CM-Points on Straight Lines

Yuri Bilu
A joint work with Bill Allombert and Amalia Pizarro-Madariaga

Let τ be an imaginary quadratic number with $\operatorname{Im} \tau>0$ and let j denote the j invariant function. According to the classical theory of Complex Multiplication, the complex number $j(\tau)$ is an algebraic integer. A $C M$-point in \mathbb{C}^{2} is a point of the form $\left(j\left(\tau_{1}\right), j\left(\tau_{2}\right)\right)$, where both τ_{1} and τ_{2} are imaginary quadratic numbers.

In 1998 Yves André proved that a non-special (the notion will be defined during the talk) irreducible plane curve $F\left(x_{1}, x_{2}\right)=0$ may have only finitely many CM-points. This was the first non-trivial contribution to the celebrated André-Oort conjecture.

Relying on recent ideas of Lars Kühne, we obtain a very explicit version of this result for straight lines defined over \mathbb{Q} : with "obvious" exceptions, a CM-point cannot belong to such a line. Kühne himself proved this for the line $x_{1}+x_{2}=1$.

