Zeta Functions of a Class of Artin-Schreier Curves With Many Automorphisms

Renate Scheidler

Joint work with Irene Bouw, Wei Ho, Beth Malmskog, Padmavathi Srinivasan and Christelle Vincent

Thanks to WIN3 - $3^{\text {rd }}$ Women in Numbers BIRS Workshop
Banff International Research Station, Banff (Alberta, Canada), April 20-24, 2014

Université de Bordeaux I, 3 March 2015

Our Main Protagonist

Let p be a prime and $\overline{\mathbb{F}}_{p}$ the algebraic closure of the finite field \mathbb{F}_{p}.
An Artin-Schreier curve is a projective curve with an affine equation

$$
y^{p}-y=F(x) \text { with } F(x) \in \overline{\mathbb{F}}_{p}(x) \text { non-constant }
$$

Standard examples: elliptic and hyperelliptic curves for $p=2$.
We focus on the special case of p odd and the curve

$$
C_{R}: y^{p}-y=x R(x)
$$

where $R(x)$ is an additive polynomial, i.e. $R(x+z)=R(x)+R(z)$.
These were investigated by van der Geer \& van der Vlugt for $p=2$.
(Compositio Math. 84, 1992)
Why are these curves of interest?

- Connection to weight enumerators of subcodes of Reed-Muller codes
- Connection to certain lattice constructions
- Potentially good source for algebraic geometry codes
- Lots of interesting properties (especially the automorphisms of C_{R})

C_{R} and Reed-Muller Codes

For $n \in \mathbb{N}$, consider the field $\mathbb{F}_{p^{n}}$ as an n-dimensional vector space over \mathbb{F}_{p}.
Let $\beta:\{$ Polynomials of degree ≤ 2 in n variables $\} \longrightarrow \mathbb{F}_{p^{n}} \cong \mathbb{F}_{p}^{n}$

$$
f \quad \mapsto \quad(f(x))_{x \in \mathbb{F}_{p^{n}}}
$$

$\mathcal{R}(p, n)=\operatorname{im}(\beta)$ is the (order 2) Reed-Muller code over \mathbb{F}_{p} of length p^{n}. Restricting to polynomials f of the form $f(x)=\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))$ where $R(x)$ runs through all additive polynomials over $\mathbb{F}_{p^{n}}$ of some fixed degree p^{h} yields a subcode \mathcal{C}_{h} of $\mathcal{R}(p, n)$ with good properties.

The weight of a code word $w_{R}=\left(\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))\right)_{x \in \mathbb{F}_{p^{n}}}$ is

$$
\begin{aligned}
\mathrm{wt}\left(w_{R}\right) & =\#\left\{x \in \mathbb{F}_{p^{n}} \mid \operatorname{Tr}_{\mathbb{T}_{p^{n}} / \mathbb{F}_{p}}(x R(x)) \neq 0\right\} \\
& =p^{n}-\#\left\{x \in \mathbb{F}_{p^{n}} \mid \operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0\right\} \\
& =p^{n}-\frac{1}{p} \cdot\left(\text { number of } \mathbb{F}_{p^{n}} \text { rational points on } C_{R}\right)
\end{aligned}
$$

because $\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))=0$ if and only if $x R(x)=y^{p}-y$ for some $y \in \mathbb{F}_{p^{n}}$, and then exactly all $y+i$ with $i \in \mathbb{F}_{p}$ satisfy this identity.
So the $\mathbb{F}_{p^{n}}$-point count for all curves C_{R} yields the weight enumerator of \mathcal{C}_{h}.

Algebraic Geometry Codes

Let $C: F(x, y)=0$ be an affine curve over some finite field $\mathbb{F}_{p^{n}}$ with a unique point at infinity P_{∞}.

Let S be a set of $\mathbb{F}_{p^{n}-r a t i o n a l}$ points on $C, r \in \mathbb{N}$, and $L\left(r P_{\infty}\right)$ the Riemann-Roch space of $r P_{\infty}$, i.e. the set of functions on C with poles only at P_{∞} and each pole of order $\leq r$.

For each $f \in L\left(r P_{\infty}\right)$, the tuple $(f(P))_{P \in S}$ forms a code word, and the collection of all these code words forms an algebraic geometry code \mathcal{C}.

The length of \mathcal{C} is $\# S$. So curves with lots of $\mathbb{F}_{p^{n} \text {-rational points yield }}$ good codes.

Our curves C_{R} are maximal (or minimal) for appropriate choices of n, i.e.

A Symmetric Bilinear Form Associated to C_{R}

Let $C_{R}: y^{p}-y=x R(x)$ with $R(x) \in \overline{\mathbb{F}}_{p}[x]$ additive.
$R(x)$ is of the form $R(x)=\sum_{i=0}^{h} a_{i} x^{p^{i}}$ for some $h \geq 0$, so $\operatorname{deg}(R)=p^{h}$.
Associated to the quadratic form $\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))$ on $\mathbb{F}_{p^{n}}$ is the symmetric bilinear form

$$
\frac{1}{2}\left(\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(z)+z R(x))\right) \quad \text { with kernel }
$$

$$
W_{n}=\left\{x \in \mathbb{F}_{p^{n}} \mid \operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(z)+z R(x))=0 \text { for all } z \in \mathbb{F}_{p^{n}}\right\}
$$

Proposition

W_{n} is the set of zeros in $F_{p^{n}}$ of the additive polynomial
$E(x)=R(x)^{p^{h}}+\sum_{i=0}^{h}\left(a_{i} x\right)^{p^{h-i}}$ of degree $p^{2 h}$.
Define \mathbb{F}_{q} to be the splitting field of $E(x)$.
Set $W=W_{n} \cap \mathbb{F}_{q}$, so $\operatorname{dim}_{\mathbb{F}_{p}}(W)=2 h$.

Point Count

Recall $C_{R}: y^{p}-y=x R(x)$ with $R(x) \in \mathbb{F}_{q}[x]$ additive.

Theorem

The number of $\mathbb{F}_{p^{n}-r a t i o n a l ~ p o i n t s ~ o n ~} C_{R}$ is $p^{n}+1$ for $n-w_{n}$ odd and $p^{n}+1 \pm(p-1) p^{\left(w_{n}+n\right) / 2}$ for $n-w_{n}$ even, where $w_{n}=\operatorname{dim}_{\mathbb{F}_{p}}\left(W_{n}\right)$.

Proof ingredients: Counting and classical results on the size of the zero locus of a non-degenerate diagonalizable quadratic form over a finite field, applied to the quadric $\operatorname{Tr}_{\mathbb{F}_{p^{n}} / \mathbb{F}_{p}}(x R(x))$ on the quotient space $\mathbb{F}_{p^{n}} / W_{n}$ of \mathbb{F}_{p}-dimension $n-w_{n}$.

Theorem (Hasse-Weil)

 $g=g(C)$. Then $\left(p^{n}+1\right)-2 g p^{n / 2} \leq N \leq\left(p^{n}+1\right)+2 g p^{n / 2}$.
Note that $g\left(C_{R}\right)=\frac{p^{h}(p-1)}{2}$, so for $\mathbb{F}_{q} \subseteq \mathbb{F}_{p^{n}}$ and n even, C_{R} is always either maximal or minimal.

Some Points and Automorphisms on AS-Curves

Let $C: y^{p}-y=F(x) \in \overline{\mathbb{F}}_{p}(x)$ be an Artin-Schreier curve.
Examples of points on C :

- P_{∞}
- (a, i) for all $i \in \mathbb{F}_{p}$, where $F(a)=0$
- In fact, if (x, y) is a point on C_{R}, then so is $(x, y+i)$ for all $i \in \mathbb{F}_{p}$.

Examples of automorphisms on C :

- The identity
- The Artin-Schreier operator ρ of order p via $\rho(x, y)=(x, y+1)$ Note that both these automorphisms fix P_{∞}.
The points described above are orbits of the Artin-Schreier operator.

Notation

Aut (C) denotes the group of automorphisms on C defined over $\overline{\mathbb{F}}_{p}$. Aut ${ }^{\infty}(C)$ denotes the group of automorphisms on C that fix P_{∞}, i.e. the stabilizer of P_{∞} under $\operatorname{Aut}(C)$.

The Group $\operatorname{Aut}\left(C_{R}\right)$

Proposition

- If $R(x)=x$, then $\operatorname{Aut}\left(C_{R}\right) \cong S L_{2}\left(\mathbb{F}_{p}\right)$.
- If $R(x)=x^{p}$, then $\operatorname{Aut}\left(C_{R}\right) \cong P G U_{3}\left(\mathbb{F}_{p}\right)$ (Hermitian case).
- If $R(x) \notin\left\{x, x^{p}\right\}$ and $R(x)$ is monic, then $\operatorname{Aut}\left(C_{R}\right) \cong \operatorname{Aut}{ }^{\infty}\left(C_{R}\right)$.

The map $(x, y) \mapsto(u x, y)$ with $u^{p^{h}}=a_{h}^{-1}$ is an isomorphism from C_{R} to $C_{\tilde{R}}$ where $\tilde{R}(x)=R(u x)$ is monic.

Since we consider automorphisms of C_{R} over $\overline{\mathbb{F}}_{p}$, there is thus no restriction to assume that $R(x)$ is monic; structurally, $\operatorname{Aut}\left(C_{R}\right)$ and $\operatorname{Aut}\left(C_{\tilde{R}}\right)$ are the same.

Moreover, for $R(x) \notin\left\{x, x^{p}\right\}$, if suffices to investigate Aut ${ }^{\infty}\left(C_{R}\right)$. We now do this for any additive polynomial $R(x)$, including x, x^{p}, and non-monic ones.

Explicit Description of Aut ${ }^{\infty}\left(C_{R}\right)$

Theorem

The automorphisms on C_{R} that fix P_{∞} are precisely of the form

$$
\sigma_{a, b, c, d}(x, y)=\left(a x+c ; d y+B_{c}(a x)+b\right)
$$

where

- $B_{c}(x) \in x \mathbb{F}_{q}[x]$ is the unique polynomial such that

$$
B_{c}(x)^{p}-B_{c}(x)=c R(x)-R(c) x
$$

- $d \in \mathbb{F}_{p}^{*} \subseteq \mathbb{F}_{q}$
- $c \in W \subset \mathbb{F}_{q}$
- $b=B_{c}(c) / 2+i$ with $i \in \mathbb{F}_{p}$, so $b \in \mathbb{F}_{q}$
- $a^{p^{i}+1}=d$ whenever $a_{i} \neq 0$, for $0 \leq i \leq h$.

Remarks:

- $B_{c}(x)$ is additive and depends only on c
- $B_{c}(x)=0$ if and only if $c=0 ; \operatorname{deg}(B)=p^{h-1}$ otherwise
- $\sigma_{1,1,0,1}=\rho$ is the Artin-Schreier operator $(x, y) \mapsto(x, y+1)$

Extraspecial Groups

Definition

A non-commutative p-group G is extraspecial if its center $Z(G)$ has order p and the quotient group $G / Z(G)$ is elementary abelian.

Theorem

For p odd, the only extraspecial group of order p^{3} and exponent p is the group

$$
E\left(p^{3}\right)=\left\langle A, B \mid A^{p}=B^{p}=[A, B]^{p}=1,[A, B] \in Z\left(E\left(p^{3}\right)\right)\right\rangle
$$

It is realizable as the discrete Heisenberg group over \mathbb{F}_{p}, i.e. the group of upper triangular 3×3 matrices with entries in \mathbb{F}_{p} and ones on the diagonal.

Every extraspecial group of exponent p and odd order $p^{2 n+1}$ is the central product of n copies of $E\left(p^{3}\right)$.

The Structure of $\operatorname{Aut}^{\infty}\left(C_{R}\right)$

Let $H \subset \operatorname{Aut}^{\infty}\left(C_{R}\right)$ consist of all automorphisms $\sigma_{a, 0,0, d}$,
$P \subset$ Aut $^{\infty}\left(C_{R}\right)$ consist of all automorphisms $\sigma_{1, b, c, 1}$.
Note that all the automorphisms in P are defined over \mathbb{F}_{q}.

Theorem

- H is a cyclic subgroup of $\operatorname{Aut}^{\infty}\left(C_{R}\right)$ of order $e \frac{p-1}{2} \cdot \underset{\substack{i \geq 0}}{\operatorname{gcd}}\left(p^{i}+1\right)$, where $e=2$ if all of the indices i with $a_{i} \neq 0$ have the same parity, and $e=1$ otherwise.
- P is the unique Sylow p-subgroup of Aut ${ }^{\infty}\left(C_{R}\right)$. It has order $p^{2 h+1}$. and center $Z(P)=\langle\rho\rangle$.
- P is normal in Aut ${ }^{\infty}\left(C_{R}\right)$, and Aut $^{\infty}\left(C_{R}\right)=P \rtimes H$.
- If $h=0$, then $P=Z(P)$. If $h>0$, then P is an extraspecial group of exponent p and thus a central product of h copies of $E\left(p^{3}\right)$.

Note: for $p=2, P$ has exponent 4 which yields a factorization of $E(x)$.

Maximal Abelian Subgroups of P

Proposition

Suppose $h \geq 1$ and let M be any maximal abelian subgroup of P. Then the following hold:

- $M \cong(\mathbb{Z} / p \mathbb{Z})^{h+1}$ and M is normal in P.
- Any subgroup $A_{p} \cong(\mathbb{Z} / p \mathbb{Z})^{h}$ of M with $\rho \notin A_{p}$ yields a decomposition $M=\langle\rho\rangle \cup A_{1} \cup \cdots \cup A_{p-1} \cup A_{p}$ where $A_{1}, \ldots A_{p-1}$ are subgroups of M with $A_{i} \cong(\mathbb{Z} / p \mathbb{Z})^{h}, \rho \notin A_{i}$, and $A_{i} \cap A_{j}=\{1\}$ for $i \neq j(1 \leq i, j \leq p-1)$.
- Any two such subgroups A_{p}, A_{p}^{\prime} of M are P-conjugate.

Key to these results is the fact that the map $P \rightarrow W$ via $\sigma_{1, b, c, 1} \rightarrow c$ is a surjective group homomorphism whose kernel is $Z(P)=\langle\rho\rangle$.

Any maximal abelian subgroup M of P maps to a maximal isotropic subspace W_{M} of W, and this correspondence can be made explicit via appropriate basis choices.

Quotient Curves of C_{R}

Definition

Let C be a curve and G a subgroup of $\operatorname{Aut}(C)$. On the points on C, define the equivalence relation $P \sim Q$ if and only if P and Q belong to the same G-orbit. Then the image of the natural map $C \rightarrow C / \sim$ is the quotient curve of C by G, denoted C / G.

Proposition

- Let G be any subgroup of Aut ${ }^{\infty}\left(C_{R}\right)$ that contains the Artin-Schreier operator ρ. Then C_{R} / G has genus zero.
- Let $M \cong(Z / p \mathbb{Z})^{h+1}$ be a maximal abelian subgroup of P and $A \cong(\mathbb{Z} / p \mathbb{Z})^{h}$ a subgroup of M not containing ρ. Then C / A is an Artin-Schreier curve with an affine model of the form $y^{p}-y=f(x)$ with $f(x) \in \mathbb{F}_{q}[x]$ of degree 2.
- Different choices of A yield \mathbb{F}_{q}-isomorphic curves C / A, so up to isomorphism, $f(x)=f_{M}(x)$ only depends on M.

Explicit Affine Models of the Curves C/A

Proposition

Suppose $h \geq 1$. Then for any automorphism $\sigma=\sigma_{1, b, c, 1} \in P$ with $c \neq 0$, the quotient curve $C /\langle\sigma\rangle$ is \mathbb{F}_{q}-isomorphic to an Artin-Schreier curve with affine model $y^{p}-y=x \tilde{R}(x)$ where $\tilde{R}(x) \in \mathbb{F}_{q}[x]$ is an additive polynomial of degree p^{h-1}.

Proof ingredients: a suitable change of coordinates and messy calculations.

Theorem

Suppose $h \geq 1$ and let $M \cong(Z / p \mathbb{Z})^{h+1}$ be a maximal abelian subgroup of P. For any subgroup $A \cong(\mathbb{Z} / p \mathbb{Z})^{h}$ of M not containing ρ, the quotient curve C / A is \mathbb{F}_{q}-isomorphic to an an Artin-Schreier curve with affine model $y^{p}-y=m_{M} x^{2}$ where $m_{M}=\frac{a_{h}}{2} \prod c \in \mathbb{F}_{q}^{*}$.
$c \in W_{M} \backslash\{0\}$
Proof ingredients: decomposition of M from before, the previous proposition, and induction on h.

The Jacobian of C_{R}

Definition

For a curve C, the free group on the points on C_{R} is the group of divisors on C, denoted $\operatorname{Div}\left(C_{R}\right)$. It contains the subgroup $\operatorname{Div}^{0}(C)$ of degree zero divisors $D=\sum n_{P} P$ with $\sum n_{P}=0$.
Two divisors are equivalent if they differ by a principal divisor, i.e. a divisor of the form $\operatorname{div}(\alpha)=\sum n_{P} P$ where α is a function on C and n_{P} is the order of vanishing of α at P.
The set of linear equivalence classes of degree zero divisors forms a finite abelian algebraic group which is the Jacobian of C, denoted $\operatorname{Jac}(C)$.

Theorem

- $\operatorname{Jac}\left(C_{R}\right)$ is \mathbb{F}_{q}-isogenous to a product of p^{h} copies of Jacobians $\operatorname{Jac}(C / A)$ with A as in the previous proposition.
- $\operatorname{Jac}\left(C_{R}\right)$ is $\overline{\mathbb{F}}_{p}$-isogenous to a product of supersingular elliptic curves (because all the slopes of the Newton polygon of the L-polynomial of C_{R} are equal to $1 / 2$ - stay tuned for L-polynomials).

The L-Polynomial of a Curve

Definition

Let C be a curve C over a field \mathbb{F}_{q}. For $n \in \mathbb{N}$, the L-polynomial of C over $\mathbb{F}_{q^{n}}$ is the polynomial $L_{C, q^{n}}(t)=(1-t)\left(1-q^{n} t\right) Z_{C}(t)$ where $Z_{C}(t)=\exp \left(\sum_{k \geq 1} N_{k} t^{k} / k\right)$ is the zeta function of C and N_{k} is the number of $\mathbb{F}_{q^{k}}$-rational points on C.

Properties:

$$
\begin{aligned}
& L_{C, q}(t)=\prod_{i=1}^{2 g}\left(1-\alpha_{i} t\right) \in \mathbb{Z}[t] \text { where } \alpha_{i} \alpha_{2 g-i}=q \text { and }\left|\alpha_{i}\right|=\sqrt{q} \forall i . \\
& L_{C, q^{n}}(t)=\prod_{i=1}^{2 g}\left(1-\alpha_{i}^{n} t\right) \text { and } N_{n}=1+q^{n}-\sum_{i=1}^{2 g} \alpha_{i}^{n} .
\end{aligned}
$$

So C is $\left\{\begin{array}{c}\text { maximal } \\ \text { minimal }\end{array}\right\}$ over $\mathbb{F}_{q^{n}}$ if and only if $\alpha_{i}^{n}=\left\{\begin{array}{c}-q^{n / 2} \\ +q^{n / 2}\end{array}\right\} \forall i$.

L-polynomial of C_{R}, First Try

Proposition

Let $\mathbb{F}_{p^{n}}$ be an extension field of \mathbb{F}_{q}.
If n is even, then $L_{C_{R}, p^{n}}=\left(1 \pm p^{n / 2} t\right)^{2 g}$.
If n is odd, then $L_{C_{R}, p^{n}}=\left(1 \pm p^{n} t^{2}\right)^{g}$.
Proof: Write $L_{C_{R}, p^{n}}=\Pi\left(1-\beta_{i} t\right)^{2 g}$.
Case n even: Then $N_{n}=p^{n}+1 \pm 2 g p^{n / 2}$, so $\beta_{i}= \pm p^{n / 2}$ for $1 \leq i \leq 2 g$.
Case n odd: Then $N_{2 n}=p^{2 n}+1 \pm 2 g p^{n}$, so $\beta_{i}^{2}= \pm p^{n}$ for $1 \leq i \leq 2 g$.
Subcase 1: $\beta_{i}^{2}=-p^{n} \forall i$. Then $\beta_{2 g-i}=p^{n} / \beta_{i}=-\beta_{i}$. This yields g factors $\left(1-\beta_{i} t\right)\left(1-\beta_{2 g-i} t\right)=\left(1-\beta_{i} t\right)\left(1+\beta_{i} t\right)=\left(1-\beta_{i}^{2} t^{2}\right)=1+p^{n} t^{2}$.
Subcase 2: $\beta_{i}^{2}=p^{n} \forall i$. Then $\beta_{2 g-i}=p^{n} / \beta_{i}=\beta_{i}$. Since $N_{n}=p^{n}+1$, it is easy to deduce that $\beta_{i}=p^{n / 2}$ for half (i.e. $g / 2$) of the indices $i \in\{1, \ldots, g\}$, and $\beta_{i}=-p^{n / 2}$ for the other half. This yields g factors $\left(1-p^{n / 2} t\right)\left(1+p^{n / 2} t\right)=1-p^{n} t^{2}$.

Resolving + and - in $L_{C_{R, p^{n}}}(t)$

The decomposition result for maximal abelian subgroups of P yields

$$
L_{C_{R}, q}(t)=L_{C / A, q}(t)^{p^{h}}
$$

where A is as in the previous theorem.
So for $\mathbb{F}_{q} \subseteq \mathbb{F}_{p^{n}}$, it suffices to determine $L_{C_{R}, p^{n}}(t)$ for $h=0$, i.e. $R(x)=m x$ with $m \in \mathbb{F}_{q}$:

- For m a square in $\mathbb{F}_{p^{n}}^{*}, C_{m x}$ is $\mathbb{F}_{q^{-}}$-isomorphic to the curve C_{x} defined over \mathbb{F}_{p}, and the problem reduces to simple point-counting on C_{x} over \mathbb{F}_{p} and $\mathbb{F}_{p^{2}}$.
- For m a nonsquare in $\mathbb{F}_{p^{n}}^{*}$ and n odd, the $\mathbb{F}_{q^{-}}$-automorphism $(x, y) \mapsto\left(m^{\left(p^{n}-p\right) / 2(p-1)} x, y\right)$ sends $C_{m x}$ to a curve $C_{u x}$ with $u \in \mathbb{F}_{p}^{*}$. Then the \mathbb{F}_{p}-automorphism $(x, y) \mapsto\left(u^{i} x, y\right)$ with $2 i \equiv-1(\bmod p)$ sends $C_{u x}$ to C_{x}, reducing this case to the previous case.
- For m a nonsquare in $\mathbb{F}_{p^{n}}^{*}$ and n even, one can count points on $C_{m x}$ and C_{x} over $\mathbb{F}_{p^{n}}$ using techniques from the previous two cases.
Note: in the literature, one can find result on zeta functions of curves similar to C_{R} that resort to Gauss sums.

L-polynomial of C_{R}

Theorem

Suppose that $\mathbb{F}_{q} \subseteq \mathbb{F}_{p^{n}}$. Then
$L_{C_{R}, p^{n}}(t)=\left(1-p^{n} t^{2}\right)^{g}$ if $p \equiv 1(\bmod 4)$ and n is odd.
$L_{C_{R,}, p^{n}}(t)=\left(1+p^{n} t^{2}\right)^{g}$ if $p \equiv 3(\bmod 4)$ and n is odd.
$L_{C_{R}, p^{n}}(t)=\left(1-p^{n / 2} t\right)^{2 g}$, with C_{R} a minimal curve over $\mathbb{F}_{p^{n}}$, if $p \equiv 1(\bmod 4), n$ is even and m is a square in $\mathbb{F}_{p^{n}}^{*}$ or $p \equiv 3(\bmod 4), n \equiv 0(\bmod 4)$ and m is a square in $\mathbb{F}_{p^{n}}^{*}$ or $p \equiv 3(\bmod 4), n \equiv 2(\bmod 4)$ and m is a nonsquare in $\mathbb{F}_{p^{n}}^{*}$ $L_{C_{R}, p^{n}}(t)=\left(1+p^{n / 2} t\right)^{2 g}$, with C_{R} a maximal curve over $\mathbb{F}_{p^{n}}$, if $p \equiv 1(\bmod 4), n$ is even and m is a nonsquare in $\mathbb{F}_{p^{n}}^{*}$ or $p \equiv 3(\bmod 4), n \equiv 0(\bmod 4)$ and m is a nonsquare in $\mathbb{F}_{p^{n}}^{*}$ or $p \equiv 3(\bmod 4), n \equiv 2(\bmod 4)$ and m is a square in $\mathbb{F}_{p^{n}}^{*}$

Here, m is the leading coefficient of $R(x)$ if $h=0$, and m is any element as given in our earlier construction when $h>0$.

Some Examples

Examples for $h=0$, i.e. $R(x)=m x$

The following two maximal curves are additions to the database www .manYPoints org:

- The curve $y^{11}-y=m x^{2}$, with m a nonsquare in $\mathbb{F}_{11^{4}}$, is maximal over $\mathbb{F}_{11^{4}}$.
- The curve $y^{19}-y=m x^{2}$, with m a nonsquare in $\mathbb{F}_{19^{4}}$, is maximal over $\mathbb{F}_{19^{4}}$.

The main difficulty of finding examples of minimal or maximal curves for $h>0$ is to construct suitable elements m.
Families of examples for $h>0$ and $R(x)=m x^{p^{h}}$

- The curve $y^{p}-y=x^{p^{h}+1}$ is minimal over $\mathbb{F}_{q}=\mathbb{F}_{p^{4 h}}$.
- The curve $y^{p}-y=m x^{p^{h}+1}$, with $m^{p^{h}-1}=-1$, is maximal over $\mathbb{F}_{q}=\mathbb{F}_{p^{2 h}}$.

Thank You! Questions?

