = \langle i, 1 \rangle$.

Isomorphism of lattices: $\Lambda \cong \Lambda'$ if $\Lambda' = \alpha \Lambda$, $\alpha \in \mathbb{C}$.

• Every lattice is isomorphic to $\langle \tau, 1 \rangle$, Im $\tau > 0$

Lattice in \mathbb{C} : a discrete (additive) group of rank 2

Example: $\{a + bi : a, b \in \mathbb{Z}\} = \langle i, 1 \rangle$.

Isomorphism of lattices: $\Lambda \cong \Lambda'$ if $\Lambda' = \alpha \Lambda$, $\alpha \in \mathbb{C}$.

• Every lattice is isomorphic to $\langle \tau, 1 \rangle$, Im $\tau > 0$

Lattice in \mathbb{C} : a discrete (additive) group of rank 2

Example: $\{a + bi : a, b \in \mathbb{Z}\} = \langle i, 1 \rangle$.

Isomorphism of lattices: $\Lambda \cong \Lambda'$ if $\Lambda' = \alpha \Lambda$, $\alpha \in \mathbb{C}$.

- Every lattice is isomorphic to $\langle \tau, 1 \rangle$, Im $\tau > 0$
- $\blacktriangleright \ \langle \tau, \mathbf{1} \rangle \cong \langle \tau', \mathbf{1} \rangle \text{ if and only if } \tau' = \frac{a\tau + b}{c\tau + d}, \quad \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] \in \mathrm{SL}_2(\mathbb{Z})$

Lattice in \mathbb{C} : a discrete (additive) group of rank 2

Example: $\{a + bi : a, b \in \mathbb{Z}\} = \langle i, 1 \rangle$.

Isomorphism of lattices: $\Lambda \cong \Lambda'$ if $\Lambda' = \alpha \Lambda$, $\alpha \in \mathbb{C}$.

- ▶ Every lattice is isomorphic to $\langle \tau, 1 \rangle$, Im $\tau > 0$
- $\blacktriangleright \ \langle \tau, \mathbf{1} \rangle \cong \langle \tau', \mathbf{1} \rangle \text{ if and only if } \tau' = \frac{a\tau + b}{c\tau + d}, \quad \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] \in \mathrm{SL}_2(\mathbb{Z})$
- {lattices up to isomorphism} = $SL_2(\mathbb{Z})\backslash \mathbb{H}$

 $\mathbb{H} = \{ \tau \in \mathbb{C} : \operatorname{Im} \tau > 0 \}$ "Poincaré (half)plane"

▶ *j*-invariant: $SL_2(\mathbb{Z})$ -automorphic function on \mathbb{H} satisfying $j(i) = 1728, \qquad j\left(\frac{1+\sqrt{-3}}{2}\right) = 0, \qquad j(\infty) = \infty$

- ▶ *j*-invariant: $SL_2(\mathbb{Z})$ -automorphic function on \mathbb{H} satisfying j(i) = 1728, $j\left(\frac{1+\sqrt{-3}}{2}\right) = 0$, $j(\infty) = \infty$
- " $\mathrm{SL}_2(\mathbb{Z})$ -automorphic" means: $j(\tau) = j\left(\frac{a\tau+b}{c\tau+d}\right)$, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z})$

- ▶ *j*-invariant: $SL_2(\mathbb{Z})$ -automorphic function on \mathbb{H} satisfying j(i) = 1728, $j\left(\frac{1+\sqrt{-3}}{2}\right) = 0$, $j(\infty) = \infty$
- " $\mathrm{SL}_2(\mathbb{Z})$ -automorphic" means: $j(\tau) = j\left(\frac{a\tau+b}{c\tau+d}\right)$, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z})$
- ► "Fourier expansion" $j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + \dots,$ $q = q(\tau) = e^{2\pi i \tau}$

- ▶ *j*-invariant: $SL_2(\mathbb{Z})$ -automorphic function on \mathbb{H} satisfying j(i) = 1728, $j\left(\frac{1+\sqrt{-3}}{2}\right) = 0$, $j(\infty) = \infty$
- " $\mathrm{SL}_2(\mathbb{Z})$ -automorphic" means: $j(\tau) = j\left(rac{a au+b}{c au+d}
 ight)$, $\left[egin{array}{c} a & b \\ c & d \end{array}
 ight] \in \mathrm{SL}_2(\mathbb{Z})$
- ► "Fourier expansion" $j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + \dots,$ $q = q(\tau) = e^{2\pi i \tau}$
- (remark important in the sequel)
 |q| small when Im τ large

- ▶ *j*-invariant: $SL_2(\mathbb{Z})$ -automorphic function on \mathbb{H} satisfying j(i) = 1728, $j\left(\frac{1+\sqrt{-3}}{2}\right) = 0$, $j(\infty) = \infty$
- " $\mathrm{SL}_2(\mathbb{Z})$ -automorphic" means: $j(\tau) = j\left(rac{a au+b}{c au+d}
 ight)$, $\left[egin{array}{c} a & b \\ c & d \end{array}
 ight] \in \mathrm{SL}_2(\mathbb{Z})$
- ► "Fourier expansion" $j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + \dots,$ $q = q(\tau) = e^{2\pi i \tau}$
- (remark important in the sequel)
 |q| small when Im τ large

- ▶ *j*-invariant: $SL_2(\mathbb{Z})$ -automorphic function on \mathbb{H} satisfying j(i) = 1728, $j\left(\frac{1+\sqrt{-3}}{2}\right) = 0$, $j(\infty) = \infty$
- " $\mathrm{SL}_2(\mathbb{Z})$ -automorphic" means: $j(\tau) = j\left(\frac{a\tau+b}{c\tau+d}\right)$, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z})$
- ► "Fourier expansion" $j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + \dots,$ $q = q(\tau) = e^{2\pi i \tau}$
- (remark important in the sequel) |q| small when $\operatorname{Im} \tau$ large $\Longrightarrow |j(\tau)|$ large when $\operatorname{Im} \tau$ large

- ▶ *j*-invariant: $SL_2(\mathbb{Z})$ -automorphic function on \mathbb{H} satisfying j(i) = 1728, $j\left(\frac{1+\sqrt{-3}}{2}\right) = 0$, $j(\infty) = \infty$
- " $\mathrm{SL}_2(\mathbb{Z})$ -automorphic" means: $j(\tau) = j\left(rac{a au+b}{c au+d}
 ight)$, $\left[egin{array}{c} a & b \ c & d \end{array}
 ight] \in \mathrm{SL}_2(\mathbb{Z})$
- ► "Fourier expansion" $j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + \dots,$ $q = q(\tau) = e^{2\pi i \tau}$
- (remark important in the sequel) |q| small when $\operatorname{Im} au$ large $\Longrightarrow |j(au)|$ large when $\operatorname{Im} au$ large
- ▶ *j*-invariant "classifies lattices": $\langle \tau, 1 \rangle \cong \langle \tau', 1 \rangle \iff j(\tau) = j(\tau')$

▶ End(
$$\Lambda$$
) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ };

▶ End(
$$\Lambda$$
) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ };

- ► End(Λ) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ }; End $\Lambda \supseteq \mathbb{Z}$
- ▶ Λ has Complex Multiplication if End $\Lambda \supsetneq \mathbb{Z}$

- ► End(Λ) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ }; End $\Lambda \supseteq \mathbb{Z}$
- ▶ Λ has Complex Multiplication if End $\Lambda \supseteq \mathbb{Z}$
- $\Lambda = \langle \tau, 1 \rangle$ has CM $\iff [\mathbb{Q}(\tau) : \mathbb{Q}] = 2$

- ► End(Λ) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ }; End $\Lambda \supseteq \mathbb{Z}$
- ▶ Λ has Complex Multiplication if End $\Lambda \supsetneq \mathbb{Z}$
- $\Lambda = \langle \tau, 1 \rangle$ has CM $\iff [\mathbb{Q}(\tau) : \mathbb{Q}] = 2$
- In this case:

- ► End(Λ) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ }; End $\Lambda \supseteq \mathbb{Z}$
- ▶ Λ has Complex Multiplication if End $\Lambda \supsetneq \mathbb{Z}$
- $\Lambda = \langle \tau, 1 \rangle$ has CM $\iff [\mathbb{Q}(\tau) : \mathbb{Q}] = 2$
- In this case:

- ► End(Λ) = { $\alpha \in \mathbb{C} : \alpha\Lambda \subseteq \Lambda$ }; End $\Lambda \supseteq \mathbb{Z}$
- ▶ Λ has Complex Multiplication if End $\Lambda \supsetneq \mathbb{Z}$
- $\Lambda = \langle \tau, 1 \rangle$ has CM $\iff [\mathbb{Q}(\tau) : \mathbb{Q}] = 2$
- In this case:
 - ▶ $\mathcal{O} = \text{End}\Lambda$ is an order in $K = \mathbb{Q}(\tau)$ of discriminant $\Delta = Df^2$;

- ► End(Λ) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ }; End $\Lambda \supseteq \mathbb{Z}$
- ▶ Λ has Complex Multiplication if End $\Lambda \supseteq \mathbb{Z}$
- $\Lambda = \langle \tau, 1 \rangle$ has CM $\iff [\mathbb{Q}(\tau) : \mathbb{Q}] = 2$
- In this case:
 - $\mathcal{O} = \operatorname{End}\Lambda$ is an order in $K = \mathbb{Q}(\tau)$ of discriminant $\Delta = Df^2$;
 - $D = D_K < 0$ the fundamental discriminant;

- ► End(Λ) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ }; End $\Lambda \supseteq \mathbb{Z}$
- ▶ Λ has Complex Multiplication if End $\Lambda \supsetneq \mathbb{Z}$
- $\Lambda = \langle \tau, 1 \rangle$ has CM $\iff [\mathbb{Q}(\tau) : \mathbb{Q}] = 2$
- ▶ In this case:
 - $\mathcal{O} = \operatorname{End}\Lambda$ is an order in $K = \mathbb{Q}(\tau)$ of discriminant $\Delta = Df^2$;
 - ▶ $D = D_K < 0$ the fundamental discriminant;
 - $f = [\mathcal{O}_K : \mathcal{O}]$ the conductor;

- ► End(Λ) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ }; End $\Lambda \supseteq \mathbb{Z}$
- ▶ Λ has Complex Multiplication if End $\Lambda \supsetneq \mathbb{Z}$
- $\Lambda = \langle \tau, 1 \rangle$ has CM $\iff [\mathbb{Q}(\tau) : \mathbb{Q}] = 2$
- In this case:
 - ▶ $\mathcal{O} = \text{End}\Lambda$ is an order in $K = \mathbb{Q}(\tau)$ of discriminant $\Delta = Df^2$;
 - ▶ $D = D_K < 0$ the fundamental discriminant;
 - $f = [\mathcal{O}_K : \mathcal{O}]$ the **conductor**;
 - $\triangleright \mathcal{O} = \mathbb{Z} + f\mathcal{O}_{\mathcal{K}} = \mathbb{Z} \left[\frac{\Delta + \sqrt{\Delta}}{2} \right] =: \mathcal{O}_{\Delta};$

- ► End(Λ) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ }; End $\Lambda \supseteq \mathbb{Z}$
- ▶ Λ has Complex Multiplication if End $\Lambda \supseteq \mathbb{Z}$
- $\Lambda = \langle \tau, 1 \rangle$ has CM $\iff [\mathbb{Q}(\tau) : \mathbb{Q}] = 2$
- In this case:
 - $\mathcal{O} = \operatorname{End}\Lambda$ is an order in $K = \mathbb{Q}(\tau)$ of discriminant $\Delta = Df^2$;
 - ▶ $D = D_K < 0$ the fundamental discriminant;
 - $f = [\mathcal{O}_K : \mathcal{O}]$ the conductor;
 - $\qquad \qquad \bullet \ \, \mathcal{O} = \mathbb{Z} + f\mathcal{O}_K = \mathbb{Z} \left[\frac{\Delta + \sqrt{\Delta}}{2} \right] =: \mathcal{O}_\Delta;$
 - if τ is root of $at^2 + bt + c \in \mathbb{Z}[t]$,

- ► End(Λ) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ }; End $\Lambda \supseteq \mathbb{Z}$
- ▶ Λ has Complex Multiplication if End $\Lambda \supseteq \mathbb{Z}$
- $\Lambda = \langle \tau, 1 \rangle$ has CM $\iff [\mathbb{Q}(\tau) : \mathbb{Q}] = 2$
- In this case:
 - $\mathcal{O} = \operatorname{End}\Lambda$ is an order in $K = \mathbb{Q}(\tau)$ of discriminant $\Delta = Df^2$;
 - ▶ $D = D_K < 0$ the fundamental discriminant;
 - $f = [\mathcal{O}_K : \mathcal{O}]$ the conductor;
 - $\qquad \qquad \bullet \ \, \mathcal{O} = \mathbb{Z} + f\mathcal{O}_K = \mathbb{Z} \left[\frac{\Delta + \sqrt{\Delta}}{2} \right] =: \mathcal{O}_\Delta;$
 - if τ is root of $at^2 + bt + c \in \mathbb{Z}[t]$,

- ► End(Λ) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ }; End $\Lambda \supseteq \mathbb{Z}$
- ▶ Λ has Complex Multiplication if End $\Lambda \supseteq \mathbb{Z}$
- $\Lambda = \langle \tau, 1 \rangle$ has CM $\iff [\mathbb{Q}(\tau) : \mathbb{Q}] = 2$
- In this case:
 - $\mathcal{O} = \operatorname{End}\Lambda$ is an order in $K = \mathbb{Q}(\tau)$ of discriminant $\Delta = Df^2$;
 - $D = D_K < 0$ the fundamental discriminant;
 - $f = [\mathcal{O}_K : \mathcal{O}]$ the conductor;
 - $\qquad \qquad \bullet \quad \mathcal{O} = \mathbb{Z} + f\mathcal{O}_{\mathcal{K}} = \mathbb{Z} \left[\frac{\Delta + \sqrt{\Delta}}{2} \right] =: \mathcal{O}_{\Delta};$
 - if τ is root of $at^2 + bt + c \in \mathbb{Z}[t]$, (a, b, c) = 1

- ► End(Λ) = { $\alpha \in \mathbb{C} : \alpha \Lambda \subseteq \Lambda$ }; End $\Lambda \supseteq \mathbb{Z}$
- ▶ Λ has Complex Multiplication if End $\Lambda \supseteq \mathbb{Z}$
- $\Lambda = \langle \tau, 1 \rangle$ has CM $\iff [\mathbb{Q}(\tau) : \mathbb{Q}] = 2$
- In this case:
 - ▶ $\mathcal{O} = \text{End}\Lambda$ is an order in $K = \mathbb{Q}(\tau)$ of discriminant $\Delta = Df^2$;
 - $D = D_K < 0$ the fundamental discriminant;
 - $f = [\mathcal{O}_K : \mathcal{O}]$ the conductor;
 - $\qquad \qquad \bullet \quad \mathcal{O} = \mathbb{Z} + f\mathcal{O}_K = \mathbb{Z}\left[\frac{\Delta + \sqrt{\Delta}}{2}\right] =: \mathcal{O}_\Delta;$
 - if τ is root of $at^2+bt+c\in\mathbb{Z}[t], \quad (a,b,c)=1$ then $\Delta=b^2-4ac$ and $\tau=\frac{-b+\sqrt{\Delta}}{2a}.$

• $j(\tau)$ algebraic number (even algebraic integer)

- ▶ $j(\tau)$ algebraic number (even algebraic integer)
- ▶ $K(j(\tau))$ is abelian extension of $K = \mathbb{Q}(\tau)$ (the "Ring Class Field")

- ▶ $j(\tau)$ algebraic number (even algebraic integer)
- ▶ $K(j(\tau))$ is abelian extension of $K = \mathbb{Q}(\tau)$ (the "Ring Class Field")
- $[K(j(\tau)):K] = [\mathbb{Q}(j(\tau)):\mathbb{Q}] = h(\Delta)$

- ▶ $j(\tau)$ algebraic number (even algebraic integer)
- ▶ $K(j(\tau))$ is abelian extension of $K = \mathbb{Q}(\tau)$ (the "Ring Class Field")
- $[K(j(\tau)):K] = [\mathbb{Q}(j(\tau)):\mathbb{Q}] = h(\Delta)$
- ▶ $h(\Delta)$ the class number of the order \mathcal{O}_{Δ}

- ▶ $j(\tau)$ algebraic number (even algebraic integer)
- ▶ $K(j(\tau))$ is abelian extension of $K = \mathbb{Q}(\tau)$ (the "Ring Class Field")
- $[K(j(\tau)):K] = [\mathbb{Q}(j(\tau)):\mathbb{Q}] = h(\Delta)$
- ▶ $h(\Delta)$ the class number of the order \mathcal{O}_{Δ}
- ▶ moreover: $Gal(K(j(\tau))/K) = Cl(\Delta)$

▶ $h(\Delta) \to \infty$ as $|\Delta| \to \infty$ (Siegel)

- ▶ $h(\Delta) \to \infty$ as $|\Delta| \to \infty$ (Siegel)
- ▶ In other words, for $h \in \mathbb{Z}_{>0}$ there exist finitely many Δ with $h(\Delta) = h$.

- ▶ $h(\Delta) \to \infty$ as $|\Delta| \to \infty$ (Siegel)
- ▶ In other words, for $h \in \mathbb{Z}_{>0}$ there exist finitely many Δ with $h(\Delta) = h$.
- ▶ In particular (Heegner-Stark) there exist thirteen Δ with $h(\Delta) = 1$ (the corresponding j belong to \mathbb{Z}):

- ▶ $h(\Delta) \to \infty$ as $|\Delta| \to \infty$ (Siegel)
- ▶ In other words, for $h \in \mathbb{Z}_{>0}$ there exist finitely many Δ with $h(\Delta) = h$.
- ▶ In particular (Heegner-Stark) there exist thirteen Δ with $h(\Delta) = 1$ (the corresponding j belong to \mathbb{Z}):

- ▶ $h(\Delta) \to \infty$ as $|\Delta| \to \infty$ (Siegel)
- ▶ In other words, for $h \in \mathbb{Z}_{>0}$ there exist finitely many Δ with $h(\Delta) = h$.
- ▶ In particular (Heegner-Stark) there exist thirteen Δ with $h(\Delta) = 1$ (the corresponding j belong to \mathbb{Z}):

- ▶ $h(\Delta) \to \infty$ as $|\Delta| \to \infty$ (Siegel)
- ▶ In other words, for $h \in \mathbb{Z}_{>0}$ there exist finitely many Δ with $h(\Delta) = h$.
- ▶ In particular (Heegner-Stark) there exist thirteen Δ with $h(\Delta) = 1$ (the corresponding j belong to \mathbb{Z}):

$$au = \frac{1 + \sqrt{-163}}{2}$$

- ▶ $h(\Delta) \to \infty$ as $|\Delta| \to \infty$ (Siegel)
- ▶ In other words, for $h \in \mathbb{Z}_{>0}$ there exist finitely many Δ with $h(\Delta) = h$.
- ▶ In particular (Heegner-Stark) there exist thirteen Δ with $h(\Delta) = 1$ (the corresponding j belong to \mathbb{Z}):

$$\tau = \frac{1+\sqrt{-163}}{2}$$

•
$$e^{\pi\sqrt{163}} = -e^{2\pi i \tau} \approx -i(\tau) + 744 \in \mathbb{Z}$$

- ▶ $h(\Delta) \to \infty$ as $|\Delta| \to \infty$ (Siegel)
- ▶ In other words, for $h \in \mathbb{Z}_{>0}$ there exist finitely many Δ with $h(\Delta) = h$.
- ▶ In particular (Heegner-Stark) there exist thirteen Δ with $h(\Delta) = 1$ (the corresponding j belong to \mathbb{Z}):

$$au = \frac{1 + \sqrt{-163}}{2}$$

•
$$e^{\pi\sqrt{163}} = -e^{2\pi i \tau} \approx -i(\tau) + 744 \in \mathbb{Z}$$

▶ Currently all \triangle with $h_{\triangle} \le 100$ are known (Watkins 2006).

Complex Multiplication

Lattices

j-invariant

Complex Multiplication

Class Field Theory

The Class Number

Theorem of André

Special Points and Special Curves

Theorem of André

CM-Points on Straight Lines

Kühne's "uniformity observation"

CM-Points on Straight Lines

The Proof

Equality of CM-fields

The Proof

Proof of Theorem ECMF

Discriminants with Class Group Annihilated by 2

Proof of Theorem ECMF

au imaginary quadratic \Rightarrow $j(au) \in \bar{\mathbb{Q}}$

au imaginary quadratic \Rightarrow $j(au) \in \bar{\mathbb{Q}}$

CM-point or special point on \mathbb{C}^2 : $(j(\tau_1), j(\tau_2))$.

au imaginary quadratic \Rightarrow $j(au) \in \bar{\mathbb{Q}}$

CM-point or special point on \mathbb{C}^2 : $(j(\tau_1), j(\tau_2))$.

Question: can an irreducible plane curve $F(x_1, x_2) = 0$ contain infinitely many CM-points?

au imaginary quadratic \Rightarrow $j(au) \in \bar{\mathbb{Q}}$

CM-point or special point on \mathbb{C}^2 : $(j(\tau_1), j(\tau_2))$.

Question: can an irreducible plane curve $F(x_1, x_2) = 0$ contain infinitely many CM-points?

Special curves:

• vertical line $x_1 = j(\tau_1)$

au imaginary quadratic \Rightarrow $j(au) \in \bar{\mathbb{Q}}$

CM-point or special point on \mathbb{C}^2 : $(j(\tau_1), j(\tau_2))$.

Question: can an irreducible plane curve $F(x_1, x_2) = 0$ contain infinitely many CM-points?

Special curves:

- vertical line $x_1 = j(\tau_1)$
- horizontal line $x_2 = j(\tau_2)$

au imaginary quadratic \Rightarrow $j(au) \in \bar{\mathbb{Q}}$

CM-point or special point on \mathbb{C}^2 : $(j(\tau_1), j(\tau_2))$.

Question: can an irreducible plane curve $F(x_1, x_2) = 0$ contain infinitely many CM-points?

Special curves:

- vertical line $x_1 = j(\tau_1)$
- horizontal line $x_2 = j(\tau_2)$
- $Y_0(N)$ realized as $\Phi_N(x_1, x_2) = 0$

• $\Phi_N(x_1, x_2)$ Nth "modular polynomial": $\Phi_N(j(z), j(Nz)) = 0$

- $\Phi_N(x_1, x_2)$ Nth "modular polynomial": $\Phi_N(j(z), j(Nz)) = 0$
- ▶ $(j(\tau), j(N\tau)) \in Y_0(N)$ for every τ .

- $\Phi_N(x_1, x_2)$ Nth "modular polynomial": $\Phi_N(j(z), j(Nz)) = 0$
- ▶ $(j(\tau), j(N\tau)) \in Y_0(N)$ for every τ .
- More generally: for $\gamma \in GL_2(\mathbb{Q})$ there exists N such that $(j(\tau), j(\gamma\tau)) \in Y_0(N)$ for every τ .

- $\Phi_N(x_1, x_2)$ Nth "modular polynomial": $\Phi_N(j(z), j(Nz)) = 0$
- ▶ $(j(\tau), j(N\tau)) \in Y_0(N)$ for every τ .
- More generally: for $\gamma \in GL_2(\mathbb{Q})$ there exists N such that $(j(\tau), j(\gamma\tau)) \in Y_0(N)$ for every τ .

- $\Phi_N(x_1, x_2)$ Nth "modular polynomial": $\Phi_N(j(z), j(Nz)) = 0$
- ▶ $(j(\tau), j(N\tau)) \in Y_0(N)$ for every τ .
- More generally: for $\gamma \in GL_2(\mathbb{Q})$ there exists N such that $(j(\tau), j(\gamma\tau)) \in Y_0(N)$ for every τ .

Polynomials Φ_N , $N \leq 3$

$$\begin{split} & \Phi_1(x,y) = x-y \\ & \Phi_2(x,y) = -x^2y^2 + x^3 + y^3 + 1488x^2y + 1488xy^2 + 40773375xy \\ & - 162000x^2 - 162000y^2 + 8748000000x + 8748000000y - 157464000000000 \\ & \Phi_3(x,y) = x^4 + y^4 - x^3y^3 + 2232x^3y^2 + 2232x^2y^3 - 1069956x^3y - 1069956xy^3 \\ & + 36864000x^3 + 36864000y^3 + 2587918086x^2y^2 \\ & + 8900222976000x^2y + 8900222976000xy^2 + 452984832000000x^2 + 452984832000000y^2 \\ & - 770845966336000000xy + 1855425871872000000000x + 1855425871872000000000y \end{split}$$

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

Different proofs:

André (1998)

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

- André (1998)
- Edixhoven (1998, GRH)

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

- André (1998)
- Edixhoven (1998, GRH)
- Pila (2009, extends to higher dimension)

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

Different proofs:

- André (1998)
- Edixhoven (1998, GRH)
- ▶ Pila (2009, extends to higher dimension)

All non-effective, use Siegel-Brauer

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

- André (1998)
- Edixhoven (1998, GRH)
- Pila (2009, extends to higher dimension)
 All non-effective, use Siegel-Brauer
- Breuer (2001, GRH, effective)

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

- André (1998)
- Edixhoven (1998, GRH)
- Pila (2009, extends to higher dimension)
 All non-effective, use Siegel-Brauer
- Breuer (2001, GRH, effective)
- ▶ B., Masser, Zannier (2013, effective)

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

- André (1998)
- Edixhoven (1998, GRH)
- Pila (2009, extends to higher dimension)
 All non-effective, use Siegel-Brauer
- Breuer (2001, GRH, effective)
- ▶ B., Masser, Zannier (2013, effective)
- Kühne (2012, 2013, effective)

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

- André (1998)
- Edixhoven (1998, GRH)
- Pila (2009, extends to higher dimension)
 All non-effective, use Siegel-Brauer
- Breuer (2001, GRH, effective)
- ▶ B., Masser, Zannier (2013, effective)
- Kühne (2012, 2013, effective)

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

Different proofs:

- André (1998)
- Edixhoven (1998, GRH)
- Pila (2009, extends to higher dimension)
 All non-effective, use Siegel-Brauer
- Breuer (2001, GRH, effective)
- ▶ B., Masser, Zannier (2013, effective)
- Kühne (2012, 2013, effective)

Particular cases:

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

Different proofs:

- André (1998)
- Edixhoven (1998, GRH)
- Pila (2009, extends to higher dimension)
 All non-effective, use Siegel-Brauer
- Breuer (2001, GRH, effective)
- ▶ B., Masser, Zannier (2013, effective)
- Kühne (2012, 2013, effective)

Particular cases:

▶ no CM-points on $x_1 + x_2 = 1$ (Kühne 2013)

Theorem (André, 1998) A non-special irreducible plane curve can have only finitely many special points.

Different proofs:

- André (1998)
- Edixhoven (1998, GRH)
- Pila (2009, extends to higher dimension)
 All non-effective, use Siegel-Brauer
- ► Breuer (2001, GRH, effective)
- ▶ B., Masser, Zannier (2013, effective)
- Kühne (2012, 2013, effective)

Particular cases:

- ▶ no CM-points on $x_1 + x_2 = 1$ (Kühne 2013)
- ▶ no CM-points on $x_1x_2 = 1$ (B., Masser, Zannier 2013)

Complex Multiplication

Lattices

j-invariant

Complex Multiplication

Class Field Theory

The Class Number

Theorem of André

Special Points and Special Curves

Theorem of André

CM-Points on Straight Lines

Kühne's "uniformity observation"

CM-Points on Straight Lines

The Proof

Equality of CM-fields

The Proof

Proof of Theorem ECMF

Discriminants with Class Group Annihilated by 2

Proof of Theorem ECMF

Kühne's "uniformity observation"

Kühne (2013):

▶ If $(j(\tau_1), j(\tau_2))$ belongs to a non-special straight line over a n.f. L, then $|\Delta_1|, |\Delta_2| \leq c_{\text{eff}}([L:\mathbb{Q}])$.

Kühne's "uniformity observation"

Kühne (2013):

If $(j(\tau_1), j(\tau_2))$ belongs to a non-special straight line over a n.f. L, then $|\Delta_1|, |\Delta_2| \leq c_{\text{eff}}([L:\mathbb{Q}])$. $(\Delta_i \text{ discriminant of the CM-order } \operatorname{End}\langle \tau_i, 1 \rangle)$

Kühne's "uniformity observation"

Kühne (2013):

- ▶ If $(j(\tau_1), j(\tau_2))$ belongs to a non-special straight line over a n.f. L, then $|\Delta_1|, |\Delta_2| \le c_{\text{eff}}([L:\mathbb{Q}])$. $(\Delta_i \text{ discriminant of the CM-order } \text{End}\langle \tau_i, 1 \rangle)$
- In particular: all CM-points belonging to non-special straight lines defined over ℚ can (in principle) be listed explicitly.

Kühne's "uniformity observation"

Kühne (2013):

- ▶ If $(j(\tau_1), j(\tau_2))$ belongs to a non-special straight line over a n.f. L, then $|\Delta_1|, |\Delta_2| \le c_{\text{eff}}([L:\mathbb{Q}])$. $(\Delta_i \text{ discriminant of the CM-order } \text{End}\langle \tau_i, 1 \rangle)$
- In particular: all CM-points belonging to non-special straight lines defined over ℚ can (in principle) be listed explicitly.
- Bajolet (2014): software to determine all CM-points on a given line.

Special straight lines:

Special straight lines:

• vertical $x_1 = j(\tau_1)$ and horizontal $x_2 = j(\tau_2)$ lines;

Special straight lines:

- vertical $x_1 = j(\tau_1)$ and horizontal $x_2 = j(\tau_2)$ lines;
- $x_1 = x_2$ (which is $Y_0(1)$).

Special straight lines:

- vertical $x_1 = j(\tau_1)$ and horizontal $x_2 = j(\tau_2)$ lines;
- $x_1 = x_2$ (which is $Y_0(1)$).

Special straight lines:

- vertical $x_1 = j(\tau_1)$ and horizontal $x_2 = j(\tau_2)$ lines;
- $x_1 = x_2$ (which is $Y_0(1)$).

Obvious cases $(j(\tau_1), j(\tau_2))$ belongs to a non-special straight line over $\mathbb Q$ in one of the following cases:

Special straight lines:

- vertical $x_1 = j(\tau_1)$ and horizontal $x_2 = j(\tau_2)$ lines;
- $x_1 = x_2$ (which is $Y_0(1)$).

Obvious cases $(j(\tau_1), j(\tau_2))$ belongs to a non-special straight line over $\mathbb Q$ in one of the following cases:

Special straight lines:

- vertical $x_1 = j(\tau_1)$ and horizontal $x_2 = j(\tau_2)$ lines;
- $x_1 = x_2$ (which is $Y_0(1)$).

Obvious cases $(j(\tau_1), j(\tau_2))$ belongs to a non-special straight line over \mathbb{Q} in one of the following cases:

- $\blacktriangleright j(\tau_1), j(\tau_2) \in \mathbb{Q};$
- ▶ $j(\tau_1) \neq j(\tau_2)$, $\mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2)) = K$, $[K : \mathbb{Q}] = 2$.

Special straight lines:

- vertical $x_1 = j(\tau_1)$ and horizontal $x_2 = j(\tau_2)$ lines;
- $x_1 = x_2$ (which is $Y_0(1)$).

Obvious cases $(j(\tau_1), j(\tau_2))$ belongs to a non-special straight line over \mathbb{Q} in one of the following cases:

- $\blacktriangleright j(\tau_1), j(\tau_2) \in \mathbb{Q};$
- ▶ $j(\tau_1) \neq j(\tau_2)$, $\mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2)) = K$, $[K : \mathbb{Q}] = 2$.

Special straight lines:

- vertical $x_1 = j(\tau_1)$ and horizontal $x_2 = j(\tau_2)$ lines;
- $x_1 = x_2$ (which is $Y_0(1)$).

Obvious cases $(j(\tau_1), j(\tau_2))$ belongs to a non-special straight line over \mathbb{Q} in one of the following cases:

(Can be easily listed.)

Special straight lines:

- vertical $x_1 = j(\tau_1)$ and horizontal $x_2 = j(\tau_2)$ lines;
- $x_1 = x_2$ (which is $Y_0(1)$).

Obvious cases $(j(\tau_1), j(\tau_2))$ belongs to a non-special straight line over \mathbb{Q} in one of the following cases:

(Can be easily listed.)

Theorem (A., B., Pizarro; May 2014) If a CM-points belongs to a non-special straight line over $\mathbb Q$ then we have one of the two cases above.

Complex Multiplication

Lattices

i-invariant

Complex Multiplication

Class Field Theory

The Class Number

Theorem of André

Special Points and Special Curves

Theorem of André

CM-Points on Straight Lines

Kühne's "uniformity observation"

CM-Points on Straight Lines

The Proof

Equality of CM-fields

The Proof

Proof of Theorem ECMF

Discriminants with Class Group Annihilated by 2

Proof of Theorem ECMF

Equality of CM-fields

Theorem ECMF (based on ideas of André, Edixhoven and Kühne) Assume that $L = \mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.

Equality of CM-fields

Theorem ECMF (based on ideas of André, Edixhoven and Kühne) Assume that $L = \mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.

▶ If $\mathbb{Q}(\tau_1) \neq \mathbb{Q}(\tau_2)$ then *L* is the table:

Field L	Δ	Cl(Δ)
Q	-3, -4, -7, -8, -11, -12, -16, -19, -27, -28, -43, -67, -163	trivial
$\mathbb{Q}(\sqrt{2})$	-24, -32, -64, -88	$\mathbb{Z}/2\mathbb{Z}$
$\mathbb{Q}(\sqrt{3})$	-36, -48	$\mathbb{Z}/2\mathbb{Z}$
$\mathbb{Q}(\sqrt{5})$	-15, -20, -35, -40, -60, -75, -100, -115, -235	$\mathbb{Z}/2\mathbb{Z}$
$\mathbb{Q}(\sqrt{13})$	-52, -91, -403	$\mathbb{Z}/2\mathbb{Z}$
$\mathbb{Q}(\sqrt{17})$	-51, -187	$\mathbb{Z}/2\mathbb{Z}$
$\mathbb{Q}(\sqrt{2},\sqrt{3})$	-96, -192, -288	$(\mathbb{Z}/2\mathbb{Z})^2$
$\mathbb{Q}(\sqrt{3},\sqrt{5})$	-180, -240	$(\mathbb{Z}/2\mathbb{Z})^2$
$\mathbb{Q}(\sqrt{5},\sqrt{13})$	-195, -520, -715	$(\mathbb{Z}/2\mathbb{Z})^2$
$\mathbb{Q}(\sqrt{2},\sqrt{5})$	-120, -160, -280, -760	$(\mathbb{Z}/2\mathbb{Z})^2$
$\mathbb{Q}(\sqrt{5},\sqrt{17})$	-340, -595	$(\mathbb{Z}/2\mathbb{Z})^2$
$\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})$	-480, -960	$(\mathbb{Z}/2\mathbb{Z})^3$
$ \mathbb{Q}(\sqrt{3}, \sqrt{5}) $ $ \mathbb{Q}(\sqrt{5}, \sqrt{13}) $ $ \mathbb{Q}(\sqrt{2}, \sqrt{5}) $ $ \mathbb{Q}(\sqrt{5}, \sqrt{17}) $	-180, -240 -195, -520, -715 -120, -160, -280, -760 -340, -595	$ \frac{(\mathbb{Z}/2\mathbb{Z})^2}{(\mathbb{Z}/2\mathbb{Z})^2} $ $ \frac{(\mathbb{Z}/2\mathbb{Z})^2}{(\mathbb{Z}/2\mathbb{Z})^2} $

Equality of CM-fields

Theorem ECMF (based on ideas of André, Edixhoven and Kühne) Assume that $L = \mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.

▶ If $\mathbb{Q}(\tau_1) \neq \mathbb{Q}(\tau_2)$ then *L* is the table:

Δ	Cl(Δ)
-3, -4, -7, -8, -11, -12, -16, -19, -27, -28, -43, -67, -163	trivial
-24, -32, -64, -88	$\mathbb{Z}/2\mathbb{Z}$
-36, -48	$\mathbb{Z}/2\mathbb{Z}$
-15, -20, -35, -40, -60, -75, -100, -115, -235	$\mathbb{Z}/2\mathbb{Z}$
-52, -91, -403	$\mathbb{Z}/2\mathbb{Z}$
-51, -187	$\mathbb{Z}/2\mathbb{Z}$
-96, -192, -288	$(\mathbb{Z}/2\mathbb{Z})^2$
-180, -240	$(\mathbb{Z}/2\mathbb{Z})^2$
-195, -520, -715	$(\mathbb{Z}/2\mathbb{Z})^2$
-120, -160, -280, -760	$(\mathbb{Z}/2\mathbb{Z})^2$
-340, -595	$(\mathbb{Z}/2\mathbb{Z})^2$
-480, -960	$(\mathbb{Z}/2\mathbb{Z})^3$
	-3, -4, -7, -8, -11, -12, -16, -19, -27, -28, -43, -67, -163 -24, -32, -64, -88 -36, -48 -15, -20, -35, -40, -60, -75, -100, -115, -235 -52, -91, -403 -51, -187 -96, -192, -288 -180, -240 -195, -520, -715 -120, -160, -280, -760 -340, -595

▶ If $\mathbb{Q}(\tau_1) = \mathbb{Q}(\tau_2)$ then $\Delta_1/\Delta_2 \in \{1, 4, 1/4\}$ or $\Delta_1, \Delta_2 \in \{-3, -12, -27\}.$

$$\qquad \qquad \tau_i = \frac{-b_i + \sqrt{\Delta_i}}{2a_i};$$

$$ightharpoonup au_i = rac{-b_i + \sqrt{\Delta_i}}{2a_i};$$

$$\blacktriangleright \ \mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2)) = L$$

- $\qquad \mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2)) = L$
- $\blacktriangleright [L:\mathbb{Q}] = h(\Delta_1) = h(\Delta_2) \geq 3$

- $\blacktriangleright \ [L:\mathbb{Q}] = h(\Delta_1) = h(\Delta_2) \geq 3$
- $j(\tau_1) \neq j(\tau_2).$

- $\blacktriangleright \ [L:\mathbb{Q}] = h(\Delta_1) = h(\Delta_2) \geq 3$
- $j(\tau_1) \neq j(\tau_2).$

May assume:

- $ightharpoonup au_i = rac{-b_i + \sqrt{\Delta_i}}{2a_i};$
- $[L:\mathbb{Q}] = h(\Delta_1) = h(\Delta_2) \geq 3$
- $j(\tau_1) \neq j(\tau_2).$

Crucial steps:

$$\quad \blacktriangleright \ \mathbb{Q}(\tau_1) = \mathbb{Q}(\tau_2);$$

May assume:

- $\qquad \mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2)) = L$
- $\blacktriangleright [L:\mathbb{Q}] = h(\Delta_1) = h(\Delta_2) \geq 3$
- $j(\tau_1) \neq j(\tau_2).$

Crucial steps:

- $\blacktriangleright \mathbb{Q}(\tau_1) = \mathbb{Q}(\tau_2);$
- $a_1 = a_2 = 1$;

May assume:

- $ightharpoonup au_i = rac{-b_i + \sqrt{\Delta_i}}{2a_i};$
- $\qquad \mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2)) = L$
- $\blacktriangleright [L:\mathbb{Q}] = h(\Delta_1) = h(\Delta_2) \geq 3$
- $j(\tau_1) \neq j(\tau_2).$

Crucial steps:

- $\blacktriangleright \mathbb{Q}(\tau_1) = \mathbb{Q}(\tau_2);$
- $a_1 = a_2 = 1$;

May assume:

- $[L:\mathbb{Q}] = h(\Delta_1) = h(\Delta_2) \geq 3$
- $j(\tau_1) \neq j(\tau_2).$

Crucial steps:

- $\quad \blacktriangleright \ \mathbb{Q}(\tau_1) = \mathbb{Q}(\tau_2);$
- ▶ $a_1 = a_2 = 1$;

Consequences:

 $\qquad \qquad \blacktriangle_1 = \Delta, \, \Delta_2 = \Delta \text{ or } 4\Delta.$

May assume:

- $[L:\mathbb{Q}] = h(\Delta_1) = h(\Delta_2) \geq 3$
- $j(\tau_1) \neq j(\tau_2).$

Crucial steps:

- $\quad \blacktriangleright \ \mathbb{Q}(\tau_1) = \mathbb{Q}(\tau_2);$
- $a_1 = a_2 = 1$;

Consequences:

- $\blacktriangleright \ \Delta_1 = \Delta, \, \Delta_2 = \Delta \text{ or } 4\Delta.$
- lacksquare $au_1=rac{-b_1+\sqrt{\Delta}}{2},\, au_2=rac{-b_2+\sqrt{\Delta}}{2}$ or $au_2=rac{-b_2+2\sqrt{\Delta}}{2}$

May assume:

- $\qquad \mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2)) = L$
- $[L:\mathbb{Q}] = h(\Delta_1) = h(\Delta_2) \geq 3$
- $j(\tau_1) \neq j(\tau_2).$

Crucial steps:

- ▶ $a_1 = a_2 = 1$;

Consequences:

- lacksquare $au_1=rac{-b_1+\sqrt{\Delta}}{2},\, au_2=rac{-b_2+\sqrt{\Delta}}{2}$ or $au_2=rac{-b_2+2\sqrt{\Delta}}{2}$
- ▶ In the first case $j(\tau_1) = j(\tau_2)$

May assume:

- $[L:\mathbb{Q}] = h(\Delta_1) = h(\Delta_2) \geq 3$
- $j(\tau_1) \neq j(\tau_2).$

Crucial steps:

- $\blacktriangleright \ \mathbb{Q}(\tau_1) = \mathbb{Q}(\tau_2);$
- ▶ $a_1 = a_2 = 1$;

Consequences:

- au $au_1=rac{-b_1+\sqrt{\Delta}}{2},\, au_2=rac{-b_2+\sqrt{\Delta}}{2}$ or $au_2=rac{-b_2+2\sqrt{\Delta}}{2}$
- ▶ In the first case $j(\tau_1) = j(\tau_2)$
- ▶ In the second case $(j(\tau_1), j(\tau_2)) \in Y_0(2)$.

 $ightharpoonup Y_0(2)$ is curve of degree 4

- $ightharpoonup Y_0(2)$ is curve of degree 4
- ▶ Hence $|Y_0(2) \cap (\text{straight line})| \le 4$

- Y₀(2) is curve of degree 4
- ▶ Hence $|Y_0(2) \cap (\text{straight line})| \le 4$
- ▶ Hence $3 \le h(\Delta) = h(4\Delta) \le 4$

- Y₀(2) is curve of degree 4
- ▶ Hence $|Y_0(2) \cap (\text{straight line})| \le 4$
- ▶ Hence $3 \le h(\Delta) = h(4\Delta) \le 4$
- ► There is only five ∆ with this property:

- Y₀(2) is curve of degree 4
- ▶ Hence $|Y_0(2) \cap (\text{straight line})| \le 4$
- ▶ Hence $3 \le h(\Delta) = h(4\Delta) \le 4$
- ► There is only five ∆ with this property:

- Y₀(2) is curve of degree 4
- ▶ Hence $|Y_0(2) \cap (\text{straight line})| \le 4$
- ▶ Hence $3 \le h(\Delta) = h(4\Delta) \le 4$
- There is only five ∆ with this property:

$$h = 3$$
: -23 , -31 ;

- Y₀(2) is curve of degree 4
- ▶ Hence $|Y_0(2) \cap (\text{straight line})| \le 4$
- ▶ Hence $3 \le h(\Delta) = h(4\Delta) \le 4$
- There is only five Δ with this property:

$$h = 3$$
: -23, -31;
 $h = 4$: -7 · 3², -39, -55.

- Y₀(2) is curve of degree 4
- ▶ Hence $|Y_0(2) \cap (\text{straight line})| \le 4$
- ▶ Hence $3 \le h(\Delta) = h(4\Delta) \le 4$
- There is only five Δ with this property:

$$h = 3$$
: -23, -31;
 $h = 4$: -7 · 3², -39, -55.

The Proof (continued)

- Y₀(2) is curve of degree 4
- ▶ Hence $|Y_0(2) \cap (\text{straight line})| \le 4$
- ▶ Hence $3 \le h(\Delta) = h(4\Delta) \le 4$
- ► There is only five ∆ with this property:

$$h = 3$$
: -23, -31;
 $h = 4$: -7 · 3², -39, -55.

One rules them out using PARI.

Complex Multiplication

Lattices

j-invariant

Complex Multiplication

Class Field Theory

The Class Number

Theorem of André

Special Points and Special Curves

Theorem of André

CM-Points on Straight Lines

Kühne's "uniformity observation"

CM-Points on Straight Lines

The Proof

Equality of CM-fields

The Proof

Proof of Theorem ECMF

Discriminants with Class Group Annihilated by 2

$$-3, -3 \cdot 2^2, -3 \cdot 3^2, -3 \cdot 4^2, -3 \cdot 5^2, -3 \cdot 7^2, -3 \cdot 8^2, -4, -4 \cdot 2^2, -4 \cdot 3^2, -4 \cdot 4^2, -4 \cdot 5^2, \\ -7, -7 \cdot 2^2, -7 \cdot 4^2, -7 \cdot 8^2, -8, -8 \cdot 2^2, -8 \cdot 3^2, -8 \cdot 6^2, -11, -11 \cdot 3^2, \\ -15, -15 \cdot 2^2, -15 \cdot 4^2, -15 \cdot 8^2, -19, -20, -20 \cdot 3^2, -24, -24 \cdot 2^2, -35, -35 \cdot 3^2, -40, -40 \cdot 2^2, \\ -43, -51, -52, -67, -84, -88, -88 \cdot 2^2, -91, -115, -120, -120 \cdot 2^2, -123, -132, -148, -163, \\ -168, -168 \cdot 2^2, -187, -195, -228, -232, -232 \cdot 2^2, -235, -267, -280, -280 \cdot 2^2, -312, -312 \cdot 2^2, \\ -340, -372, -403, -408, -408 \cdot 2^2, -420, -427, -435, -483, -520, -520 \cdot 2^2, -532, -555, -595, \\ -627, -660, -708, -715, -760, -760 \cdot 2^2, -795, -840, -840 \cdot 2^2, -1012, -1092, -1155, \\ -1320, -1320 \cdot 2^2, -1380, -1428, -1435, -1540, -1848, -1848 \cdot 2^2, -1995, -3003, -3315, -5460.$$

Known \triangle with $Cl(\triangle)^2 = 1$

$$\begin{array}{l} -3, -3 \cdot 2^2, -3 \cdot 3^2, -3 \cdot 4^2, -3 \cdot 5^2, -3 \cdot 7^2, -3 \cdot 8^2, -4, -4 \cdot 2^2, -4 \cdot 3^2, -4 \cdot 4^2, -4 \cdot 5^2, \\ -7, -7 \cdot 2^2, -7 \cdot 4^2, -7 \cdot 8^2, -8, -8 \cdot 2^2, -8 \cdot 3^2, -8 \cdot 6^2, -11, -11 \cdot 3^2, \\ -15, -15 \cdot 2^2, -15 \cdot 4^2, -15 \cdot 8^2, -19, -20, -20 \cdot 3^2, -24, -24 \cdot 2^2, -35, -35 \cdot 3^2, -40, -40 \cdot 2^2, \\ -43, -51, -52, -67, -84, -88, -88 \cdot 2^2, -91, -115, -120, -120 \cdot 2^2, -123, -132, -148, -163, \\ -168, -168 \cdot 2^2, -187, -195, -228, -232, -232 \cdot 2^2, -235, -267, -280, -280 \cdot 2^2, -312, -312 \cdot 2^2, \\ -340, -372, -403, -408, -408 \cdot 2^2, -420, -427, -435, -483, -520, -520 \cdot 2^2, -532, -555, -595, \\ -627, -660, -708, -715, -760, -760 \cdot 2^2, -795, -840, -840 \cdot 2^2, -1012, -1092, -1155, \\ -1320, -1320 \cdot 2^2, -1380, -1428, -1435, -1540, -1848, -1848 \cdot 2^2, -1995, -3003, -3315, -5460. \end{array}$$

Weinberger (1973): All field discriminants D with $CI(D)^2 = 1$ belong to the list above

Known \triangle with $Cl(\triangle)^2 = 1$

$$\begin{array}{l} -3, -3 \cdot 2^2, -3 \cdot 3^2, -3 \cdot 4^2, -3 \cdot 5^2, -3 \cdot 7^2, -3 \cdot 8^2, -4, -4 \cdot 2^2, -4 \cdot 3^2, -4 \cdot 4^2, -4 \cdot 5^2, \\ -7, -7 \cdot 2^2, -7 \cdot 4^2, -7 \cdot 8^2, -8, -8 \cdot 2^2, -8 \cdot 3^2, -8 \cdot 6^2, -11, -11 \cdot 3^2, \\ -15, -15 \cdot 2^2, -15 \cdot 4^2, -15 \cdot 8^2, -19, -20, -20 \cdot 3^2, -24, -24 \cdot 2^2, -35, -35 \cdot 3^2, -40, -40 \cdot 2^2, \\ -43, -51, -52, -67, -84, -88, -88 \cdot 2^2, -91, -115, -120, -120 \cdot 2^2, -123, -132, -148, -163, \\ -168, -168 \cdot 2^2, -187, -195, -228, -232, -232 \cdot 2^2, -235, -267, -280, -280 \cdot 2^2, -312, -312 \cdot 2^2, \\ -340, -372, -403, -408, -408 \cdot 2^2, -420, -427, -435, -483, -520, -520 \cdot 2^2, -532, -555, -595, \\ -627, -660, -708, -715, -760, -760 \cdot 2^2, -795, -840, -840 \cdot 2^2, -1012, -1092, -1155, \\ -1320, -1320 \cdot 2^2, -1380, -1428, -1435, -1540, -1848, -1848 \cdot 2^2, -1995, -3003, -3315, -5460. \end{array}$$

Weinberger (1973): All field discriminants D with $CI(D)^2 = 1$ belong to the list above

Known \triangle with $Cl(\triangle)^2 = 1$

$$\begin{array}{l} -3, -3 \cdot 2^2, -3 \cdot 3^2, -3 \cdot 4^2, -3 \cdot 5^2, -3 \cdot 7^2, -3 \cdot 8^2, -4, -4 \cdot 2^2, -4 \cdot 3^2, -4 \cdot 4^2, -4 \cdot 5^2, \\ -7, -7 \cdot 2^2, -7 \cdot 4^2, -7 \cdot 8^2, -8, -8 \cdot 2^2, -8 \cdot 3^2, -8 \cdot 6^2, -11, -11 \cdot 3^2, \\ -15, -15 \cdot 2^2, -15 \cdot 4^2, -15 \cdot 8^2, -19, -20, -20 \cdot 3^2, -24, -24 \cdot 2^2, -35, -35 \cdot 3^2, -40, -40 \cdot 2^2, \\ -43, -51, -52, -67, -84, -88, -88 \cdot 2^2, -91, -115, -120, -120 \cdot 2^2, -123, -132, -148, -163, \\ -168, -168 \cdot 2^2, -187, -195, -228, -232, -232 \cdot 2^2, -235, -267, -280, -280 \cdot 2^2, -312, -312 \cdot 2^2, \\ -340, -372, -403, -408, -408 \cdot 2^2, -420, -427, -435, -483, -520, -520 \cdot 2^2, -532, -555, -595, \\ -627, -660, -708, -715, -760, -760 \cdot 2^2, -795, -840, -840 \cdot 2^2, -1012, -1092, -1155, \\ -1320, -1320 \cdot 2^2, -1380, -1428, -1435, -1540, -1848, -1848 \cdot 2^2, -1995, -3003, -3315, -5460. \end{array}$$

Weinberger (1973): All field discriminants D with CI(D)² = 1 belong to the list above with at most one exception.

$$\begin{array}{l} -3, -3 \cdot 2^2, -3 \cdot 3^2, -3 \cdot 4^2, -3 \cdot 5^2, -3 \cdot 7^2, -3 \cdot 8^2, -4, -4 \cdot 2^2, -4 \cdot 3^2, -4 \cdot 4^2, -4 \cdot 5^2, \\ -7, -7 \cdot 2^2, -7 \cdot 4^2, -7 \cdot 8^2, -8, -8 \cdot 2^2, -8 \cdot 3^2, -8 \cdot 6^2, -11, -11 \cdot 3^2, \\ -15, -15 \cdot 2^2, -15 \cdot 4^2, -15 \cdot 8^2, -19, -20, -20 \cdot 3^2, -24, -24 \cdot 2^2, -35, -35 \cdot 3^2, -40, -40 \cdot 2^2, \\ -43, -51, -52, -67, -84, -88, -88 \cdot 2^2, -91, -115, -120, -120 \cdot 2^2, -123, -132, -148, -163, \\ -168, -168 \cdot 2^2, -187, -195, -228, -232, -232 \cdot 2^2, -235, -267, -280, -280 \cdot 2^2, -312, -312 \cdot 2^2, \\ -340, -372, -403, -408, -408 \cdot 2^2, -420, -427, -435, -483, -520, -520 \cdot 2^2, -532, -555, -595, \\ -627, -660, -708, -715, -760, -760 \cdot 2^2, -795, -840, -840 \cdot 2^2, -1012, -1092, -1155, \\ -1320, -1320 \cdot 2^2, -1380, -1428, -1435, -1540, -1848, -1848 \cdot 2^2, -1995, -3003, -3315, -5460. \end{array}$$

- **Weinberger** (1973): All field discriminants D with $CI(D)^2 = 1$ belong to the list above with at most one exception.
- **Corollary:** There exists D^* such that: if $\Delta = Df^2$ with $Cl(\Delta)^2 = 1$ is **not** in the list then $D = D^*$.

$$\begin{array}{l} -3, -3 \cdot 2^2, -3 \cdot 3^2, -3 \cdot 4^2, -3 \cdot 5^2, -3 \cdot 7^2, -3 \cdot 8^2, -4, -4 \cdot 2^2, -4 \cdot 3^2, -4 \cdot 4^2, -4 \cdot 5^2, \\ -7, -7 \cdot 2^2, -7 \cdot 4^2, -7 \cdot 8^2, -8, -8 \cdot 2^2, -8 \cdot 3^2, -8 \cdot 6^2, -11, -11 \cdot 3^2, \\ -15, -15 \cdot 2^2, -15 \cdot 4^2, -15 \cdot 8^2, -19, -20, -20 \cdot 3^2, -24, -24 \cdot 2^2, -35, -35 \cdot 3^2, -40, -40 \cdot 2^2, \\ -43, -51, -52, -67, -84, -88, -88 \cdot 2^2, -91, -115, -120, -120 \cdot 2^2, -123, -132, -148, -163, \\ -168, -168 \cdot 2^2, -187, -195, -228, -232, -232 \cdot 2^2, -235, -267, -280, -280 \cdot 2^2, -312, -312 \cdot 2^2, \\ -340, -372, -403, -408, -408 \cdot 2^2, -420, -427, -435, -483, -520, -520 \cdot 2^2, -532, -555, -595, \\ -627, -660, -708, -715, -760, -760 \cdot 2^2, -795, -840, -840 \cdot 2^2, -1012, -1092, -1155, \\ -1320, -1320 \cdot 2^2, -1380, -1428, -1435, -1540, -1848, -1848 \cdot 2^2, -1995, -3003, -3315, -5460. \end{array}$$

- **Weinberger** (1973): All field discriminants D with $Cl(D)^2 = 1$ belong to the list above with at most one exception.
- Corollary: There exists D^* such that: if $\Delta = Df^2$ with $Cl(\Delta)^2 = 1$ is **not** in the list then $D = D^*$.
- Class numbers of discriminants from the list are at most 16.

$$\begin{array}{l} -3, -3 \cdot 2^2, -3 \cdot 3^2, -3 \cdot 4^2, -3 \cdot 5^2, -3 \cdot 7^2, -3 \cdot 8^2, -4, -4 \cdot 2^2, -4 \cdot 3^2, -4 \cdot 4^2, -4 \cdot 5^2, \\ -7, -7 \cdot 2^2, -7 \cdot 4^2, -7 \cdot 8^2, -8, -8 \cdot 2^2, -8 \cdot 3^2, -8 \cdot 6^2, -11, -11 \cdot 3^2, \\ -15, -15 \cdot 2^2, -15 \cdot 4^2, -15 \cdot 8^2, -19, -20, -20 \cdot 3^2, -24, -24 \cdot 2^2, -35, -35 \cdot 3^2, -40, -40 \cdot 2^2, \\ -43, -51, -52, -67, -84, -88, -88 \cdot 2^2, -91, -115, -120, -120 \cdot 2^2, -123, -132, -148, -163, \\ -168, -168 \cdot 2^2, -187, -195, -228, -232, -232 \cdot 2^2, -235, -267, -280, -280 \cdot 2^2, -312, -312 \cdot 2^2, \\ -340, -372, -403, -408, -408 \cdot 2^2, -420, -427, -435, -483, -520, -520 \cdot 2^2, -532, -555, -595, \\ -627, -660, -708, -715, -760, -760 \cdot 2^2, -795, -840, -840 \cdot 2^2, -1012, -1092, -1155, \\ -1320, -1320 \cdot 2^2, -1380, -1428, -1435, -1540, -1848, -1848 \cdot 2^2, -1995, -3003, -3315, -5460. \end{array}$$

- **Weinberger** (1973): All field discriminants D with $Cl(D)^2 = 1$ belong to the list above with at most one exception.
- Corollary: There exists D^* such that: if $\Delta = Df^2$ with $Cl(\Delta)^2 = 1$ is **not** in the list then $D = D^*$.
- Class numbers of discriminants from the list are at most 16.
- **Watkins** (2006): the list contains all Δ with $|CI(\Delta)^2| = 1$ and $h(\Delta) \le 64$.

$$\begin{array}{l} -3, -3 \cdot 2^2, -3 \cdot 3^2, -3 \cdot 4^2, -3 \cdot 5^2, -3 \cdot 7^2, -3 \cdot 8^2, -4, -4 \cdot 2^2, -4 \cdot 3^2, -4 \cdot 4^2, -4 \cdot 5^2, \\ -7, -7 \cdot 2^2, -7 \cdot 4^2, -7 \cdot 8^2, -8, -8 \cdot 2^2, -8 \cdot 3^2, -8 \cdot 6^2, -11, -11 \cdot 3^2, \\ -15, -15 \cdot 2^2, -15 \cdot 4^2, -15 \cdot 8^2, -19, -20, -20 \cdot 3^2, -24, -24 \cdot 2^2, -35, -35 \cdot 3^2, -40, -40 \cdot 2^2, \\ -43, -51, -52, -67, -84, -88, -88 \cdot 2^2, -91, -115, -120, -120 \cdot 2^2, -123, -132, -148, -163, \\ -168, -168 \cdot 2^2, -187, -195, -228, -232, -232 \cdot 2^2, -235, -267, -280, -280 \cdot 2^2, -312, -312 \cdot 2^2, \\ -340, -372, -403, -408, -408 \cdot 2^2, -420, -427, -435, -483, -520, -520 \cdot 2^2, -532, -555, -595, \\ -627, -660, -708, -715, -760, -760 \cdot 2^2, -795, -840, -840 \cdot 2^2, -1012, -1092, -1155, \\ -1320, -1320 \cdot 2^2, -1380, -1428, -1435, -1540, -1848, -1848 \cdot 2^2, -1995, -3003, -3315, -5460. \end{array}$$

- Weinberger (1973): All field discriminants D with Cl(D)² = 1 belong to the list above with at most one exception.
- **Corollary:** There exists D^* such that: if $\Delta = Df^2$ with $Cl(\Delta)^2 = 1$ is **not** in the list then $D = D^*$.
- Class numbers of discriminants from the list are at most 16.
- **Watkins** (2006): the list contains all Δ with $|CI(\Delta)^2| = 1$ and $h(\Delta) \le 64$.
- ► Hence: if Δ with $Cl(Δ)^2 = 1$ is **not** in the list then $h(Δ) \ge 128$.

Assume that $\mathbb{Q}(\tau_1) \neq \mathbb{Q}(\tau_2)$ and $\mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.

- Assume that $\mathbb{Q}(\tau_1) \neq \mathbb{Q}(\tau_2)$ and $\mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.
- Set $M = \mathbb{Q}(\tau_1, \tau_2, j(\tau_1)) = \mathbb{Q}(\tau_1, \tau_2, j(\tau_2)).$

- Assume that $\mathbb{Q}(\tau_1) \neq \mathbb{Q}(\tau_2)$ and $\mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.
- Set $M = \mathbb{Q}(\tau_1, \tau_2, j(\tau_1)) = \mathbb{Q}(\tau_1, \tau_2, j(\tau_2)).$
- André, Edixhoven (1998): $G = Gal(M/\mathbb{Q}(\tau_1, \tau_2))$ is annihilated by 2.

- Assume that $\mathbb{Q}(\tau_1) \neq \mathbb{Q}(\tau_2)$ and $\mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.
- Set $M = \mathbb{Q}(\tau_1, \tau_2, j(\tau_1)) = \mathbb{Q}(\tau_1, \tau_2, j(\tau_2)).$
- André, Edixhoven (1998): $G = Gal(M/\mathbb{Q}(\tau_1, \tau_2))$ is annihilated by 2.

Consequence: each $Cl(\Delta_i)$ is of type $\mathbb{Z}/4 \times \mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$ or $\mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$.

- Assume that $\mathbb{Q}(\tau_1) \neq \mathbb{Q}(\tau_2)$ and $\mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.
- Set $M = \mathbb{Q}(\tau_1, \tau_2, j(\tau_1)) = \mathbb{Q}(\tau_1, \tau_2, j(\tau_2)).$
- André, Edixhoven (1998): $G = Gal(M/\mathbb{Q}(\tau_1, \tau_2))$ is annihilated by 2.

- Consequence: each $Cl(\Delta_i)$ is of type $\mathbb{Z}/4 \times \mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$ or $\mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$.
- Simple group theory: first type is impossible. Hence both CI(Δ_i) are annihilated by 2.

- Assume that $\mathbb{Q}(\tau_1) \neq \mathbb{Q}(\tau_2)$ and $\mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.
- Set $M = \mathbb{Q}(\tau_1, \tau_2, j(\tau_1)) = \mathbb{Q}(\tau_1, \tau_2, j(\tau_2)).$
- André, Edixhoven (1998): $G = Gal(M/\mathbb{Q}(\tau_1, \tau_2))$ is annihilated by 2.

- Consequence: each $Cl(\Delta_i)$ is of type $\mathbb{Z}/4 \times \mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$ or $\mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$.
- Simple group theory: first type is impossible. Hence both $\operatorname{Cl}(\Delta_i)$ are annihilated by 2.
- Weinberger: since $D_1 \neq D_2$

- Assume that $\mathbb{Q}(\tau_1) \neq \mathbb{Q}(\tau_2)$ and $\mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.
- Set $M = \mathbb{Q}(\tau_1, \tau_2, j(\tau_1)) = \mathbb{Q}(\tau_1, \tau_2, j(\tau_2)).$
- André, Edixhoven (1998): $G = Gal(M/\mathbb{Q}(\tau_1, \tau_2))$ is annihilated by 2.

- Consequence: each $Cl(\Delta_i)$ is of type $\mathbb{Z}/4 \times \mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$ or $\mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$.
- Simple group theory: first type is impossible. Hence both $\operatorname{Cl}(\Delta_i)$ are annihilated by 2.
- Weinberger: since $D_1 \neq D_2$

- Assume that $\mathbb{Q}(\tau_1) \neq \mathbb{Q}(\tau_2)$ and $\mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.
- Set $M = \mathbb{Q}(\tau_1, \tau_2, j(\tau_1)) = \mathbb{Q}(\tau_1, \tau_2, j(\tau_2)).$
- André, Edixhoven (1998): $G = Gal(M/\mathbb{Q}(\tau_1, \tau_2))$ is annihilated by 2.

- Consequence: each $Cl(\Delta_i)$ is of type $\mathbb{Z}/4 \times \mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$ or $\mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$.
- Simple group theory: first type is impossible. Hence both $Cl(\Delta_i)$ are annihilated by 2.
- Weinberger: since $D_1 \neq D_2$ one of Δ_1, Δ_2 is in the list.

- Assume that $\mathbb{Q}(\tau_1) \neq \mathbb{Q}(\tau_2)$ and $\mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.
- Set $M = \mathbb{Q}(\tau_1, \tau_2, j(\tau_1)) = \mathbb{Q}(\tau_1, \tau_2, j(\tau_2)).$
- André, Edixhoven (1998): $G = Gal(M/\mathbb{Q}(\tau_1, \tau_2))$ is annihilated by 2.

- Consequence: each $Cl(\Delta_i)$ is of type $\mathbb{Z}/4 \times \mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$ or $\mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$.
- Simple group theory: first type is impossible. Hence both $Cl(\Delta_i)$ are annihilated by 2.
- Weinberger: since $D_1 \neq D_2$ one of Δ_1 , Δ_2 is in the list.
- Hence the other is in the list as well.

- Assume that $\mathbb{Q}(\tau_1) \neq \mathbb{Q}(\tau_2)$ and $\mathbb{Q}(j(\tau_1)) = \mathbb{Q}(j(\tau_2))$.
- Set $M = \mathbb{Q}(\tau_1, \tau_2, j(\tau_1)) = \mathbb{Q}(\tau_1, \tau_2, j(\tau_2)).$
- André, Edixhoven (1998): $G = Gal(M/\mathbb{Q}(\tau_1, \tau_2))$ is annihilated by 2.

- Consequence: each $Cl(\Delta_i)$ is of type $\mathbb{Z}/4 \times \mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$ or $\mathbb{Z}/2 \times \cdots \times \mathbb{Z}/2$.
- Simple group theory: first type is impossible. Hence both $Cl(\Delta_i)$ are annihilated by 2.
- Weinberger: since $D_1 \neq D_2$ one of Δ_1 , Δ_2 is in the list.
- Hence the other is in the list as well.
- Verification with PARI completes the proof.