Linearly Homomorphic Encryption from DDH

Institut de Mathématiques de Bordeaux

Lfant Seminar Bordeaux - mardi io mars 2015

Joint work with Fabien Laguillaumie

Linearly Homomorphic Encryption?

- Public key encryption scheme with the following properties:
- Suppose that the set of plaintexts \mathscr{M} is a ring
$-c \leftarrow \operatorname{Encrypt}(p k, m), c^{\prime} \leftarrow \operatorname{Encrypt}\left(p k, m^{\prime}\right)$
- $c_{1} \leftarrow \operatorname{EvalSum}\left(p k, c, c^{\prime}\right)$ s.t.

$$
\operatorname{Decrypt}\left(s k, c_{1}\right)=m+m^{\prime}
$$

- For $\alpha \in \mathscr{M}, c_{2} \leftarrow \operatorname{EvalScal}(p k, c, \alpha)$ s.t.

$$
\operatorname{Decrypt}\left(s k, c_{2}\right)=\alpha m
$$

Example: Goldwasser Micali (84)

- $\mathscr{I}=\mathbf{Z} / 2 \mathbf{Z}$,
- $p k=(\mathbf{N}, g)$ with $\mathrm{N}=p q$ an RSA integer and $g \in(\mathbf{Z} / \mathbf{N Z})^{\times}$, s.t.

$$
\left(\frac{g}{p}\right)=\left(\frac{g}{q}\right)=-1 .
$$

- $c \equiv g^{m} r^{2}(\bmod \mathrm{~N})$ where $r \stackrel{\$}{\leftarrow}(\mathbf{Z} / \mathbf{N Z})^{\times}$
- $s k=p$
- $\left(\frac{c}{p}\right)=(-1)^{m}$.
- EvalSum : $c c^{\prime} r^{\prime \prime 2} \equiv g^{m+m^{\prime}}\left(r r^{\prime} r^{\prime \prime}\right)^{2}$
- EvalScal : $c^{\alpha} r^{\prime \prime 2} \equiv g^{m \alpha}\left(r^{\alpha} r^{\prime \prime}\right)^{2}$

Example: Paillier (99)

- $\mathscr{I}=\mathbf{Z} / \mathrm{NZ}$,
- $p k=\mathrm{N}$ with $\mathrm{N}=p q$ an RSA integer
- $c \equiv(1+\mathrm{N})^{m} r^{\mathrm{N}} \equiv(1+m \mathrm{~N}) r^{\mathrm{N}}\left(\bmod \mathrm{N}^{2}\right)$ where $r \stackrel{\$}{\rightleftarrows}(\mathbf{Z} / \mathrm{NZ})^{\times}$
- $s k=\varphi(\mathrm{N})$
- $c^{\varphi(\mathbb{N})} \equiv(1+\mathrm{N})^{m \varphi}(\mathrm{~N}) r^{\mathrm{N} \varphi(\mathrm{N})} \equiv 1+m \varphi(\mathrm{~N}) \mathrm{N}\left(\bmod \mathrm{N}^{2}\right)$
- EvalSum : cc' $r^{\prime \prime \mathrm{N}} \equiv(1+\mathrm{N})^{m+m^{\prime}}\left(r r^{\prime} r^{\prime \prime}\right)^{\mathrm{N}}$
- EvalScal : $c^{\alpha} r^{\prime \prime \mathrm{N}} \equiv(1+\mathrm{N})^{m \alpha}\left(r^{\alpha} r^{\prime \prime}\right)^{\mathrm{N}}$

Security

- CPA security: Oscar can encrypt plaintexts of his choice (Chosen Plaintext Attack)
- No CCA (Chosen Ciphertext Attack) security for homomorphic schemes:
- Oscar is given a challenge ciphertext c
- He computes $c^{\prime} \leftarrow \operatorname{Encrypt}(p k, 0)$ and $c_{1} \leftarrow \operatorname{EvalSum}\left(p k, c, c^{\prime}\right)$
- A decryption oracle queried with c_{1} gives m
- Total Break (TB - CPA): find $s k$
- Goldwasser Micali and Paillier: factorisation of N

Security

- Attack against Semantic Security (IND - CPA): find a bit of information on m given c.
- For a linearly homomorphic scheme, equivalent to distinguish encryptions of $m \stackrel{\$}{\leftarrow} \mathrm{M}$ and encryptions of 0 .
- Golwasser Micali is IND - CPA if it is hard to distinguish squares from non-squares in the set of elements of $(\mathbf{Z} / \mathrm{NZ})^{\times}$ whose Jacobi symbol is 1 (Quadratic Residuosity assumption).
- Paillier is IND - CPA if it is hard to distinguish x^{N} from random elements of $\left(\mathbf{Z} / \mathrm{N}^{2} \mathbf{Z}\right)^{\times}$(Composite Residuosity assumption).

One Application: An Electronic Voting Scheme

- Yes/No choice: vote 1 or 0
\(\left.\begin{array}{cccc}Alice: \& 0 \& \rightarrow \& \operatorname{Encrypt}(p k, 0)

Bob : \& 1 \& \rightarrow \& \operatorname{Encrypt}(p k, 1)

\vdots \& \vdots \& \vdots \& \vdots

Zack : \& 1 \& \rightarrow \& \operatorname{Encrypt}(p k, 1)\end{array}\right\} \rightsquigarrow\)| |
| :---: |
| c s.t. |
| Decrypt(sk, c) |
| $=$ |
| \sum votes. |

- Paillier: $\mathscr{M}=\mathbf{Z} / \mathrm{NZ}$ with $\mathrm{N}>2^{1023}$.

DDH ?

- ElGamal encryption scheme (85), (G, \times) $=\langle g\rangle$ of order n

$$
c_{1}=g^{r}
$$

$\mathrm{Z}=h^{r}\left(=g^{x r}\right)$
$\mathrm{Z}=c_{1}^{x}\left(=g^{x r}\right)$
$m \in G$
$c_{2}=m \mathbf{Z}$

- Ciphertext of m is $\left(g^{r}, h^{r} m\right)=\left(c_{1}, c_{2}\right)$. Decryption: c_{2} / c_{1}^{x}

ElGamal

- Security:
- TB - CPA: Given $h=g^{x}$ find x : Discrete Logarithm problem in G (DL)
- IND - CPA: Distinguish triplets $\left(g^{x}, g^{r}, g^{x r}\right)$ in G^{3} :

Decisional Diffie Hellman Assumption in G (DDH)

- Homomorphic properties:
- $\left(c_{1}, c_{2}\right)=\left(g^{r}, h^{r} m\right) \leftarrow \operatorname{Encrypt}(p k, m)$,
- $\left(c_{1}^{\prime}, c_{2}^{\prime}\right)=\left(g^{r^{\prime}}, h^{r^{\prime}} m^{\prime}\right) \leftarrow \operatorname{Encrypt}\left(p k, m^{\prime}\right)$,

$$
\begin{aligned}
\left(c_{1} c_{1}^{\prime}, c_{2} c_{2}^{\prime}\right) & =\left(g^{r+r^{\prime}}, h^{r+r^{\prime}} m m^{\prime}\right) \\
\left(c_{1}^{\alpha}, c_{2}^{\alpha}\right) & =\left(g^{r \alpha}, h^{r \alpha} m^{\alpha}\right)
\end{aligned}
$$

- Encoding problem: if $\mathrm{M} \in \mathbf{N}$, need to map M to $m \in \mathrm{G}$

ElGamal "in the exponent"

- Folklore solution : $\mathrm{M} \in \mathbf{N} \mapsto g^{\mathrm{M}}$
- $\left(c_{1}, c_{2}\right)=\left(g^{r}, h^{r} g^{\mathrm{M}}\right) \leftarrow \operatorname{Encrypt}(p k, \mathrm{M})$
- $\operatorname{Decrypt}(p k, c): c_{2} / c_{1}^{x}=g^{\mathrm{M}} \rightsquigarrow \mathrm{M}$
- M must be small. Can only do a bounded number of homomorphic operations:
- $\left(c_{1}, c_{2}\right)=\left(g^{r}, h^{r} g^{\mathrm{M}}\right) \leftarrow \operatorname{Encrypt}(p k, \mathrm{M})$,
$-\left(c_{1}^{\prime}, c_{2}^{\prime}\right)=\left(g^{r^{\prime}}, h^{r^{\prime}} \mathrm{g}^{\mathrm{M}^{\prime}}\right) \leftarrow \operatorname{Encrypt}\left(p k, \mathrm{M}^{\prime}\right)$,

$$
\begin{gathered}
\left(c_{1} c_{1}^{\prime}, c_{2} c_{2}^{\prime}\right)=\left(g^{r+r^{\prime}}, h^{r+r^{\prime}} g^{\mathrm{M}+\mathrm{M}^{\prime}}\right) \\
\left(c_{1}^{\alpha}, c_{2}^{\alpha}\right)=\left(g^{r \alpha}, h^{r \alpha} g^{\mathrm{M} \alpha}\right)
\end{gathered}
$$

DDH group with an easy DL subgroup

- $(\mathrm{G}, \times)=\langle g\rangle$ a cyclic group of order n
- $n=p s, \operatorname{gcd}(p, s)=1$
- $\langle f\rangle=\mathrm{F} \subset \mathrm{G}$ subgroup of G of order p
- The DL problem is easy in F: There exists, Solve, a deterministic polynomial time algorithm s.t.

$$
\text { Solve }\left(p, f, f^{x}\right) \rightsquigarrow x
$$

- The DDH problem is hard in G even with access to the Solve algorithm

A Generic Linearly Homomorphic Encryption Scheme

- $\mathscr{I}=\mathbf{Z} / p \mathbf{Z}$
- $p k: h=g^{x}, s k: x$
- Encrypt : $c=\left(c_{1}, c_{2}\right)=\left(g^{r}, f^{m} h^{r}\right)$
- Decrypt : A $\leftarrow c_{2} / c_{1}^{x}$, Solve $(p, f, \mathrm{~A}) \rightsquigarrow m$
- EvalSum :

$$
\left(c_{1} c_{1}^{\prime} g^{r^{\prime \prime}}, c_{2} c_{2}^{\prime} h^{r^{\prime \prime}}\right)=\left(g^{r+r^{\prime}+r^{\prime \prime}}, h^{r+r^{\prime}+r^{\prime \prime}} f^{m+m^{\prime}}\right)
$$

- EvalScal:

$$
\left(c_{1}^{\alpha} g^{r^{\prime \prime}}, c_{2}^{\alpha} h^{\prime \prime \prime}\right)=\left(g^{r \alpha+r^{\prime \prime}}, h^{r \alpha+\varphi^{\prime \prime}} f^{m \alpha}\right)
$$

An Unsecure Instantiation

- p a prime and $\mathrm{G}=\langle g\rangle=\left(\mathbf{Z} / p^{2} \mathbf{Z}\right)^{\times}$
- $f=1+p \in \mathrm{G}, \mathrm{F}=\langle f\rangle=\{1+k p, k \in \mathrm{Z} / p \mathbf{Z}\}$
- $f^{m}=1+m p$.
- There exist a unique $(\alpha, r) \in\left(\mathbf{Z} / p \mathbf{Z},(\mathbf{Z} / p \mathbf{Z})^{\times}\right)$such that $g=f^{\alpha} r^{p}$

$$
g^{p-1}=f^{\alpha(p-1)}=f^{-\alpha}
$$

- Public key : $h=g^{x}$,

$$
h^{p-1}=f^{-\alpha x} \rightsquigarrow x \bmod p
$$

- $\left(c_{1}, c_{2}\right)=\left(g^{r}, h^{r} f^{m}\right)$

$$
\begin{gathered}
c_{1}^{p-1}=f^{-\alpha r} \rightsquigarrow r \bmod p \\
c_{2}^{p-1}=f^{-\alpha x r-m} \rightsquigarrow m \bmod p
\end{gathered}
$$

Partial Discrete Logarithm Problem

- $(\mathrm{G}, \times)=\langle g\rangle$ a cyclic group of order n
- $n=p s, \operatorname{gcd}(p, s)=1$
- $\langle f\rangle=\mathrm{F} \subset \mathrm{G}$ subgroup of G of order p
- Partial Discrete Logarithm (PDL) Problem:

$$
\text { Given } X=g^{x} \text { compute } x \bmod p
$$

- The knowledge of s makes the PDL problem easy.
- Let $\pi: G \rightarrow G / F$ be the canonical surjection. Lift Diffie-Hellman (LDH) Problem:

$$
\text { Given } \mathrm{X}=g^{x}, \mathrm{Y}=g^{r} \text { and } \pi\left(g^{x r}\right) \text { compute } g^{x r}
$$

- The LDH and PDL are equivalent. The Linearly Homomorphic Encryption Scheme is One-Way if those problems are hard.

A Secure Instantiation

- Bresson, Catalano, Pointcheval (o3)
- Let N be an RSA integer, $\mathrm{G}=\langle g\rangle=\left(\mathbf{Z} / \mathrm{N}^{2} \mathbf{Z}\right)^{\times}$
- $\operatorname{Card}(\mathrm{G})=\mathrm{N} \varphi(\mathrm{N})=n, s=\varphi(\mathrm{N}), p=\mathrm{N}$
- $f=1+\mathrm{N} \in \mathrm{G}, \mathrm{F}=\langle f\rangle=\{1+k \mathrm{~N}, k \in \mathrm{Z} / \mathrm{NZ}\}$, of order N
- Public key: $h=g^{x}, x$ secret key
- $\left(c_{1}, c_{2}\right)=\left(g^{r}, h^{r} f^{m}\right)$
- Based on DDH in $\left(\mathbf{Z} / \mathrm{N}^{2} \mathbf{Z}\right)^{\times}$and the Factorisation problem.
- The factorisation of N acts as a second trapdoor.

Imaginary Quadratic Orders

Imaginary Quadratic Fields

- $\mathrm{K}=\mathbf{Q}\left(\sqrt{\Delta_{\mathrm{K}}}\right), \Delta_{\mathrm{K}}<0$
- Fundamental Discriminant:
- $\Delta_{\mathrm{K}} \equiv 1(\bmod 4)$ square-free
- $\Delta_{\mathrm{K}} \equiv 0(\bmod 4)$ and $\Delta_{\mathrm{K}} / 4 \equiv 2,3(\bmod 4)$ square-free

Imaginary Quadratic Orders

- \mathscr{O} is a subring of K containing 1 and \mathscr{O} is a free \mathbf{Z}-module of rank 2

Imaginary Quadratic Orders

Characterisation of Orders

- $\mathscr{O}_{\Delta_{\mathrm{K}}}$: ring of integers of K is the maximal order,

$$
\mathscr{O}_{\Delta_{\mathrm{K}}}=\mathbf{Z}+\frac{\Delta_{\mathrm{K}}+\sqrt{\Delta_{\mathrm{K}}}}{2} \mathbf{Z}
$$

- $\mathscr{O} \subset \mathscr{O}_{\Delta_{K}}, \ell:=\left[\mathscr{O}_{\Delta_{K}}: \mathscr{O}\right]$ is the conductor,

$$
\mathscr{O}=\mathbf{Z}+\frac{\Delta_{\ell}+\sqrt{\Delta_{\ell}}}{2} \mathbf{Z}
$$

$\Delta_{\ell}=\ell^{2} \Delta_{\mathrm{K}}$ is the non fundamental discriminant of $\mathscr{O}_{\Delta_{\ell}}:=\mathscr{O}$

Class Group

Class Group of discriminant Δ

$$
\mathrm{C}\left(\mathscr{O}_{\Delta}\right):=\mathrm{I}\left(\mathscr{O}_{\Delta}\right) / \mathrm{P}\left(\mathscr{O}_{\Delta}\right)
$$

its finite cardinal is the class number denoted $h\left(\mathscr{O}_{\Delta}\right)$

- $\mathrm{I}\left(\mathscr{O}_{\Delta}\right)$: group of Invertible Fractional Ideals of \mathscr{O}_{Δ}
- $\mathrm{P}\left(\mathscr{O}_{\Delta}\right)$: subgroup of Principal Ideals
- Class Number: $h\left(\mathscr{O}_{\Delta}\right) \approx \sqrt{|\Delta|}$

ElGamal in Class Group of Maximal Order

- Buchmann and Williams (88): Diffie-Hellman key exchange and ElGamal
- Düllmann, Hamdy, Möller, Pohst, Schielzeth, Vollmer (90-07): Implementation
- Construct Δ_{K} a fundamental negative discriminant, in order to maximize the odd-part of $\mathrm{C}\left(\mathscr{O}_{\Delta_{K}}\right) ;$ e.g., $\Delta_{k}=-q, q \equiv 3$ $(\bmod 4), q$ prime $: h\left(\mathscr{O}_{\Delta_{K}}\right)$ is odd
- choose g a random class of $C\left(\mathscr{O}_{\Delta_{K}}\right)$ of odd order \rightsquigarrow order of g will be close to $h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right) \approx \sqrt{\left|\Delta_{\mathrm{K}}\right|}$
- secret key: $x \stackrel{\$}{\leftarrow}\left\{0, \ldots,\left\lfloor\sqrt{\left|\Delta_{\mathrm{K}}\right|}\right\rfloor\right\}$, public key: $h=g^{x}$.
- Encoding of message in $\mathrm{G}=\langle g\rangle$ can be problematic

Class Number and Discrete Logarithm computations

- Size of Δ_{K} ? Index calculus algorithm to compute $h\left(\mathscr{O}_{\Delta_{K}}\right)$ and Discrete Logarithm in $\mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)$
- Security Estimates from Biasse, Jacobson and Silvester (io):
- Complexity conjectured $\mathrm{L}_{\left|\Delta_{K}\right|}(1 / 2, o(1))$
- $\Delta_{k}: 1348$ bits as hard as factoring a 2048 bits RSA integer
- $\Delta_{k}: 1828$ bits as hard as factoring a 3072 bits RSA integer

Class Groups of Non Maximal Orders

- φ_{ℓ} et φ_{ℓ}^{-1} are effective isomorphisms, computable if ℓ is known

Class Groups of Non Maximal Orders

For Class Groups:

- φ_{ℓ} gives a surjection :

$$
\bar{\varphi}_{\ell}: \mathrm{C}\left(\mathscr{O}_{\Delta_{\ell}}\right) \longrightarrow \mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)
$$

Class Groups of Non Maximal Orders

For Class Groups:

- If $\Delta_{\mathrm{K}}<0, \Delta_{\mathrm{K}} \neq-3,-4$,

$$
h\left(\mathscr{O}_{\Delta_{\ell}}\right)=h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right) \times \ell \prod_{p \mid \ell}\left(1-\left(\frac{\Delta_{\mathrm{K}}}{p}\right) \frac{1}{p}\right)
$$

Cryptography in Class Groups of Non Maximal Orders

- NICE cryptosystem (New Ideal Coset Encryption), Paulus and Takagi (oo)
- $\Delta_{\mathrm{K}}=-q, \Delta_{p}=-q p^{2}, p, q$ primes and $q \equiv 3(\bmod 4)$

$$
h\left(\mathscr{O}_{\Delta_{p}}\right)=h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right) \times\left(p-\left(\frac{\Delta_{\mathrm{K}}}{p}\right)\right)
$$

- Public key: Δ_{p} and $h \in \operatorname{ker} \bar{\varphi}_{p}$, with $\bar{\varphi}_{p}: \mathrm{C}\left(\mathscr{O}_{\Delta_{p}}\right) \rightarrow \mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)$
- Secret key: p
- C., Laguillaumie (o9) :

In each non trivial class of $\operatorname{ker} \bar{\varphi}_{p}$, there exists an ideal of norm p^{2}

A Subgroup with an Easy DL Problem

- $\Delta_{\mathrm{K}}=-p q, \Delta_{p}=-q p^{3}, p, q$ primes and $p q \equiv 3(\bmod 4)$

$$
h\left(\mathscr{O}_{\Delta_{p}}\right)=p \times h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)
$$

- There exists an effective isomorphism

$$
\psi_{p}:\left(\mathscr{O}_{\Delta_{\mathrm{K}}} / p \mathscr{O}_{\Delta_{\mathrm{K}}}\right)^{\times} /(\mathbf{Z} / p \mathbf{Z})^{\times} \xrightarrow{\sim} \operatorname{ker} \bar{\varphi}_{p}
$$

Evaluation of ψ_{p} :
As $p \mid \Delta_{\mathrm{K}}$,

$$
\left(\mathscr{O}_{\Delta_{K}} / p \mathscr{O}_{\Delta_{K}}\right)^{\times} \simeq\left(\mathrm{F}_{p}[\mathrm{X}] /\left(\mathrm{X}^{2}\right)\right)^{\times}
$$

A Subgroup with an Easy DL Problem

- $\Delta_{\mathrm{K}}=-p q, \Delta_{p}=-q p^{3}, p, q$ primes and $p q \equiv 3(\bmod 4)$

$$
h\left(\mathscr{O}_{\Delta_{p}}\right)=p \times h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)
$$

- There exists an effective isomorphism

$$
\psi_{p}:\left(\mathscr{O}_{\Delta_{\mathrm{K}}} / p \mathscr{O}_{\Delta_{\mathrm{K}}}\right)^{\times} /(\mathbf{Z} / p \mathbf{Z})^{\times} \xrightarrow{\sim} \operatorname{ker} \bar{\varphi}_{p}
$$

Evaluation of ψ_{p} :
Elements of $\left(\mathscr{O}_{\Delta_{K}} / p \mathscr{O}_{\Delta_{K}}\right)^{\times} /(\mathbf{Z} / p \mathbf{Z})^{\times}:[1]$ and $\left[a+\sqrt{\Delta_{K}}\right]$ where a is an element of $(\mathbf{Z} / p \mathbf{Z})^{\times}$

A Subgroup with an Easy DL Problem

- $\Delta_{\mathrm{K}}=-p q, \Delta_{p}=-q p^{3}, p, q$ primes and $p q \equiv 3(\bmod 4)$

$$
h\left(\mathscr{O}_{\Delta_{p}}\right)=p \times h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)
$$

- There exists an effective isomorphism

$$
\psi_{p}:\left(\mathscr{O}_{\Delta_{\mathrm{K}}} / p \mathscr{O}_{\Delta_{\mathrm{K}}}\right)^{\times} /(\mathbf{Z} / p \mathbf{Z})^{\times} \xrightarrow{\sim} \operatorname{ker} \bar{\varphi}_{p}
$$

Evaluation of ψ_{p} :
Let $A=\left[1+\sqrt{\Delta_{K}}\right]$, one has $A^{m}=\left[1+m \sqrt{\Delta_{K}}\right]=\left[m^{-1}+\sqrt{\Delta_{K}}\right]$ for all $m \in\{1, \ldots, p-1\}$ and $A^{p}=[1]$.

A Subgroup with an Easy DL Problem

- $\Delta_{\mathrm{K}}=-p q, \Delta_{p}=-q p^{3}, p, q$ primes and $p q \equiv 3(\bmod 4)$

$$
h\left(\mathscr{O}_{\Delta_{p}}\right)=p \times h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)
$$

- There exists an effective isomorphism

$$
\psi_{p}:\left(\mathscr{O}_{\Delta_{\mathrm{K}}} / p \mathscr{O}_{\Delta_{\mathrm{K}}}\right)^{\times} /(\mathbf{Z} / p \mathbf{Z})^{\times} \xrightarrow{\sim} \operatorname{ker} \bar{\varphi}_{p}
$$

Evaluation of ψ_{p} :

- Let $\alpha_{m}=\frac{\mathrm{L}(m)+\sqrt{\Delta_{\mathrm{K}}}}{2} \in \mathscr{O}_{\Delta_{\mathrm{K}}}$, a representative of the class A^{m}, where $\mathrm{L}(m)$ is the odd integer in $[-p, p]$ such that $\mathrm{L}(m) \equiv 1 / m$ $(\bmod p)$
- The element A^{m} maps to the class $\psi_{p}\left(\mathrm{~A}^{m}\right)=\left[\varphi_{p}^{-1}\left(\alpha_{m} \mathscr{O}_{\Delta_{\mathrm{K}}}\right)\right]$ of the kernel of $\bar{\varphi}_{p}$

A Subgroup with an Easy DL Problem

- $\Delta_{\mathrm{K}}=-p q, \Delta_{p}=-q p^{3}, p, q$ primes and $p q \equiv 3(\bmod 4)$

$$
h\left(\mathscr{O}_{\Delta_{p}}\right)=p \times h\left(\mathscr{O}_{\Delta_{K}}\right)
$$

- There exists an effective isomorphism

$$
\psi_{p}:\left(\mathscr{O}_{\Delta_{K}} / p \mathscr{O}_{\Delta_{\mathrm{K}}}\right)^{\times} /(\mathbf{Z} / p \mathbf{Z})^{\times} \xrightarrow{\sim} \operatorname{ker} \bar{\varphi}_{p}
$$

Evaluation of ψ_{p} :
A tedious computation yields

$$
\psi_{p}\left(\mathrm{~A}^{m}\right)=\left[p^{2} \mathbf{Z}+\frac{-\mathrm{L}(m) p+\sqrt{\Delta_{p}}}{2} \mathbf{Z}\right]
$$

A Subgroup with an Easy DL Problem

- Let $f=\psi_{p}(\mathrm{~A})=\left[p^{2} \mathbf{Z}+\frac{-p+\sqrt{\Delta_{p}}}{2} \mathbf{Z}\right] \in \mathrm{C}\left(\mathscr{O}_{\Delta_{p}}\right)$
- $\mathrm{F}=\langle f\rangle$ is of order p, and

$$
f^{m}=\psi_{p}\left(\mathrm{~A}^{m}\right)=\left[p^{2} \mathbf{Z}+\frac{-\mathrm{L}(m) p+\sqrt{\Delta_{p}}}{2} \mathbf{Z}\right]
$$

- Moreover if $q>4 p$, then $p^{2}<\sqrt{\left|\Delta_{p}\right|} / 2$. As a result, the ideals of norm p^{2} are reduced (there are the canonical representatives)

A New Linearly Homomorphic Encryption Scheme

- $\Delta_{\mathrm{K}}=-p q, \Delta_{p}=-q p^{3}, p, q$ primes and $p q \equiv 3(\bmod 4)$ and $(p / q)=-1, q>4 p$
- Let g be an element of $C\left(\mathscr{O}_{\Delta_{p}}\right), h=g^{x}$ where x secret key
- $\left(c_{1}, c_{2}\right)=\left(g^{r}, h^{r} f^{m}\right)$
- Based on DDH in $\mathrm{C}\left(\mathscr{O}_{\Delta_{p}}\right)$ (and the Class number problem).
- Linearly homomorphic over $\mathbf{Z} / p \mathbf{Z}$ where p can be chosen (almost) independently from the security parameter

Removing the Condition on the Relative Size of p and q

- We impose that $q>4 p$, in order that the reduced elements of $\langle f\rangle$ are the ideals of norm p^{2}.
- As a consequence $\left|\Delta_{\mathrm{K}}\right|=p q>4 p^{2}$
- If we want a large message space, e.g., p of 2048 bits, Δ_{K} has 4098 bits (only 1348 needed for security).

$$
\text { Work with } \Delta_{\mathrm{K}}=-p \text {, and } \Delta_{p}=p^{2} \Delta_{\mathrm{K}}=-p^{3}
$$

Removing the Condition on the Relative Size of p and q

- $\Delta_{\mathrm{K}}=-p$, and $\Delta_{p}=p^{2} \Delta_{\mathrm{K}}=-p^{3}$.
- Let $f=\left[p^{2} \mathbf{Z}+\frac{-p+\sqrt{\Delta_{p}}}{2} \mathbf{Z}\right] \in \mathrm{C}\left(\mathscr{O}_{\Delta_{p}}\right), f^{m}$ still contains the non reduced ideal

$$
p^{2} \mathbf{Z}+\frac{-\mathrm{L}(m) p+\sqrt{\Delta_{p}}}{2} \mathbf{Z}
$$

- We lift f and f^{m} in the class group of discriminant $\Delta_{p^{2}}=p^{4} \Delta_{\mathrm{K}}$ where the ideals of norm p^{2} are reduced. This is done with the map

$$
\left[\varphi_{p}^{-1}(\cdot)\right]^{p}
$$

- One can show that $\left[\varphi_{p}^{-1}(\mathrm{~F})\right]^{p}$ is a subgroup of order p generated by the class of the reduced ideal $\left[p^{2} \mathbf{Z}+\frac{-p+\sqrt{\Delta_{p^{2}}}}{2} \mathbf{Z}\right]$ and Discrete Logarithms are easy to compute in this subgroup

A Faster Variant

- Original Scheme:
- $\Delta_{\mathrm{K}}=-p$, and $\Delta_{p}=p^{2} \Delta_{\mathrm{K}}=-p^{3}$.
- $g \in \mathrm{C}\left(\mathscr{O}_{\Delta_{p}}\right), h=g^{x}$
- f generates the subgroup of order p of $\mathrm{C}\left(\mathscr{O}_{\Delta_{p}}\right)$
- Encrypt $(p k, m)=\left(g^{r}, h^{r} f^{m}\right)$
- A faster variant :
- Choose $g^{\prime} \in \mathrm{C}\left(\mathscr{O}_{\Delta_{K}}\right)$ and $h^{\prime}=g^{x^{\prime}}$
- Denote $\psi_{p}: \mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right) \rightarrow \mathrm{C}\left(\mathscr{O}_{\Delta_{p}}\right)$ the map $\left[\varphi_{p}^{-1}(\cdot)\right]^{p}$
- Define Encrypt $(p k, m)=\left(c_{1}, c_{2}\right)=\left(g^{\prime \prime}, \psi\left(h^{\prime \prime}\right) f^{m}\right)$
- Decryption: Compute $c_{1}^{\prime}=\psi\left(c_{1}^{x^{\prime}}\right)$ and $f^{m}=c_{2} / c_{1}^{\prime}$.
- Smaller ciphertext: c_{1} is in $\mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)$ instead of $\mathrm{C}\left(\mathscr{O}_{\Delta_{p}}\right)$
- Faster computation: exponentiations in $\mathrm{C}\left(\mathscr{O}_{\Delta_{K}}\right)$ instead of $\mathrm{C}\left(\mathcal{O}_{\Delta_{p}}\right)$
- However, the semantic security is now based on a non standard problem.

Performance comparison

Cryptosystem	Parameter	Message Space	Encryption (ms)	Decryption (ms)
Paillier	2048 bits modulus	2048 bits	$\mathbf{2 8}$	$\mathbf{2 8}$
BCPO3	2048 bits modulus	2048 bits	107	54
New Proposal	1348 bits Δ_{K}	80 bits	93	49
Fast Variant	1348 bits Δ_{K}	80 bits	82	45
Fast Variant	1348 bits Δ_{K}	256 bits	105	68
Paillier	3072 bits modulus	3072 bits	$\mathbf{1 0 9}$	109
BCPO3	3072 bits modulus	3072 bits	427	214
New Proposal	1828 bits Δ_{K}	80 bits	179	9 I
Fast Variant	1828 bits Δ_{K}	80 bits	145	$\mathbf{7 8}$
Fast Variant	1828 bits Δ_{K}	$5 \mathrm{I2}$ bits	226	159
Fast Variant	1828 bits Δ_{K}	912 bits	340	27 I

Timings performed with Sage and PARI/GP.

Others Variants and Further developments

- More general message spaces:
- Z / NZ with $\mathrm{N}=\prod_{i=1}^{n} p_{i}$, with a discriminant of the form $\Delta_{\mathrm{K}}=-\mathrm{N} q$
- $\mathbf{Z} / p^{t} \mathbf{Z}$ for $t>1$, with discriminants of the form $\Delta_{p^{t}}=p^{2 t} \Delta_{\mathrm{K}}$, and $\Delta_{\mathrm{K}}=-p q$
- An adaptation may also be possible in the infrastructure of real quadratic fields

