# Zeta Functions of a Class of Artin-Schreier Curves With Many Automorphisms

### **Renate Scheidler**



#### Joint work with Irene Bouw, Wei Ho, Beth Malmskog, Padmavathi Srinivasan and Christelle Vincent

Thanks to *WIN3* — 3<sup>rd</sup> *Women in Numbers* BIRS Workshop Banff International Research Station, Banff (Alberta, Canada), April 20-24, 2014

### Université de Bordeaux I, 3 March 2015

## **Our Main Protagonist**

Let p be a prime and  $\overline{\mathbb{F}}_p$  the algebraic closure of the finite field  $\mathbb{F}_p$ .

An Artin-Schreier curve is a projective curve with an affine equation

 $y^{p} - y = F(x)$  with  $F(x) \in \overline{\mathbb{F}}_{p}(x)$  non-constant .

**Standard examples**: elliptic and hyperelliptic curves for p = 2. We focus on the special case of p odd and the curve

 $C_R: y^p - y = xR(x)$ 

where R(x) is an **additive** polynomial, i.e. R(x + z) = R(x) + R(z). These were investigated by van der Geer & van der Vlugt for p = 2. (Compositio Math. 84, 1992)

Why are these curves of interest?

- Connection to weight enumerators of subcodes of Reed-Muller codes
- Connection to certain lattice constructions
- Potentially good source for algebraic geometry codes
- Lots of interesting properties (especially the automorphisms of  $C_R$ )

## C<sub>R</sub> and Reed-Muller Codes

For  $n \in \mathbb{N}$ , consider the field  $\mathbb{F}_{p^n}$  as an *n*-dimensional vector space over  $\mathbb{F}_p$ .

 $\begin{array}{rcl} \text{Let} & \beta : \{ \text{Polynomials of degree} \leq 2 \text{ in } n \text{ variables} \} & \longrightarrow & \mathbb{F}_{p^n} \cong \mathbb{F}_p^n \\ & f & \mapsto & (f(x))_{x \in \mathbb{F}_{p^n}} \end{array}$ 

 $\mathcal{R}(p, n) = \operatorname{im}(\beta)$  is the **(order 2) Reed-Muller code** over  $\mathbb{F}_p$  of length  $p^n$ . Restricting to polynomials f of the form  $f(x) = \operatorname{Tr}_{\mathbb{F}_p^n/\mathbb{F}_p}(xR(x))$  where R(x) runs through all additive polynomials over  $\mathbb{F}_{p^n}$  of some fixed degree  $p^h$  yields a subcode  $\mathcal{C}_h$  of  $\mathcal{R}(p, n)$  with good properties.

The weight of a code word 
$$w_R = (\operatorname{Tr}_{\mathbb{F}_p^n/\mathbb{F}_p}(xR(x)))_{x\in\mathbb{F}_{p^n}}$$
 is  
 $\operatorname{wt}(w_R) = \#\{x\in\mathbb{F}_{p^n} \mid \operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) \neq 0\}$   
 $= p^n - \#\{x\in\mathbb{F}_{p^n} \mid \operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0\}$   
 $= p^n - \frac{1}{p} \cdot (\text{number of } \mathbb{F}_{p^n} \text{-rational points on } C_R)$ 

because  $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x)) = 0$  if and only if  $xR(x) = y^p - y$  for some  $y \in \mathbb{F}_{p^n}$ , and then exactly all y + i with  $i \in \mathbb{F}_p$  satisfy this identity. So the  $\mathbb{F}_{p^n}$ -point count for all curves  $C_R$  yields the weight enumerator of  $C_h$ .

Renate Scheidler ( CALGARY )

Let C : F(x, y) = 0 be an affine curve over some finite field  $\mathbb{F}_{p^n}$  with a unique point at infinity  $P_{\infty}$ .

Let S be a set of  $\mathbb{F}_{p^n}$ -rational points on C,  $r \in \mathbb{N}$ , and  $L(rP_{\infty})$  the **Riemann-Roch space** of  $rP_{\infty}$ , i.e. the set of functions on C with poles only at  $P_{\infty}$  and each pole of order  $\leq r$ .

For each  $f \in L(rP_{\infty})$ , the tuple  $(f(P))_{P \in S}$  forms a code word, and the collection of all these code words forms an **algebraic geometry code** C.

The length of C is #S. So curves with lots of  $\mathbb{F}_{p^n}$ -rational points yield good codes.

Our curves  $C_R$  are **maximal** (or **minimal**) for appropriate choices of n, i.e. the  $\mathbb{F}_{p^n}$ -point count for  $C_R$  attains the theoretical maximum (or minimum).

## A Symmetric Bilinear Form Associated to C<sub>R</sub>

Let 
$$C_R : y^p - y = xR(x)$$
 with  $R(x) \in \overline{\mathbb{F}}_p[x]$  additive.  
 $R(x)$  is of the form  $R(x) = \sum_{i=0}^{h} a_i x^{p^i}$  for some  $h \ge 0$ , so deg $(R) = p^h$ .

Associated to the quadratic form  $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x))$  on  $\mathbb{F}_{p^n}$  is the symmetric bilinear form  $\frac{1}{2}(\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(z) + zR(x)))$  with kernel

 $W_n = \{x \in \mathbb{F}_{p^n} \mid \mathsf{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(z) + zR(x)) = 0 \text{ for all } z \in \mathbb{F}_{p^n}\} \ .$ 

### Proposition

 $W_n$  is the set of zeros in  $F_{p^n}$  of the additive polynomial  $E(x) = R(x)^{p^h} + \sum_{i=0}^{h} (a_i x)^{p^{h-i}}$  of degree  $p^{2h}$ .

Define  $\mathbb{F}_q$  to be the splitting field of E(x). Set  $W = W_n \cap \mathbb{F}_q$ , so dim $_{\mathbb{F}_p}(W) = 2h$ .

## **Point Count**

Recall 
$$C_R : y^p - y = xR(x)$$
 with  $R(x) \in \mathbb{F}_q[x]$  additive.

#### Theorem

The number of  $\mathbb{F}_{p^n}$ -rational points on  $C_R$  is  $p^n + 1$  for  $n - w_n$  odd and  $p^n + 1 \pm (p-1)p^{(w_n+n)/2}$  for  $n - w_n$  even, where  $w_n = \dim_{\mathbb{F}_p}(W_n)$ .

*Proof ingredients:* Counting and classical results on the size of the zero locus of a non-degenerate diagonalizable quadratic form over a finite field, applied to the quadric  $\operatorname{Tr}_{\mathbb{F}_{p^n}/\mathbb{F}_p}(xR(x))$  on the quotient space  $\mathbb{F}_{p^n}/W_n$  of  $\mathbb{F}_p$ -dimension  $n - w_n$ .

### Theorem (Hasse-Weil)

Let N be the number of  $\mathbb{F}_{p^n}$ -rational points of a curve C of genus g = g(C). Then  $(p^n + 1) - 2gp^{n/2} \le N \le (p^n + 1) + 2gp^{n/2}$ .

Note that  $g(C_R) = \frac{p^h(p-1)}{2}$ , so for  $\mathbb{F}_q \subseteq \mathbb{F}_{p^n}$  and *n* even,  $C_R$  is always either maximal or minimal.

Renate Scheidler ( CALGARY )

## Some Points and Automorphisms on AS-Curves

Let  $C: y^p - y = F(x) \in \overline{\mathbb{F}}_p(x)$  be an Artin-Schreier curve.

Examples of points on C:

•  $P_{\infty}$ 

- (a, i) for all  $i \in \mathbb{F}_p$ , where F(a) = 0
- In fact, if (x, y) is a point on  $C_R$ , then so is (x, y + i) for all  $i \in \mathbb{F}_p$ .

Examples of automorphisms on C:

• The identity

• The Artin-Schreier operator  $\rho$  of order p via  $\rho(x, y) = (x, y + 1)$ Note that both these automorphisms fix  $P_{\infty}$ .

The points described above are orbits of the Artin-Schreier operator.

## Notation

Aut(*C*) denotes the group of automorphisms on *C* defined over  $\overline{\mathbb{F}}_p$ . Aut<sup> $\infty$ </sup>(*C*) denotes the group of automorphisms on *C* that fix  $P_{\infty}$ , i.e. the stabilizer of  $P_{\infty}$  under Aut(*C*).

# The Group $Aut(C_R)$

### Proposition

• If 
$$R(x) = x$$
, then  $\operatorname{Aut}(C_R) \cong SL_2(\mathbb{F}_p)$ .

• If  $R(x) = x^p$ , then  $Aut(C_R) \cong PGU_3(\mathbb{F}_p)$  (Hermitian case).

• If  $R(x) \notin \{x, x^p\}$  and R(x) is monic, then  $\operatorname{Aut}(C_R) \cong \operatorname{Aut}^{\infty}(C_R)$ .

The map  $(x, y) \mapsto (ux, y)$  with  $u^{p^h} = a_h^{-1}$  is an isomorphism from  $C_R$  to  $C_{\tilde{R}}$  where  $\tilde{R}(x) = R(ux)$  is monic.

Since we consider automorphisms of  $C_R$  over  $\overline{\mathbb{F}}_p$ , there is thus no restriction to assume that R(x) is monic; structurally,  $\operatorname{Aut}(C_R)$  and  $\operatorname{Aut}(C_{\tilde{R}})$  are the same.

Moreover, for  $R(x) \notin \{x, x^p\}$ , if suffices to investigate Aut<sup> $\infty$ </sup>( $C_R$ ). We now do this for any additive polynomial R(x), including  $x, x^p$ , and non-monic ones.

# **Explicit Description of** $Aut^{\infty}(C_R)$

#### Theorem

The automorphisms on  $C_R$  that fix  $P_\infty$  are precisely of the form

$$\sigma_{\mathsf{a},\mathsf{b},\mathsf{c},\mathsf{d}}(x,y) = (\mathsf{a} x + \mathsf{c}; \mathsf{d} y + B_{\mathsf{c}}(\mathsf{a} x) + \mathsf{b})$$

where

B<sub>c</sub>(x) ∈ xF<sub>q</sub>[x] is the unique polynomial such that B<sub>c</sub>(x)<sup>p</sup> - B<sub>c</sub>(x) = cR(x) - R(c)x
d ∈ F<sub>p</sub><sup>\*</sup> ⊆ F<sub>q</sub>
c ∈ W ⊂ F<sub>q</sub>
b = B<sub>c</sub>(c)/2 + i with i ∈ F<sub>p</sub>, so b ∈ F<sub>q</sub>
a<sup>p<sup>i</sup>+1</sup> = d whenever a<sub>i</sub> ≠ 0, for 0 ≤ i ≤ h.

Remarks:

B<sub>c</sub>(x) is additive and depends only on c
B<sub>c</sub>(x) = 0 if and only if c = 0; deg(B) = p<sup>h-1</sup> otherwise
σ<sub>1,1,0,1</sub> = ρ is the Artin-Schreier operator (x, y) → (x, y + 1)

## **Extraspecial Groups**

## Definition

A non-commutative *p*-group *G* is **extraspecial** if its center Z(G) has order *p* and the quotient group G/Z(G) is elementary abelian.

#### Theorem

For p odd, the only extraspecial group of order  $p^3$  and exponent p is the group

$$E(p^3) = \langle A, B \mid A^p = B^p = [A, B]^p = 1, \ [A, B] \in Z(E(p^3)) \rangle$$

It is realizable as the **discrete Heisenberg group** over  $\mathbb{F}_p$ , i.e. the group of upper triangular  $3 \times 3$  matrices with entries in  $\mathbb{F}_p$  and ones on the diagonal.

Every extraspecial group of exponent p and odd order  $p^{2n+1}$  is the central product of n copies of  $E(p^3)$ .

# **The Structure of** $Aut^{\infty}(C_R)$

Let  $H \subset \operatorname{Aut}^{\infty}(C_R)$  consist of all automorphisms  $\sigma_{a,0,0,d}$ ,  $P \subset \operatorname{Aut}^{\infty}(C_R)$  consist of all automorphisms  $\sigma_{1,b,c,1}$ .

Note that all the automorphisms in P are defined over  $\mathbb{F}_q$ .

#### Theorem

• *H* is a cyclic subgroup of 
$$\operatorname{Aut}^{\infty}(C_R)$$
 of order  $e \frac{p-1}{2} \cdot \gcd(p^i+1)$ ,  
 $i \ge 0$   
 $a_i \ne 0$ 

where e = 2 if all of the indices i with  $a_i \neq 0$  have the same parity, and e = 1 otherwise.

- *P* is the unique Sylow *p*-subgroup of  $\operatorname{Aut}^{\infty}(C_R)$ . It has order  $p^{2h+1}$ . and center  $Z(P) = \langle \rho \rangle$ .
- P is normal in  $\operatorname{Aut}^{\infty}(C_R)$ , and  $\operatorname{Aut}^{\infty}(C_R) = P \rtimes H$ .
- If h = 0, then P = Z(P). If h > 0, then P is an extraspecial group of exponent p and thus a central product of h copies of  $E(p^3)$ .

*Note*: for p = 2, P has exponent 4 which yields a factorization of E(x).

## Proposition

Suppose  $h \ge 1$  and let M be any maximal abelian subgroup of P. Then the following hold:

- $M \cong (\mathbb{Z}/p\mathbb{Z})^{h+1}$  and M is normal in P.
- Any subgroup A<sub>p</sub> ≅ (ℤ/pℤ)<sup>h</sup> of M with ρ ∉ A<sub>p</sub> yields a decomposition M = ⟨ρ⟩ ∪ A<sub>1</sub> ∪ · · · ∪ A<sub>p-1</sub> ∪ A<sub>p</sub> where A<sub>1</sub>, . . . A<sub>p-1</sub> are subgroups of M with A<sub>i</sub> ≅ (ℤ/pℤ)<sup>h</sup>, ρ ∉ A<sub>i</sub>, and A<sub>i</sub> ∩ A<sub>j</sub> = {1} for i ≠ j (1 ≤ i, j ≤ p − 1).
- Any two such subgroups  $A_p, A'_p$  of M are P-conjugate.

Key to these results is the fact that the map  $P \to W$  via  $\sigma_{1,b,c,1} \to c$  is a surjective group homomorphism whose kernel is  $Z(P) = \langle \rho \rangle$ .

Any maximal abelian subgroup M of P maps to a maximal isotropic subspace  $W_M$  of W, and this correspondence can be made explicit via appropriate basis choices.

## **Quotient Curves of** C<sub>R</sub>

### Definition

Let *C* be a curve and *G* a subgroup of Aut(*C*). On the points on *C*, define the equivalence relation  $P \sim Q$  if and only if *P* and *Q* belong to the same *G*-orbit. Then the image of the natural map  $C \rightarrow C/\sim$  is the **quotient curve** of *C* by *G*, denoted C/G.

### Proposition

- Let G be any subgroup of  $Aut^{\infty}(C_R)$  that contains the Artin-Schreier operator  $\rho$ . Then  $C_R/G$  has genus zero.
- Let  $M \cong (Z/p\mathbb{Z})^{h+1}$  be a maximal abelian subgroup of P and  $A \cong (\mathbb{Z}/p\mathbb{Z})^h$  a subgroup of M not containing  $\rho$ . Then C/A is an Artin-Schreier curve with an affine model of the form  $y^p y = f(x)$  with  $f(x) \in \mathbb{F}_q[x]$  of degree 2.
- Different choices of A yield  $\mathbb{F}_q$ -isomorphic curves C/A, so up to isomorphism,  $f(x) = f_M(x)$  only depends on M.

# **Explicit Affine Models of the Curves** C/A

### Proposition

Suppose  $h \ge 1$ . Then for any automorphism  $\sigma = \sigma_{1,b,c,1} \in P$  with  $c \ne 0$ , the quotient curve  $C/\langle \sigma \rangle$  is  $\mathbb{F}_q$ -isomorphic to an Artin-Schreier curve with affine model  $y^p - y = x \tilde{R}(x)$  where  $\tilde{R}(x) \in \mathbb{F}_q[x]$  is an additive polynomial of degree  $p^{h-1}$ .

Proof ingredients: a suitable change of coordinates and messy calculations.

#### Theorem

Suppose  $h \ge 1$  and let  $M \cong (Z/p\mathbb{Z})^{h+1}$  be a maximal abelian subgroup of P. For any subgroup  $A \cong (\mathbb{Z}/p\mathbb{Z})^h$  of M not containing  $\rho$ , the quotient curve C/A is  $\mathbb{F}_q$ -isomorphic to an an Artin-Schreier curve with affine model  $y^p - y = m_M x^2$  where  $m_M = \frac{a_h}{2} \prod_{c \in W_M \setminus \{0\}} c \in \mathbb{F}_q^*$ .

*Proof ingredients*: decomposition of M from before, the previous proposition, and induction on h.

Renate Scheidler ( CALGARY )

A Class of Artin-Schreier curves

## The Jacobian of C<sub>R</sub>

## Definition

For a curve *C*, the free group on the points on  $C_R$  is the group of **divisors** on *C*, denoted  $\text{Div}(C_R)$ . It contains the subgroup  $\text{Div}^0(C)$  of degree zero divisors  $D = \sum n_P P$  with  $\sum n_P = 0$ . Two divisors are **equivalent** if they differ by a **principal** divisor, i.e. a

divisor of the form div( $\alpha$ ) =  $\sum n_P P$  where  $\alpha$  is a function on C and  $n_P$  is the order of vanishing of  $\alpha$  at P.

The set of linear equivalence classes of degree zero divisors forms a finite abelian algebraic group which is the **Jacobian** of C, denoted Jac(C).

### Theorem

- $Jac(C_R)$  is  $\mathbb{F}_q$ -isogenous to a product of  $p^h$  copies of Jacobians Jac(C/A) with A as in the previous proposition.
- Jac( $C_R$ ) is  $\overline{\mathbb{F}}_p$ -isogenous to a product of supersingular elliptic curves (because all the slopes of the Newton polygon of the L-polynomial of  $C_R$  are equal to 1/2 stay tuned for L-polynomials).

## The L-Polynomial of a Curve

### Definition

Let *C* be a curve *C* over a field  $\mathbb{F}_q$ . For  $n \in \mathbb{N}$ , the *L*-polynomial of *C* over  $\mathbb{F}_{q^n}$  is the polynomial  $L_{C,q^n}(t) = (1-t)(1-q^n t)Z_C(t)$  where  $Z_C(t) = \exp(\sum_{k\geq 1} N_k t^k/k)$  is the **zeta function** of *C* and  $N_k$  is the number of  $\mathbb{F}_{q^k}$ -rational points on *C*.

Properties:

• 
$$L_{C,q}(t) = \prod_{i=1}^{2g} (1 - \alpha_i t) \in \mathbb{Z}[t]$$
 where  $\alpha_i \alpha_{2g-i} = q$  and  $|\alpha_i| = \sqrt{q}$   $\forall i$ .  
•  $L_{C,q^n}(t) = \prod_{i=1}^{2g} (1 - \alpha_i^n t)$  and  $N_n = 1 + q^n - \sum_{i=1}^{2g} \alpha_i^n$ .  
So  $C$  is  $\left\{ \begin{array}{c} \max \\ \min \\ \min \end{array} \right\}$  over  $\mathbb{F}_{q^n}$  if and only if  $\alpha_i^n = \left\{ \begin{array}{c} -q^{n/2} \\ +q^{n/2} \end{array} \right\} \forall i$ .

Renate Scheidler ( CALGARY

A Class of Artin-Schreier curves

Bordeaux, 3 March 2015

### Proposition

Let  $\mathbb{F}_{p^n}$  be an extension field of  $\mathbb{F}_q$ . If *n* is even, then  $L_{C_R,p^n} = (1 \pm p^{n/2}t)^{2g}$ . If *n* is odd, then  $L_{C_R,p^n} = (1 \pm p^n t^2)^g$ .

*Proof.* Write  $L_{C_{P},p^n} = \prod (1 - \beta_i t)^{2g}$ . Case *n* even: Then  $N_n = p^n + 1 \pm 2gp^{n/2}$ , so  $\beta_i = \pm p^{n/2}$  for  $1 \le i \le 2g$ . Case n odd: Then  $N_{2n} = p^{2n} + 1 \pm 2gp^n$ , so  $\beta_i^2 = \pm p^n$  for  $1 \le i \le 2g$ . Subcase 1:  $\beta_i^2 = -p^n \quad \forall i$ . Then  $\beta_{2\sigma-i} = p^n / \beta_i = -\beta_i$ . This yields g factors  $(1 - \beta_i t)(1 - \beta_{2g-i} t) = (1 - \beta_i t)(1 + \beta_i t) = (1 - \beta_i^2 t^2) = 1 + p^n t^2$ . Subcase 2:  $\beta_i^2 = p^n \quad \forall i$ . Then  $\beta_{2g-i} = p^n / \beta_i = \beta_i$ . Since  $N_n = p^n + 1$ , it is easy to deduce that  $\beta_i = p^{n/2}$  for half (i.e. g/2) of the indices  $i \in \{1, \dots, g\}$ , and  $\beta_i = -p^{n/2}$  for the other half. This yields g factors  $(1 - p^{n/2}t)(1 + p^{n/2}t) = 1 - p^n t^2.$ 

# **Resolving** + and - in $L_{C_{R},p^{n}}(t)$

The decomposition result for maximal abelian subgroups of P yields

$$L_{C_R,q}(t) = L_{C/A,q}(t)^{p^h}$$

where A is as in the previous theorem.

So for  $\mathbb{F}_q \subseteq \mathbb{F}_{p^n}$ , it suffices to determine  $L_{C_R,p^n}(t)$  for h = 0, i.e. R(x) = mx with  $m \in \mathbb{F}_q$ :

- For *m* a square in 𝔽<sup>\*</sup><sub>p<sup>n</sup></sub>, *C<sub>mx</sub>* is 𝔽<sub>q</sub>-isomorphic to the curve *C<sub>x</sub>* defined over 𝔽<sub>p</sub>, and the problem reduces to simple point-counting on *C<sub>x</sub>* over 𝔽<sub>p</sub> and 𝔽<sub>p<sup>2</sup></sub>.
- For *m* a nonsquare in  $\mathbb{F}_{p^n}^*$  and *n* odd, the  $\mathbb{F}_q$ -automorphism  $(x, y) \mapsto (m^{(p^n p)/2(p-1)}x, y)$  sends  $C_{mx}$  to a curve  $C_{ux}$  with  $u \in \mathbb{F}_p^*$ . Then the  $\mathbb{F}_p$ -automorphism  $(x, y) \mapsto (u^i x, y)$  with  $2i \equiv -1 \pmod{p}$  sends  $C_{ux}$  to  $C_x$ , reducing this case to the previous case.
- For *m* a nonsquare in F<sup>\*</sup><sub>p<sup>n</sup></sub> and *n* even, one can count points on C<sub>mx</sub> and C<sub>x</sub> over F<sub>p<sup>n</sup></sub> using techniques from the previous two cases.

*Note*: in the literature, one can find result on zeta functions of curves similar to  $C_R$  that resort to Gauss sums.

Renate Scheidler ( CALGARY )

A Class of Artin-Schreier curves

# L-polynomial of C<sub>R</sub>

#### Theorem

Suppose that  $\mathbb{F}_q \subseteq \mathbb{F}_{p^n}$ . Then  $L_{C_{P,D^n}}(t) = (1 - p^n t^2)^g$  if  $p \equiv 1 \pmod{4}$  and n is odd.  $L_{C_p,p^n}(t) = (1 + p^n t^2)^g$  if  $p \equiv 3 \pmod{4}$  and n is odd.  $L_{C_{p,p^n}}(t) = (1 - p^{n/2}t)^{2g}$ , with  $C_R$  a minimal curve over  $\mathbb{F}_{p^n}$ , if  $p \equiv 1 \pmod{4}$ , n is even and m is a square in  $\mathbb{F}_{p^n}^*$  or  $p \equiv 3 \pmod{4}$ ,  $n \equiv 0 \pmod{4}$  and m is a square in  $\mathbb{F}_{p^n}^*$  or  $p \equiv 3 \pmod{4}$ ,  $n \equiv 2 \pmod{4}$  and m is a nonsquare in  $\mathbb{F}_{p^n}^*$  $L_{C_R,p^n}(t) = (1 + p^{n/2}t)^{2g}$ , with  $C_R$  a maximal curve over  $\mathbb{F}_{p^n}$ , if  $p \equiv 1 \pmod{4}$ , n is even and m is a nonsquare in  $\mathbb{F}_{n^n}^*$  or  $p \equiv 3 \pmod{4}$ ,  $n \equiv 0 \pmod{4}$  and m is a nonsquare in  $\mathbb{F}_{p^n}^*$  or  $p \equiv 3 \pmod{4}$ ,  $n \equiv 2 \pmod{4}$  and m is a square in  $\mathbb{F}_{p^n}^*$ 

Here, *m* is the leading coefficient of R(x) if h = 0, and *m* is any element as given in our earlier construction when h > 0.

Renate Scheidler ( CALGARY )

A Class of Artin-Schreier curves

## Some Examples

## Examples for h = 0, i.e. R(x) = mx

The following two maximal curves are additions to the database www.manYPoints.org:

- The curve  $y^{11} y = mx^2$ , with m a nonsquare in  $\mathbb{F}_{11^4}$ , is maximal over  $\mathbb{F}_{11^4}$ .
- The curve  $y^{19} y = mx^2$ , with m a nonsquare in  $\mathbb{F}_{19^4}$ , is maximal over  $\mathbb{F}_{19^4}$ .

The main difficulty of finding examples of minimal or maximal curves for h > 0 is to construct suitable elements m.

Families of examples for h > 0 and  $R(x) = mx^{p^h}$ 

The curve y<sup>p</sup> - y = x<sup>p<sup>h</sup>+1</sup> is minimal over F<sub>q</sub> = F<sub>p<sup>4h</sup></sub>.
The curve y<sup>p</sup> - y = mx<sup>p<sup>h</sup>+1</sup>, with m<sup>p<sup>h</sup>-1</sup> = -1, is maximal over F<sub>q</sub> = F<sub>p<sup>2h</sup></sub>.

