Class polynomials for abelian surfaces

Andreas Enge

LFANT project-team
INRIA Bordeaux-Sud-Ouest
andreas.enge@inria.fr
http://www.math.u-bordeaux.fr/~aenge
LFANT seminar
27 January 2015
(joint work with Emmanuel Thomé)

CM2

(1) Elliptic curves

- Applications of elliptic curves
- Complex multiplication theory
- Algorithms
(2) Abelian surfaces
- Complex multiplication theory
- Algorithms
- Implementation and examples

Elliptic curves

- $E: Y^{2}=X^{3}+a X+b, \quad a, b \in \mathbb{F}_{p}$
- Abelian variety of dimension $1 \Rightarrow$ finite group

- Hasse 1934

$$
\left|\# E\left(\mathbb{F}_{p}\right)-(p+1)\right| \leqslant 2 \sqrt{p}
$$

- Moduli space of dimension 1 parameterised by invariant

$$
j=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

Primality proofs (ECPP)

If $P \in E\left(\mathbb{Z} / N_{1} \mathbb{Z}\right)$ with P of prime order N_{2},

$$
N_{2}>\left(\sqrt[4]{N_{1}}+1\right)^{2}
$$

then N_{1} is prime.

Record: 25050 decimal digits (Morain 2010)

Cryptography

- Discrete logarithm based cryptography
- Need prime cardinality
- Prefer random curves
- Pairing-based cryptography Weil and (reduced) Tate pairing

$$
e: E\left(\mathbb{F}_{p}\right)[\ell] \times E\left(\mathbb{F}_{p^{k}}\right)[\ell] \rightarrow \mathbb{F}_{p^{k}}^{\times}[\ell]
$$

- Bilinear: $e(a P, b Q)=e(P, Q)^{a b}$
- An exponential number of cryptographic primitives...
- Need CM constructions for suitable curves.

CM2

(1) Elliptic curves

- Applications of elliptic curves
- Complex multiplication theory
- Algorithms
(2) Abelian surfaces
- Complex multiplication theory
- Algorithms
- Implementation and examples

Complex multiplication

Deuring 1941: The endomorphism ring of an (ordinary) elliptic curve is either \mathbb{Z}, or an order

$$
\mathcal{O}_{D}=\left[1, \frac{D+\sqrt{D}}{2}\right]_{\mathbb{Z}}
$$

of discriminant $D<0$ in $K=\mathbb{Q}(\sqrt{D})$.

$$
E \text { with complex multiplication by } \mathcal{O}_{D} / \text { by } D
$$

- Over \mathbb{C} : usually \mathbb{Z}, sometimes \mathcal{O}_{D}
- Over \mathbb{F}_{p} : always \mathcal{O}_{D} !

Complex multiplication

- Frobenius: $\pi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$, fixes $E\left(\mathbb{F}_{p}\right)$
- Deuring 1941: Any (ordinary) curve over \mathbb{F}_{p} is the reduction of a curve over \mathbb{C} with the same endomorphism ring.
- Hasse: $\pi=\frac{t+v \sqrt{D}}{2}, \operatorname{Tr}(\pi)=t, \mathrm{~N}(\pi)=\frac{t^{2}-v^{2} D}{4}=p$

$$
\# E\left(\mathbb{F}_{p}\right)=p+1-t
$$

Effective complex multiplication

Given D, what are the curves over \mathbb{C} with CM by D ?

- Modular invariant

$$
j: \mathbb{H}=\{z \in \mathbb{C}: \Im(z)>0\} \rightarrow \mathbb{C}
$$

- $\varphi: K=\mathbb{Q}(\sqrt{D}) \rightarrow \mathbb{C}$ embedding
- $\mathfrak{a}=\left(\alpha_{1}, \alpha_{2}\right)$ ideal of \mathcal{O}_{D} with basis quotient $\tau=\varphi\left(\frac{\alpha_{2}}{\alpha_{1}}\right) \in \mathbb{H}$
- $j(\tau)$ depends only on the ideal class of \mathfrak{a}; determines the $h=\# \mathrm{Cl}\left(\mathcal{O}_{D}\right)$ curves with CM by D.

First main theorem of complex multiplication

$$
\begin{gathered}
\Omega_{D}=K(j(\mathfrak{a})) \\
\mid \\
K=\mathbb{Q}(\sqrt{D}) \\
\mid \\
\mathbb{Q}
\end{gathered}
$$

$\Omega_{D}=$ Hilbert class field of K (for D fundamental discriminant) $=$ maximal abelian, unramified extension of K

$$
\begin{aligned}
\sigma: \mathrm{Cl}\left(\mathcal{O}_{D}\right) & \xlongequal{\Im} \mathrm{Gal}\left(\Omega_{D} / K\right) \\
j(\mathfrak{a})^{\sigma(\mathfrak{b})} & =j\left(\mathfrak{a b}^{-1}\right)
\end{aligned}
$$

CM2

(1) Elliptic curves

- Applications of elliptic curves
- Complex multiplication theory
- Algorithms
(2) Abelian surfaces
- Complex multiplication theory
- Algorithms
- Implementation and examples
inría

Main algorithm

- Fix $D<0$ and p prime s.t. $p=\frac{t^{2}-v^{2} D}{4}$ and $N=p+1-t$ convenient
- Enumerate the h ideal classes of \mathcal{O}_{D} :

$$
\left(A_{i}, \frac{-B_{i}+\sqrt{D}}{2}\right)
$$

- Compute over \mathbb{C} the class polynomial

$$
H(X)=\prod_{i=1}^{h}\left(X-j\left(\frac{-B_{i}+\sqrt{D}}{2 A_{i}}\right)\right) \in \mathbb{Z}[X]
$$

- Find a root \bar{j} modulo p
- Write down the curve $E: Y^{2}=X^{3}+a X+b$ with

$$
c=\frac{\bar{j}}{1728-\bar{j}}, \quad a=3 c, \quad b=2 c
$$

Complexity

- Size of H
- Degree $h \in O^{(}(\sqrt{|D|})$ (Littlewood 1928)
- Coefficients with $O^{(}(\sqrt{|D|})$ digits (Schoof 1991, E. 2009)
- Total size $\sigma(|D|)$
- Evaluation of $j: O(\sqrt{|D|})$
- Precision: $O(\sqrt{|D|})$ digits
- Multievaluation of the "polynomial" j (E. 2009)
- Arithmetic-geometric mean (Dupont 2006)
- Total complexity (E. 2009)

$$
O^{\sim}(|D|) \text { - quasi-linear in the output size! }
$$

Implementation

- Record (E. 2009) (with class invariants)
- $D=-2093236031$
- $h=100000$
- Precision 264727 bits
- $260000 \mathrm{~s}=3 \mathrm{~d}$ CPU time
- 5 GB
- Software
- GNU MPC: complex floating point arithmetic in arbitrary precision with guaranteed rounding
\star Based on MPFR and GMP
* LGPL
- MPFRCX: polynomials with real (MPFR) and complex (MPC) coefficients
* LGPL
- cm: class polynomials and CM curves
* GPL
http://www.multiprecision.org/

Further algorithms

- p-adic lift
- Couveignes-Henocq 2002, Bröker 2006
- Chinese remaindering
- Enumerate CM curves over \mathbb{F}_{p}, compute $H \bmod p$
- Lift to \mathbb{Z} or directly to $\mathbb{Z} / P \mathbb{Z}$
- Belding-Bröker-E.-Lauter 2008 following an idea by D. Bernstein, Sutherland 2009, E.-Sutherland 2010
- Record (E.-Sutherland 2010)
- $D=-1000000013079299$
- $h=10034,174$
- $P \approx 2^{254}$
- Precision 21533832 bits
- 438709 primes of $\leqslant 53$ bits
- 200 d CPU time
- Size $\bmod P \approx 200 \mathrm{MB}$
- Size over $\mathbb{Z} \approx 2$ PB

AGM

Dupont 2006: One can evaluate j at precision n in time

$$
O(\log n M(n))=O^{\sim}(n) .
$$

Idea of the algorithm:
Newton iterations on a function built with the arithmetic-geometric mean (AGM)

Theta constants — definition

$$
\begin{gathered}
a, b \in \frac{1}{2} \mathbb{Z} / \mathbb{Z} ; \quad q=e^{\pi i \tau} \\
\vartheta_{a, b}(\tau)=\sum_{n \in \mathbb{Z}} e^{\pi i((n+a) \tau(n+a)+2(n+a) b)}=e^{2 \pi i a b} \sum_{n \in \mathbb{Z}}\left(e^{2 \pi i b}\right)^{n} q^{(n+a)^{2}} \\
\vartheta_{0,0}(\tau)=\sum_{n \in \mathbb{Z}} q^{n^{2}}=1+2 q+2 q^{4}+2 q^{9}+\ldots \\
\vartheta_{0, \frac{1}{2}}(\tau)=\sum_{n \in \mathbb{Z}}(-1)^{n} q^{n^{2}}=1-2 q+2 q^{4}-2 q^{9}+\ldots \\
\vartheta_{\frac{1}{2}, 0}(\tau)=\sum_{n \in \mathbb{Z}} q^{(2 n+1)^{2} / 4}=q^{1 / 4}\left(1+2 q+2 q^{3}+\ldots\right) \\
\vartheta_{\frac{1}{2}, \frac{1}{2}}(\mathbb{Z})=0
\end{gathered}
$$

Theta constants - duplication formulæ

$$
\begin{aligned}
\vartheta_{0,0}^{2}(2 \tau) & =\frac{\vartheta_{0,0}^{2}(\tau)+\vartheta_{0, \frac{1}{2}}^{2}(\tau)}{2} \\
\vartheta_{0, \frac{1}{2}}^{2}(2 \tau) & =\sqrt{\vartheta_{0,0}^{2}(\tau) \vartheta_{0, \frac{1}{2}}^{2}(\tau)}
\end{aligned}
$$

AGM

$$
\begin{aligned}
& \vartheta_{0,0}^{2}(2 \tau)=\frac{\vartheta_{0,0}^{2}(\tau)+\vartheta_{0, \frac{1}{2}}^{2}(\tau)}{2} \\
& \vartheta_{0, \frac{1}{2}}^{2}(2 \tau)=\sqrt{\vartheta_{0,0}^{2}(\tau) \vartheta_{0, \frac{1}{2}}^{2}(\tau)}
\end{aligned}
$$

AGM for $a, b \in \mathbb{C}$

- $a_{0}=a, b_{0}=b$
- $a_{n+1}=\frac{a_{n}+b_{n}}{2}$
- $b_{n+1}=\sqrt{a_{n} b_{n}}$
- converges quadratically towards a common limit $\operatorname{AGM}(a, b)$

Evaluated in time $O(\log n M(n))$ at precision n.

Theta quotients

$$
\operatorname{AGM}(a, b)=a \cdot \operatorname{AGM}(1, b / a)=: a \cdot M(b / a)
$$

- $k^{\prime}(z)=\left(\frac{\vartheta_{0, \frac{1}{2}}(z)}{\vartheta_{0,0}(z)}\right)^{2}$
- $k(z)=\left(\frac{\vartheta_{\frac{1}{2}, 0}(z)}{\vartheta_{0,0}(z)}\right)^{2}$
- $k^{2}(z)+k^{\prime 2}(z)=1$
- $j=256 \frac{\left(1-k^{\prime 2}+k^{\prime 4}\right)^{3}}{k^{\prime 4}\left(1-k^{\prime 2}\right)^{2}}$

Newton iterations

- $M\left(k^{\prime}(\tau)\right)=\frac{1}{\vartheta_{0,0}^{2}(\tau)}$
- $M(k(\tau))=M\left(k^{\prime}(S \tau)\right)=\frac{1}{\vartheta_{0,0}^{2}(S \tau)}=\frac{i}{\tau \vartheta_{0,0}^{2}(\tau)}$
- $k^{2}(\tau)+k^{\prime 2}(\tau)=1$
- $f_{\tau}(x)=i M(x)-\tau M\left(\sqrt{1-x^{2}}\right)$
- $f_{\tau}\left(k^{\prime}(\tau)\right)=0$

$$
x_{n+1} \leftarrow x_{n}-\frac{f_{\tau}\left(x_{n}\right)}{f_{\tau}\left(x_{n}\right)}
$$

converges quadratically towards $k^{\prime}(\tau)$

Evaluated in time $O(\log n M(n))$ at precision n

CM2

(1) Elliptic curves

- Applications of elliptic curves
- Complex multiplication theory
- Algorithms
(2) Abelian surfaces
- Complex multiplication theory
- Algorithms
- Implementation and examples

Genus 2 curves and ppav of dimension 2

- $\mathcal{C}: Y^{2}=X^{5}+a X^{3}+b X^{2}+c X+d$ hyperelliptic curve of genus 2
- Jacobian is a principally polarised abelian surface (ppas)
- Moduli space of dimension 3 parameterised by Igusa invariants i_{1}, i_{2}, i_{3}
- Frobenius endomorphism gives cardinality of Jacobian over \mathbb{F}_{p} \Rightarrow source of cryptographic curves

Endomorphism rings and period matrices

- End $=\mathcal{O} \subseteq K=\mathbb{Q}[X] /\left(X^{4}+A X^{2}+B\right)$ with $D=A^{2}-4 B>0$ CM field of degree 4

$$
\begin{gathered}
K=K_{0}\left(\pm \sqrt{\frac{-A \pm \sqrt{D}}{2}}\right) \\
\mid \\
K_{0}=\mathbb{Q}(\sqrt{D}) \\
\mid \\
\mathbb{Q}
\end{gathered}
$$

- CM types $\Phi=\left(\varphi_{1}, \varphi_{2}\right), \Phi^{\prime}=\left(\varphi_{1}, \bar{\varphi}_{2}\right)$, embeddings: $K \rightarrow \mathbb{C}$
- (\mathfrak{a}, ξ) s.t. $\left(\mathfrak{a} \overline{\mathfrak{a}} \mathcal{D}_{K / \mathbb{Q}}\right)^{-1}=(\xi), \varphi_{1}(\xi), \varphi_{2}(\xi) \in i \mathbb{R}_{>0}$ (polarisation)
- $(\mathfrak{a}, \xi) \rightsquigarrow \tau=\left(\begin{array}{cc}\tau_{1} & \tau_{2} \\ \tau_{2} & \tau_{3}\end{array}\right)$ with $\Im(\tau)$ positive definite (period matrix)

Theta constants

$$
\begin{gathered}
a, b \in\left(\frac{1}{2} \mathbb{Z} / \mathbb{Z}\right)^{2} \\
\vartheta_{a, b}(\tau)=\sum_{n \in \mathbb{Z}^{2}} e^{\pi i\left((n+a)^{T} \tau(n+a)+2(n+a)^{T} b\right)}
\end{gathered}
$$

10 non-zero theta constants Igusa invariants Siegel modular forms

$$
\begin{aligned}
I_{4} & =\sum_{10 i} \vartheta_{i}^{8} & i_{1}=\frac{I_{4} I_{6}}{I_{10}} \\
I_{6} & =\sum_{\text {certain } 60 i, j, k} \pm\left(\vartheta_{i} \vartheta_{j} \vartheta_{k}\right)^{4} & i_{2}=\frac{I_{12} I_{4}^{2}}{l_{10}^{2}} \\
I_{10} & =\prod_{10 i} \vartheta_{i}^{2} & i_{3}=\frac{\Gamma_{4}^{5}}{\rho_{10}^{2}} \\
I_{12} & =\sum_{15} \prod_{6 i} \vartheta_{i}^{4} &
\end{aligned}
$$

Class fields (dihedral case)

CM2

(1) Elliptic curves

- Applications of elliptic curves
- Complex multiplication theory
- Algorithms
(2) Abelian surfaces
- Complex multiplication theory
- Algorithms
- Implementation and examples

Algorithms

- Complex analytic
- Spallek 1994
- Weng 2001
- Streng 2010
- p-adic lift
- Gaudry-Houtmann-Kohel-Ritzenthaler-Weng 2006
- Chinese remaindering
- Eisenträger-Lauter 2005
- Lauter-Robert 2012
- Our contributions to the complex-analytic algorithm
- Quasi-linear evaluation of theta constants (following Dupont 2006) \Rightarrow quasi-linear computation of class polynomials (Streng 2010) \Rightarrow most efficient algorithm
- Direct computation of irreducible factors, over K_{0}^{r} instead of \mathbb{Q} (following Streng 2010)
Inría
Software

Main algorithm (dihedral case)

- Let $h_{0}=\# \mathrm{Cl}\left(K_{0}\right), h_{1}=\# \mathrm{Cl}(K) / h_{0}$
- Consider the two CM-types Φ and Φ^{\prime}, enumerate $\mathrm{Cl}(K)$
- Compute

$$
S(K, \Phi)=\left\{(\mathfrak{a}, \xi):\left(\mathfrak{a} \overline{\mathfrak{a}} \mathcal{D}_{K / \mathbb{Q}}\right)^{-1}=(\xi), \Phi(\xi) \in\left(i \mathbb{R}_{>0}\right)^{2}\right\} / \sim
$$

and $S\left(K, \Phi^{\prime}\right)$, where

$$
(\mathfrak{a}, \xi) \sim\left(x \mathfrak{a},(x \bar{x})^{-1} \xi\right)
$$

- $\# S(K, \Phi)=\# S\left(K, \Phi^{\prime}\right)=h_{1} \Rightarrow$ period matrices $\tau_{i}, \tau_{i}^{\prime}$
- Evaluate the $\vartheta_{a, b}\left(\tau_{i}{ }^{(}\right)$) and deduce the $i_{k}\left(\tau_{i}{ }^{\left({ }^{\prime}\right)}\right)$

Main algorithm (dihedral case)

- Compute the first class polynomial

$$
H_{1}(X)=\prod_{i=1}^{h_{1}}\left(X-i_{1}\left(\tau_{i}\right)\right) \prod_{i=1}^{h_{1}}\left(X-i_{1}\left(\tau_{i}^{\prime}\right)\right) \in \mathbb{Q}[X]
$$

- Compute the Hecke representations of the algebraic numbers $i_{k}\left(\tau_{i}\right)$ with respect to H_{1} :
$\hat{H}_{k}(X)=$ polynomial of degree $h_{1}-1$ such that $i_{k}\left(\tau_{i}\right)=\frac{\hat{H}_{k}\left(i_{1}\left(\tau_{i}\right)\right)}{H_{1}^{\prime}\left(i_{1}\left(\tau_{i}\right)\right)}$
(roughly Lagrange interpolation)

Borchardt sequences

$$
\begin{aligned}
a_{n+1} & =\frac{a_{n}+b_{n}+c_{n}+d_{n}}{4} \\
b_{n+1} & =\frac{\sqrt{a_{n}} \sqrt{b_{n}}+\sqrt{c_{n}} \sqrt{d_{n}}}{2} \\
c_{n+1} & =\frac{\sqrt{a_{n}} \sqrt{c_{n}}+\sqrt{b_{n}} \sqrt{d_{n}}}{2} \\
d_{n+1} & =\frac{\sqrt{a_{n}} \sqrt{d_{n}}+\sqrt{b_{n}} \sqrt{c_{n}}}{2}
\end{aligned}
$$

Common limit: Borchardt mean $B_{2}\left(a_{0}, b_{0}, c_{0}, d_{0}\right)$
Related to duplication formulæ of four fundamental theta constants $\vartheta_{0}, \ldots, \vartheta_{3}$.

τ from $\left(\vartheta_{j}(\tau / 2) / \vartheta_{0}(\tau / 2)\right)_{j=1,2,3}$

- Compute $\left(\vartheta_{j}^{2}(\tau) / \vartheta_{0}^{2}(\tau / 2)\right)_{j=0,1,2,3,4,6,8,9,12,15}$ (duplication)
- Compute $B_{2}\left(\left(\vartheta_{j}^{2}(\tau) / \vartheta_{0}^{2}(\tau / 2)\right)_{j=0,1,2,3}=\frac{1}{\vartheta_{0}^{2}(\tau / 2)}\right.$
- Compute $\left(\vartheta_{j}^{2}(\tau)\right)_{j=0,1,2,3,4,6,8,9,12,15}$
- Compute

$$
\begin{aligned}
& u_{1}=B_{2}\left(\left(\vartheta_{j}^{2}(\tau)\right)_{j=4,0,6,2}\right. \\
& u_{3}=B_{2}\left(\left(\vartheta_{j}^{2}(\tau)\right)_{j=8,9,0,1}\right. \\
& u_{2}=B_{2}\left(\left(\vartheta_{j}^{2}(\tau)\right)_{j=0,8,4,12}\right.
\end{aligned}
$$

- Return

$$
\tau_{1}=\frac{i}{u_{1}}, \tau_{3}=\frac{i}{u_{3}}, \tau_{2}= \pm \sqrt{\frac{1}{u_{2}}+\tau_{1} \tau_{3}}
$$

Improvements to Dupont 2006

- Streamline the computations
- Replace

$$
\frac{\partial f}{\partial \tau_{i}}(\tau)
$$

by

$$
\frac{f\left(\tau+\varepsilon e_{i}\right)-f(\tau)}{\varepsilon}
$$

(gain about 25\%)

CM2

(1) Elliptic curves

- Applications of elliptic curves
- Complex multiplication theory
- Algorithms
(2) Abelian surfaces
- Complex multiplication theory
- Algorithms
- Implementation and examples

Implementation

- Number theoretic computations: $\mathfrak{C}(K)$, (reduced) period matrices
- Pari/GP
- negligible effort
- Evaluation of theta and invariants
- C
- Libraries: GMP, MPFR, MPC
- MPI for parallelisation
- Polynomial operations
- MPFRCX
- MPI for (partial) parallelisation
http://cmh.gforge.inria.fr/

Quasi-linear complexity

- required precision $=$ coefficient size
- time per invariant $=\sigma$ (precision)

Quasi-linear complexity

- required precision $=$ coefficient size
- time per invariant $=\sigma$ (precision)
- total time $=\sigma^{`}$ (output size)

Record example

- K defined by $X^{4}+1357 X^{2}+2122, D=1832961, h_{0}=8$
- $\mathfrak{C}(K) \simeq \mathbb{Z} / 4402 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
- PARI/GP: 4 min (reduction of period matrices)
- Precision: 7536929 bits
- Invariants:
- Last Newton lift: ≈ 3000 s per invariant (≈ 1200 second-to-last)
- $\approx 2 \mathrm{~d}$ wallclock time on 160 processors
- Polynomial operations (partially parallelised):
- $\approx 1 \mathrm{~d}$ wallclock time (40 processors, 1 TB memory)
- Algebraic coefficient recognition:
- ≈ 2600 s per coefficient
- $\approx 10 \mathrm{~d}$ wallclock time on 160 processors
- Size: 56 GB
- \# primes in denominator: 3465
- Largest prime in denominator: 242363767

Bound: 54004867207824

Conclusion

- Quasi-linear algorithm for class polynomials in dimension 2
- Computation of invariants
- efficient
- arbitrarily parallel
- As can be expected: Memory becomes the bottleneck
- Better parallelisation/distribution of polynomial operations required
- Quasi-linear LLL in dimension 3 desirable
- Next steps:
better understand the denominators smaller class invariants (work in progress with M. Streng)
http://cmh.gforge.inria.fr/

```
http://hal.archives-ouvertes.fr/hal-00823745/
```

