Linearly Homomorphic Encryption from DDH

Guilhem Castagnos

Institut de Mathématiques de Bordeaux

Lfant Seminar Bordeaux — mardi 10 mars 2015

Joint work with Fabien LAGUILLAUMIE



## Linearly Homomorphic Encryption ?

- Public key encryption scheme with the following properties:
- ▶ Suppose that the set of plaintexts *M* is a ring
- $c \leftarrow \text{Encrypt}(pk, m), c' \leftarrow \text{Encrypt}(pk, m')$
- $c_1 \leftarrow \mathsf{EvalSum}(pk, c, c') \text{ s.t.}$

$$Decrypt(sk, c_1) = m + m'$$

For  $\alpha \in \mathcal{M}$ ,  $c_2 \leftarrow \mathsf{EvalScal}(pk, c, \alpha)$  s.t.

 $Decrypt(sk, c_2) = \alpha m$ 

Example: Goldwasser Micali (84)

 $\blacktriangleright \mathcal{M} = \mathbf{Z}/2\mathbf{Z},$ 

▶ pk = (N, g) with N = pq an RSA integer and  $g \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ , s.t.

$$\left(\frac{g}{p}\right) = \left(\frac{g}{q}\right) = -1.$$

• 
$$c \equiv g^m r^2 \pmod{N}$$
 where  $r \xleftarrow{\ } (\mathbf{Z}/\mathbf{NZ})^{\times}$ 

$$\blacktriangleright sk = p$$

$$\blacktriangleright \left(\frac{c}{p}\right) = (-1)^m.$$

• EvalSum : 
$$cc'r''^2 \equiv g^{m+m'}(rr'r'')^2$$

• EvalScal : 
$$c^{\alpha}r''^{2} \equiv g^{m\alpha}(r^{\alpha}r'')^{2}$$

## Example: Paillier (99)

• 
$$\mathcal{M} = \mathbb{Z}/\mathbb{NZ},$$

• pk = N with N = pq an RSA integer

• 
$$c \equiv (1 + N)^m r^N \equiv (1 + mN)r^N \pmod{N^2}$$
 where  $r \xleftarrow{\$} (\mathbb{Z}/N\mathbb{Z})^{\times}$ 

• 
$$sk = \varphi(N)$$

• 
$$c^{\varphi(N)} \equiv (1 + N)^{m\varphi(N)} r^{N\varphi(N)} \equiv 1 + m\varphi(N)N \pmod{N^2}$$

• EvalSum : 
$$cc'r''^{N} \equiv (1+N)^{m+m'}(rr'r'')^{N}$$

• EvalScal : 
$$c^{\alpha}r''^{N} \equiv (1 + N)^{m\alpha}(r^{\alpha}r'')^{N}$$

# Security

- CPA security: Oscar can encrypt plaintexts of his choice (Chosen Plaintext Attack)
- No CCA (Chosen Ciphertext Attack) security for homomorphic schemes:
  - Oscar is given a challenge ciphertext *c*
  - ▶ He computes  $c' \leftarrow \text{Encrypt}(pk, 0)$  and  $c_1 \leftarrow \text{EvalSum}(pk, c, c')$
  - A decryption oracle queried with  $c_1$  gives m
- ► Total Break (TB CPA): find *sk* 
  - Goldwasser Micali and Paillier: factorisation of N

# Security

- Attack against Semantic Security (IND CPA): find a bit of information on *m* given *c*.
- ► For a linearly homomorphic scheme, equivalent to distinguish encryptions of  $m \stackrel{\$}{\leftarrow} M$  and encryptions of 0.
- ▶ Golwasser Micali is IND CPA if it is hard to distinguish squares from non-squares in the set of elements of (Z/NZ)<sup>×</sup> whose Jacobi symbol is 1 (Quadratic Residuosity assumption).
- Paillier is IND CPA if it is hard to distinguish x<sup>N</sup> from random elements of (Z/N<sup>2</sup>Z)<sup>×</sup> (Composite Residuosity assumption).

One Application: An Electronic Voting Scheme

Yes/No choice: vote 1 or 0

 $\begin{array}{ccccc} \text{Alice} & : & 0 & \rightarrow & \text{Encrypt}(pk, 0) \\ \text{Bob} & : & 1 & \rightarrow & \text{Encrypt}(pk, 1) \\ \vdots & \vdots & \vdots & \vdots \\ \text{Zack} & : & 1 & \rightarrow & \text{Encrypt}(pk, 1) \end{array} \right\} \begin{array}{c} c \text{ s.t.} \\ \sim & \text{Decrypt}(\text{sk, c}) \\ & = \\ \sum \text{votes.} \end{array}$ 

• Paillier:  $\mathcal{M} = \mathbf{Z}/\mathbf{N}\mathbf{Z}$  with  $\mathbf{N} > 2^{1023}$ .

DDH?

• ElGamal encryption scheme (85),  $(G, \times) = \langle g \rangle$  of order *n* 



8/30

## ElGamal

- Security:
  - TB CPA: Given h = g<sup>x</sup> find x: Discrete Logarithm problem in G (DL)
  - IND CPA: Distinguish triplets (g<sup>x</sup>, g<sup>x</sup>, g<sup>xr</sup>) in G<sup>3</sup>:
     Decisional Diffie Hellman Assumption in G (DDH)
- Homomorphic properties:
  - $(c_1, c_2) = (g^r, h^r m) \leftarrow \text{Encrypt}(pk, m),$

$$(c'_1, c'_2) = (g^{r'}, h^{r'}m') \leftarrow \mathsf{Encrypt}(pk, m'),$$

$$(c_1c_1', c_2c_2') = (g^{r+r'}, h^{r+r'}mm')$$

$$(c_1^\alpha,c_2^\alpha)=(g^{r\alpha},h^{r\alpha}m^\alpha)$$

• Encoding problem: if  $M \in N$ , need to map M to  $m \in G$ 

#### ElGamal "in the exponent"

- Folklore solution :  $M \in \mathbf{N} \mapsto g^M$
- ►  $(c_1, c_2) = (g^r, h^r g^M) \leftarrow \text{Encrypt}(pk, M)$

• Decrypt
$$(pk, c)$$
 :  $c_2/c_1^x = g^M \rightsquigarrow M$ 

M must be small. Can only do a bounded number of homomorphic operations:

► 
$$(c_1, c_2) = (g^r, h^r g^M) \leftarrow \text{Encrypt}(pk, M),$$
  
►  $(c'_1, c'_2) = (g^{r'}, h^{r'} g^{M'}) \leftarrow \text{Encrypt}(pk, M'),$ 

$$(c_1c_1',c_2c_2')=(g^{r+r'},h^{r+r'}g^{\mathrm{M}+\mathrm{M}'})$$

$$(c_1^{\alpha}, c_2^{\alpha}) = (g^{r\alpha}, h^{r\alpha}g^{M\alpha})$$

## DDH group with an easy DL subgroup

- $(G, \times) = \langle g \rangle$  a cyclic group of order *n*
- ▶ n = ps, gcd(p, s) = 1
- $\langle f \rangle = F \subset G$  subgroup of G of order p
- The DL problem is easy in F: There exists, Solve, a deterministic polynomial time algorithm s.t.

 $\mathsf{Solve}(p,f,f^x) \rightsquigarrow x$ 

 The DDH problem is hard in G even with access to the Solve algorithm A Generic Linearly Homomorphic Encryption Scheme

$$\blacktriangleright \mathcal{M} = \mathbf{Z}/p\mathbf{Z}$$

$$\blacktriangleright pk: h = g^x, sk: x$$

• Encrypt : 
$$c = (c_1, c_2) = (g^r, f^m h^r)$$

• Decrypt : A 
$$\leftarrow c_2/c_1^x$$
, Solve $(p, f, A) \rightsquigarrow m$ 

EvalSum :

$$(c_1c_1'g^{r''}, c_2c_2'h^{r''}) = (g^{r+r'+r''}, h^{r+r'+r''}f^{m+m'})$$

EvalScal :

$$(c_1^{\alpha}g^{r''}, c_2^{\alpha}h^{r''}) = (g^{r\alpha + r''}, h^{r\alpha + r''}f^{m\alpha})$$

#### An Unsecure Instantiation

• *p* a prime and 
$$G = \langle g \rangle = (\mathbf{Z}/p^2 \mathbf{Z})^{\times}$$

► 
$$f = 1 + p \in G$$
,  $F = \langle f \rangle = \{1 + kp, k \in \mathbb{Z}/p\mathbb{Z}\}$ 

• 
$$f^m = 1 + mp$$
.

► There exist a unique  $(\alpha, r) \in (\mathbb{Z}/p\mathbb{Z}, (\mathbb{Z}/p\mathbb{Z})^{\times})$  such that  $g = f^{\alpha}r^{p}$ 

$$g^{p-1} = f^{\alpha(p-1)} = f^{-\alpha}$$

• Public key : 
$$h = g^x$$
,

$$h^{p-1} = f^{-\alpha x} \rightsquigarrow x \mod p$$

 $\bullet (c_1, c_2) = (g^r, h^r f^m)$ 

$$c_1^{p-1} = f^{-\alpha r} \rightsquigarrow r \mod p$$

$$c_2^{p-1} = f^{-\alpha xr - m} \rightsquigarrow m \mod p$$

## Partial Discrete Logarithm Problem

- $(G, \times) = \langle g \rangle$  a cyclic group of order *n*
- ► n = ps, gcd(p, s) = 1
- $\langle f \rangle = F \subset G$  subgroup of G of order p
- Partial Discrete Logarithm (PDL) Problem:

Given  $X = g^x$  compute  $x \mod p$ .

- The knowledge of *s* makes the PDL problem easy.
- Let π : G → G/F be the canonical surjection. Lift Diffie-Hellman (LDH) Problem:

Given  $X = g^x$ ,  $Y = g^r$  and  $\pi(g^{xr})$  compute  $g^{xr}$ 

 The LDH and PDL are equivalent. The Linearly Homomorphic Encryption Scheme is One-Way if those problems are hard.

#### A Secure Instantiation

- Bresson, Catalano, Pointcheval (03)
- Let N be an RSA integer,  $G = \langle g \rangle = (\mathbb{Z}/N^2\mathbb{Z})^{\times}$
- Card(G) = N $\phi$ (N) =  $n, s = \phi$ (N), p = N
- ►  $f = 1 + N \in G$ ,  $F = \langle f \rangle = \{1 + kN, k \in \mathbb{Z}/N\mathbb{Z}\}$ , of order N
- Public key :  $h = g^x$ , x secret key
- $\blacktriangleright (c_1, c_2) = (g^r, h^r f^m)$
- ▶ Based on DDH in  $(Z/N^2Z)^{\times}$  and the Factorisation problem.
- The factorisation of N acts as a second trapdoor.

Imaginary Quadratic Orders

Imaginary Quadratic Fields

- $K = \mathbf{Q}(\sqrt{\Delta_K}), \Delta_K < 0$
- Fundamental Discriminant:
  - $\Delta_{\rm K} \equiv 1 \pmod{4}$  square-free
  - $\Delta_K \equiv 0 \pmod{4}$  and  $\Delta_K/4 \equiv 2, 3 \pmod{4}$  square-free

Imaginary Quadratic Orders

♥ Ø is a subring of K containing 1 and Ø is a free Z-module of rank 2

## Imaginary Quadratic Orders

#### Characterisation of Orders

•  $\mathcal{O}_{\Delta_{\mathsf{K}}}$  : ring of integers of  $\mathsf{K}$  is the maximal order,

$$\mathscr{O}_{\Delta_{\mathrm{K}}} = \mathbf{Z} + \frac{\Delta_{\mathrm{K}} + \sqrt{\Delta_{\mathrm{K}}}}{2}\mathbf{Z}$$

▶  $\mathscr{O} \subset \mathscr{O}_{\Delta_{\mathrm{K}}}, \ell := [\mathscr{O}_{\Delta_{\mathrm{K}}} : \mathscr{O}]$  is the conductor,

$$\mathscr{O} = \mathbf{Z} + \frac{\Delta_{\ell} + \sqrt{\Delta_{\ell}}}{2}\mathbf{Z}$$

 $\Delta_\ell = \ell^2 \Delta_K$  is the non fundamental discriminant of  $\mathscr{O}_{\Delta_\ell} \coloneqq \mathscr{O}$ 

## Class Group

Class Group of discriminant  $\Delta$ 

 $\mathrm{C}(\mathcal{O}_{\Delta}) := \mathrm{I}(\mathcal{O}_{\Delta})/\mathrm{P}(\mathcal{O}_{\Delta})$ 

its finite cardinal is the class number denoted  $h(\mathscr{O}_{\Delta})$ 

- $I(\mathscr{O}_{\Delta})$  : group of Invertible Fractional Ideals of  $\mathscr{O}_{\Delta}$
- $P(\mathscr{O}_{\Delta})$ : subgroup of Principal Ideals
- Class Number:  $h(\mathcal{O}_{\Delta}) \approx \sqrt{|\Delta|}$

### ElGamal in Class Group of Maximal Order

- Buchmann and Williams (88): Diffie-Hellman key exchange and ElGamal
- Düllmann, Hamdy, Möller, Pohst, Schielzeth, Vollmer (90-07): Implementation
  - Construct Δ<sub>K</sub> a fundamental negative discriminant, in order to maximize the odd-part of C(𝒫<sub>Δ<sub>K</sub></sub>); e.g., Δ<sub>k</sub> = -q, q ≡ 3 (mod 4), q prime : h(𝒫<sub>Δ<sub>K</sub></sub>) is odd
  - ► choose g a random class of  $C(\mathscr{O}_{\Delta_K})$  of odd order  $\rightsquigarrow$  order of g will be close to  $h(\mathscr{O}_{\Delta_K}) \approx \sqrt{|\Delta_K|}$

► secret key: 
$$x \stackrel{\$}{\leftarrow} \{0, \dots, \lfloor \sqrt{|\Delta_K|} \rfloor\}$$
, public key:  $h = g^x$ .

• Encoding of message in  $G = \langle g \rangle$  can be problematic

Class Number and Discrete Logarithm computations

- ► Size of ∆<sub>K</sub>? Index calculus algorithm to compute h(𝒫<sub>Δ<sub>K</sub></sub>) and Discrete Logarithm in C(𝒫<sub>Δ<sub>K</sub></sub>)
- Security Estimates from Biasse, Jacobson and Silvester (10):
  - Complexity conjectured  $L_{|\Delta_K|}(1/2, o(1))$
  - $\Delta_k$ : 1348 bits as hard as factoring a 2048 bits RSA integer
  - ▶  $\Delta_k$ : 1828 bits as hard as factoring a 3072 bits RSA integer









φ<sub>ℓ</sub> et φ<sub>ℓ</sub><sup>-1</sup> are effective isomorphisms, computable if ℓ is known



For Class Groups:

•  $\varphi_{\ell}$  gives a surjection :

$$\bar{\varphi}_{\ell} : C(\mathscr{O}_{\Delta_{\ell}}) \longrightarrow C(\mathscr{O}_{\Delta_{K}})$$



For Class Groups:

• If 
$$\Delta_{\rm K} < 0, \, \Delta_{\rm K} \neq -3, -4$$

$$h(\mathcal{O}_{\Delta_{\ell}}) = h(\mathcal{O}_{\Delta_{\mathrm{K}}}) \times \ell \prod_{p \mid \ell} \left( 1 - \left(\frac{\Delta_{\mathrm{K}}}{p}\right) \frac{1}{p} \right)$$

21/30

# Cryptography in Class Groups of Non Maximal Orders

 NICE cryptosystem (New Ideal Coset Encryption), Paulus and Takagi (00)

• 
$$\Delta_{\mathrm{K}} = -q, \Delta_p = -qp^2, p, q \text{ primes and } q \equiv 3 \pmod{4}$$

$$h(\mathcal{O}_{\Delta_p}) = h(\mathcal{O}_{\Delta_{\mathrm{K}}}) \times \left(p - \left(\frac{\Delta_{\mathrm{K}}}{p}\right)\right)$$

- ▶ Public key:  $\Delta_p$  and  $h \in \ker \bar{\varphi}_p$ , with  $\bar{\varphi}_p : C(\mathscr{O}_{\Delta_p}) \to C(\mathscr{O}_{\Delta_K})$
- Secret key: p
- C., Laguillaumie (09) :

In each non trivial class of ker  $\bar{\varphi}_p$ , there exists an ideal of norm  $p^2$ 

• 
$$\Delta_{\rm K} = -pq$$
,  $\Delta_p = -qp^3$ ,  $p, q$  primes and  $pq \equiv 3 \pmod{4}$ 

$$h(\mathcal{O}_{\Delta_p}) = p \times h(\mathcal{O}_{\Delta_{\mathrm{K}}})$$

There exists an effective isomorphism

$$\psi_p: \left( \mathscr{O}_{\Delta_{\mathsf{K}}} / p \mathscr{O}_{\Delta_{\mathsf{K}}} \right)^{\times} / \left( \mathbf{Z} / p \mathbf{Z} \right)^{\times} \xrightarrow{\sim} \ker \bar{\varphi}_p$$

Evaluation of  $\psi_p$ :

As  $p \mid \Delta_{\mathrm{K}}$ ,

$$\left(\mathcal{O}_{\Delta_{\mathrm{K}}}/p\mathcal{O}_{\Delta_{\mathrm{K}}}\right)^{\times}\simeq \left(\mathbf{F}_p[\mathbf{X}]/(\mathbf{X}^2)\right)^{\times}$$

• 
$$\Delta_{\rm K} = -pq$$
,  $\Delta_p = -qp^3$ ,  $p, q$  primes and  $pq \equiv 3 \pmod{4}$ 

$$h(\mathcal{O}_{\Delta_p}) = p \times h(\mathcal{O}_{\Delta_{\mathrm{K}}})$$

There exists an effective isomorphism

$$\psi_p: \left( \mathscr{O}_{\Delta_{\mathbf{K}}} / p \mathscr{O}_{\Delta_{\mathbf{K}}} \right)^{\times} / \left( \mathbf{Z} / p \mathbf{Z} \right)^{\times} \xrightarrow{\sim} \ker \bar{\varphi}_p$$

#### Evaluation of $\psi_p$ :

Elements of  $(\mathcal{O}_{\Delta_{\mathrm{K}}}/p\mathcal{O}_{\Delta_{\mathrm{K}}})^{\times}/(\mathbb{Z}/p\mathbb{Z})^{\times}$ : [1] and  $[a + \sqrt{\Delta_{\mathrm{K}}}]$  where *a* is an element of  $(\mathbb{Z}/p\mathbb{Z})^{\times}$ 

• 
$$\Delta_{\rm K} = -pq$$
,  $\Delta_p = -qp^3$ ,  $p, q$  primes and  $pq \equiv 3 \pmod{4}$ 

$$h(\mathcal{O}_{\Delta_p}) = p \times h(\mathcal{O}_{\Delta_{\mathrm{K}}})$$

There exists an effective isomorphism

$$\psi_p: \left( \mathscr{O}_{\Delta_{\mathbf{K}}} / p \mathscr{O}_{\Delta_{\mathbf{K}}} \right)^{\times} / \left( \mathbf{Z} / p \mathbf{Z} \right)^{\times} \xrightarrow{\sim} \ker \bar{\varphi}_p$$

#### Evaluation of $\psi_p$ :

Let  $A = [1 + \sqrt{\Delta_K}]$ , one has  $A^m = [1 + m\sqrt{\Delta_K}] = [m^{-1} + \sqrt{\Delta_K}]$  for all  $m \in \{1, \dots, p-1\}$  and  $A^p = [1]$ .

• 
$$\Delta_{\mathrm{K}} = -pq, \Delta_p = -qp^3, p, q \text{ primes and } pq \equiv 3 \pmod{4}$$

$$h(\mathscr{O}_{\Delta_p}) = p \times h(\mathscr{O}_{\Delta_{\mathrm{K}}})$$

There exists an effective isomorphism

$$\psi_p: \left( \mathscr{O}_{\Delta_{\mathbf{K}}} / p \mathscr{O}_{\Delta_{\mathbf{K}}} \right)^{\times} / \left( \mathbf{Z} / p \mathbf{Z} \right)^{\times} \stackrel{\sim}{\longrightarrow} \ker \bar{\varphi}_p$$

#### **Evaluation of** $\psi_p$ :

- Let  $\alpha_m = \frac{L(m) + \sqrt{\Delta_K}}{2} \in \mathcal{O}_{\Delta_K}$ , a representative of the class  $A^m$ , where L(m) is the odd integer in [-p, p] such that  $L(m) \equiv 1/m \pmod{p}$
- The element  $A^m$  maps to the class  $\psi_p(A^m) = [\varphi_p^{-1}(\alpha_m \mathscr{O}_{\Delta_K})]$  of the kernel of  $\bar{\varphi}_p$

• 
$$\Delta_{\rm K} = -pq$$
,  $\Delta_p = -qp^3$ ,  $p, q$  primes and  $pq \equiv 3 \pmod{4}$ 

$$h(\mathcal{O}_{\Delta_p}) = p \times h(\mathcal{O}_{\Delta_{\mathrm{K}}})$$

There exists an effective isomorphism

$$\psi_p: \left(\mathscr{O}_{\Delta_{\mathbf{K}}}/p\mathscr{O}_{\Delta_{\mathbf{K}}}\right)^{\times}/\left(\mathbf{Z}/p\mathbf{Z}\right)^{\times} \xrightarrow{\sim} \ker \bar{\varphi}_p$$

#### Evaluation of $\psi_p$ :

A tedious computation yields

$$\psi_p(\mathbf{A}^m) = \left[ p^2 \mathbf{Z} + \frac{-\mathbf{L}(m)p + \sqrt{\Delta_p}}{2} \mathbf{Z} \right]$$

• Let 
$$f = \psi_p(\mathbf{A}) = \left[p^2 \mathbf{Z} + \frac{-p + \sqrt{\Delta_p}}{2} \mathbf{Z}\right] \in \mathcal{C}(\mathscr{O}_{\Delta_p})$$

•  $F = \langle f \rangle$  is of order *p*, and

$$f^m = \psi_p(\mathbf{A}^m) = \left[ p^2 \mathbf{Z} + \frac{-\mathbf{L}(m)p + \sqrt{\Delta_p}}{2} \mathbf{Z} \right]$$

Moreover if q > 4p, then p<sup>2</sup> < √|∆<sub>p</sub>|/2. As a result, the ideals of norm p<sup>2</sup> are reduced (there are the canonical representatives)

A New Linearly Homomorphic Encryption Scheme

- ▶  $\Delta_{\rm K} = -pq$ ,  $\Delta_p = -qp^3$ , p, q primes and  $pq \equiv 3 \pmod{4}$  and (p/q) = -1, q > 4p
- Let g be an element of  $C(\mathcal{O}_{\Delta_p})$ ,  $h = g^x$  where x secret key
- $\blacktriangleright (c_1, c_2) = (g^r, h^r f^m)$
- ▶ Based on DDH in  $C(\mathscr{O}_{\Delta_n})$  (and the Class number problem).
- Linearly homomorphic over Z/pZ where p can be chosen (almost) independently from the security parameter

Removing the Condition on the Relative Size of p and q

- We impose that q > 4p, in order that the reduced elements of  $\langle f \rangle$  are the ideals of norm  $p^2$ .
- As a consequence  $|\Delta_{\rm K}| = pq > 4p^2$
- If we want a large message space, *e.g.*, p of 2048 bits,  $\Delta_{\rm K}$  has 4098 bits (only 1348 needed for security).

Work with 
$$\Delta_{\rm K} = -p$$
, and  $\Delta_p = p^2 \Delta_{\rm K} = -p^3$ .

Removing the Condition on the Relative Size of p and q

• We lift f and  $f^m$  in the class group of discriminant  $\Delta_{p^2} = p^4 \Delta_K$  where the ideals of norm  $p^2$  are reduced. This is done with the map

 $[\varphi_p^{-1}(\cdot)]^p$ 

• One can show that  $[\varphi_p^{-1}(\mathbf{F})]^p$  is a subgroup of order p

generated by the class of the reduced ideal  $[p^2\mathbf{Z} + \frac{-p + \sqrt{\Delta_{p^2}}}{2}\mathbf{Z}]$ and Discrete Logarithms are easy to compute in this subgroup

## A Faster Variant

- Original Scheme :
  - $\Delta_{\mathrm{K}} = -p$ , and  $\Delta_p = p^2 \Delta_{\mathrm{K}} = -p^3$ .
  - $g \in C(\mathcal{O}_{\Delta_p}), h = g^x$
  - f generates the subgroup of order p of C(𝒫<sub>Δp</sub>)
  - Encrypt $(pk, m) = (g^r, h^r f^m)$
- A faster variant :
  - Choose  $g' \in C(\mathscr{O}_{\Delta_{\mathrm{K}}})$  and  $h' = g^{x'}$
  - ▶ Denote  $\psi_p : C(\mathscr{O}_{\Delta_K}) \to C(\mathscr{O}_{\Delta_p})$  the map  $[\varphi_p^{-1}(\cdot)]^p$
  - Define  $\text{Encrypt}(pk, m) = (c_1, c_2) = (g'^r, \psi(h'^r)f^m)$
  - Decryption: Compute  $c'_1 = \psi(c^{x'}_1)$  and  $f^m = c_2/c'_1$ .
  - Smaller ciphertext:  $c_1$  is in  $C(\mathscr{O}_{\Delta_K})$  instead of  $C(\mathscr{O}_{\Delta_p})$
  - Faster computation: exponentiations in  $C(\mathcal{O}_{\Delta_K})$  instead of  $C(\mathcal{O}_{\Delta_p})$
  - However, the semantic security is now based on a non standard problem.

# Performance comparison

| Cryptosystem | Parameter                  | Message Space | Encryption (ms) | Decryption (ms) |
|--------------|----------------------------|---------------|-----------------|-----------------|
| Paillier     | 2048 bits modulus          | 2048 bits     | 28              | 28              |
| BCP03        | 2048 bits modulus          | 2048 bits     | 107             | 54              |
| New Proposal | 1348 bits $\Delta_{ m K}$  | 80 bits       | 93              | 49              |
| Fast Variant | 1348 bits $\Delta_{ m K}$  | 80 bits       | 82              | 45              |
| Fast Variant | 1348 bits $\Delta_{\rm K}$ | 256 bits      | 105             | 68              |
| Paillier     | 3072 bits modulus          | 3072 bits     | 109             | 109             |
| BCP03        | 3072 bits modulus          | 3072 bits     | 427             | 214             |
| New Proposal | 1828 bits $\Delta_{\rm K}$ | 80 bits       | 179             | 91              |
| Fast Variant | 1828 bits $\Delta_{\rm K}$ | 80 bits       | 145             | 78              |
| Fast Variant | 1828 bits $\Delta_{\rm K}$ | 512 bits      | 226             | 159             |
| Fast Variant | 1828 bits $\Delta_{\rm K}$ | 912 bits      | 340             | 271             |

Timings performed with Sage and PARI/GP.

Others Variants and Further developments

More general message spaces:

- ► **Z**/NZ with N =  $\prod_{i=1}^{n} p_i$ , with a discriminant of the form  $\Delta_{\rm K} = -{\rm N}q$
- Z/p<sup>t</sup>Z for t > 1, with discriminants of the form Δ<sub>p<sup>t</sup></sub> = p<sup>2t</sup>Δ<sub>K</sub>, and Δ<sub>K</sub> = −pq
- An adaptation may also be possible in the infrastructure of real quadratic fields