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Lattice in C: a discrete (additive) group of rank 2
Example: {a+ bi: a,be Z} = (i, 1).

Isomorphism of lattices: A = A if N = aA, aeC.

» Every lattice is isomorphic to (r,1), Im7 >0

> (r,1) = (7, 1) ifandonly if 7/ = &5 [2b] € SL,(Z)

» {lattices up to isomorphism} = SL,(Z)\H

H={reC:Im7 >0} “Poincaré (half)plane”
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J-invariant

» j-invariant: SLy(Z)-automorphic function on H satisfying
jiy=1728,  j(H2) =0, j(oo) = ox

» “SLy(Z)-automorphic” means: j(7) = (g;ig)
(28] € SLy(Z)
» “Fourier expansion”
J(r) = g1 + 744 + 1968849 + 21493760q° + . . .,
q=q(r) =&
» (remark important in the sequel)
|q| small when Im 7 large = |j(7)| large when Im 7 large

» j-invariant “classifies lattices”:
(r,1) = (1) = j(r) = (')
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End(A) = {a € C: aN C A}, EndA D Z
A has Complex Multiplication if EndA D Z
A= (r,1) has CM <= [Q(7) : Q] =2

In this case:

» O = EndA is an order in K = Q(r) of discriminant A = Df?;
» D = Dy < 0 the fundamental discriminant;

f =[Ok : O] the conductor;

O =7+ fOx = 2| 25/E] =: On;

if 7 is root of at®> + bt + ¢ € Z[t], (a,b,c) = 1then
A=0b? —4acand r = “BEYA,
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Class Field Theory

» j(7) algebraic number (even algebraic integer)

» K(j(7)) is abelian extension of K = Q(7) (the “Ring Class
Field”)

> [K(i(7)) : K1 =[Q((7)) : Q] = h(A)

» h(A) the class number of the order Oa

» moreover: Gal(K(j(7))/K) = Cl(A)
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The Class Number

» h(A) — oo as |A| — oo (Siegel)

» In other words, for h € Z- ¢ there exist finitely many A with
h(A) = h.

» In particular (Heegner-Stark) there exist thirteen A with
h(A) = 1 (the corresponding j belong to Z):

A| -3 -—3.22 -3.3% —4 —4.22 -7 -7.22  _3g
j| o 2%3%%  _2M%3.5% 2838 2833113 _g%5%  g%53¢73 2650
A -1t —19 —43 —67 —163

j _o15 _01533 _ 0183353 _ 0153353443 _ 2183353533593

» A funny example (Hermite):

e™V163 — 26253741 2640768743.99999999999925007 . .

8 ewm — - x (1) +T44 €L
» Currently all A with hao < 100 are known (Watkins 2006).
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Special Points and Special Curves

T imaginary quadratic = j(7) € Q
CM-point or special point on C2:  (j(71), j(72)).

Question: can an irreducible plane curve F(xq, x2) = 0 contain
infinitely many CM-points?
Special curves:

» vertical line x; = j(1)

» horizontal line x> = j(72)

> Yo(N) realized as dp(x1,x2) =0
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Modular Curves and Modular Polynomials

» dpn(xq,X2) Nth “modular polynomial”: dDN(j(z),j(Nz)) =0
> (j(7),j(NT)) € Yo(N) for every .

» More generally:
for v € GLo(Q) there exists N such that
(i(1),j(v7)) € Yo(N) for every 7.

Polynomials o, N < 3

(X, y)= x—y

®o(x,y) = — x2y% + x° + y® + 1488x%y + 1488xy? + 40773375xy
— 162000x% — 162000y° + 8748000000x + 8748000000y — 157464000000000

d3(x,y) = x*+y* — x3y® 4 2232532 + 2232x% )% — 1069956x°y — 1069956xy°
+ 36864000x° + 36864000y° + 2587918086x2 2

+ 8900222976000x°y -+ 8900222976000xy> -+ 452984832000000x2 + 452984832000000)>
— 770845966336000000xy -+ 1855425871872000000000x + 1855425871872000000000y
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Different proofs:

André (1998)

Edixhoven (1998, GRH)

Pila (2009, extends to higher dimension)
All non-effective, use Siegel-Brauer
Breuer (2001, GRH, effective)

B., Masser, Zannier (2013, effective)
Kihne (2012, 2013, effective)

Particular cases:
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» no CM-points on x; + xo = 1 (Kihne 2013)
» no CM-points on xyxo = 1 (B., Masser, Zannier 2013)
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KUhne’s “uniformity observation”

Kiithne (2013):

» If (j(m1),j(m2)) belongs to a non-special straight line over a
n.f. L, then |Aq], |Az] < cer([L : Q)).

(A; discriminant of the CM-order End(7;, 1))

» In particular: all CM-points belonging to non-special
straight lines defined over QQ can (in principle) be listed
explicitly.

» Bajolet (2014): software to determine all CM-points on a
given line.
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CM-Points on Straight Lines

Special straight lines:
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Special straight lines:
» vertical x; = j(71) and horizontal xo = j(72) lines;
> X1 = Xo (WhICh is Y0(1))
Obvious cases (j(71),j(72)) belongs to a non-special straight
line over Q in one of the following cases:
> j(T1)7j(T2) € Q;
> j(m1) # J(72), QU(m1)) = QU(72)) = K, [K - Q] = 2.
(Can be easily listed.)
Theorem (A, B., Pizarro; May 2014) If a CM-points belongs to

a non-special straight line over Q then we have one of the two
cases above.



The Proof
Equality of CM-fields
The Proof



Equality of CM-fields

Theorem ECMF (based on ideas of André, Edixhoven and
Kihne) Assume that L = Q(j(1)) = Q(j(72))-



Theorem ECMF (based on ideas of André, Edixhoven and

Equality of CM-fields

Kihne) Assume that L = Q(j(1)) = Q(j(72))-
» If Q(71) # Q(72) then L is the table:

Field L A ci(a)
Q —3,—4, —7, —8, —11, —12, —16, —19, —27, —28, —43, —67, —163 | trvial
Q(v?2) —24, —32, —64, —88 7/2L
Q(V3) —36, —48 7./27,
Q(v5) —15, —20, —35, —40, —60, —75, —100, —115, —235 7./27
Q(V13) —52, —91, —403 7/27,
Q(V17) —51, —187 7./27.
Q(v2,V3) —96, —192, —288 (z/27.)%
Q(v3, V5) —180, —240 (z/27)?
Q(v5, V13) —195, —520, —715 (z/2z7)?
Q(V2,V5) —120, —160, —280, —760 (z/22)?
Q(v5, Vi7) —340, —595 (Z/27)?
Q(v2,v/3,v/5) | —480, —960 (z/22)8



Theorem ECMF (based on ideas of André, Edixhoven and

Equality of CM-fields

Kihne) Assume that L = Q(j(1)) = Q(j(72))-
» If Q(71) # Q(72) then L is the table:

> If @(7’1) = Q(TQ) then A1/A2 (S {1,4, 1/4} or
Aq,As € {—3,—12, —27}
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May assume:
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The Proof

May assume:
> T = 7_[)’;5;/&;

> QU(m1)) = Qi(m2)) =
> [L:Q] =h(Ay) = h(Az) >3
> j(r1) # j(72).
Crucial steps:
> Q(m1) = Q(72);
> ar=a =1,
Consequences:

» A=A, A = Aor4A.
7b1~2F\/Z To = *b2+\/7

| 2 T =
In the first case j(my) = ](7’2)
In the second case (j(71),j(m2)) € Yo(2).

v

v



The Proof (continued)

» Yo(2) is curve of degree 4



The Proof (continued)

» Yo(2) is curve of degree 4
» Hence | Yp(2) N (straight line)| < 4



The Proof (continued)

» Yo(2) is curve of degree 4
» Hence |Yp(2) N (straight line)| < 4
» Hence 3 < h(A) = h(4A) < 4



The Proof (continued)

v

Yo(2) is curve of degree 4

Hence | Yo(2) N (straight line)| < 4
Hence 3 < h(A) = h(4A) < 4

There is only five A with this property:

v

v

v



The Proof (continued)

v

Yo(2) is curve of degree 4

Hence | Yo(2) N (straight line)| < 4
Hence 3 < h(A) = h(4A) < 4

There is only five A with this property:

v

v

v



The Proof (continued)

v

Yo(2) is curve of degree 4

Hence | Yo(2) N (straight line)| < 4
Hence 3 < h(A) = h(4A) < 4

There is only five A with this property:
h=3: -23, —31;

v

v

v



The Proof (continued)

v

Yo(2) is curve of degree 4

Hence | Yo(2) N (straight line)| < 4
Hence 3 < h(A) = h(4A) < 4

There is only five A with this property:

h=3: -23, —31;
h=4: -7.3% -39, —55.

v

v

v



The Proof (continued)

v

Yo(2) is curve of degree 4

Hence | Yo(2) N (straight line)| < 4
Hence 3 < h(A) = h(4A) < 4

There is only five A with this property:

h=3: -23, —31;
h=4: -7.3% -39, —55.

v

v

v



The Proof (continued)

v

Yo(2) is curve of degree 4
Hence | Yy(2) N (straight line)| < 4
Hence 3 < h(A) = h(4A) < 4

v

v

v

h=3: -23, —31;
h=4: -7.3% -39, —55.

One rules them out using PARI.

There is only five A with this property:

O
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Discriminants with Class Group Annihilated by 2

Known A with CI(A)? = 1

-3,-3-2%,-3.3%,-3.4%,3.52,-3.72,-3.8%, —4,-4.2%, —4.3%, 4. 4%, _4.5%
—7,-7-22, —7.4% _7.8% -8, -8.2% —8.3% —8.62, —11,—11 .32,

—15,-15.22, —15.4% _15.82 —19, —20, —20 - 3%, —24, —24 . 2° 35 —35.3%, —40, —40 - 2°,
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— 1320, —1320 - 22, —1380, —1428, —1435, —1540, —1848, — 1848 - 22, —1995, —3003, —3315, —5460.
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vvvyy

Hence: if A with CI(A)2 = 1is notin the list then h(A) > 128.
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Hence the other is in the list as well.

vyvyyvyyvyy

Verification with PARI completes the proof.
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