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Linearly Homomorphic Encryption ?

▶ Public key encryption scheme with the following properties:

▶ Suppose that the set of plaintexts ℳ is a ring

▶ 𝑐 ← Encrypt(𝑝𝑘,𝑚), 𝑐′ ← Encrypt(𝑝𝑘,𝑚′)

▶ 𝑐 ← 𝖤𝗏𝖺𝗅𝖲𝗎𝗆(𝑝𝑘, 𝑐, 𝑐′) s.t.

𝖣𝖾𝖼𝗋𝗒𝗉𝗍(𝑠𝑘, 𝑐) = 𝑚 + 𝑚′

▶ For α ∈ ℳ , 𝑐 ← 𝖤𝗏𝖺𝗅𝖲𝖼𝖺𝗅(𝑝𝑘, 𝑐, α) s.t.

𝖣𝖾𝖼𝗋𝗒𝗉𝗍(𝑠𝑘, 𝑐) = α𝑚
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Example: Goldwasser Micali (84)
▶ ℳ = 𝐙/2𝐙,

▶ 𝑝𝑘 = (N, 𝑔) with N = 𝑝𝑞 an RSA integer and 𝑔 ∈ (𝐙/N𝐙)×, s.t.


𝑔
𝑝 = 

𝑔
𝑞 = −1.

▶ 𝑐 ≡ 𝑔𝑚𝑟 (mod N) where 𝑟 $←− (𝐙/N𝐙)×

▶ 𝑠𝑘 = 𝑝

▶  𝑐𝑝 = (−1)
𝑚.

▶ 𝖤𝗏𝖺𝗅𝖲𝗎𝗆 : 𝑐𝑐′𝑟″ ≡ 𝑔𝑚+𝑚′(𝑟𝑟′𝑟″)

▶ 𝖤𝗏𝖺𝗅𝖲𝖼𝖺𝗅 : 𝑐α𝑟″ ≡ 𝑔𝑚α(𝑟α𝑟″)
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Example: Paillier (99)

▶ ℳ = 𝐙/N𝐙,

▶ 𝑝𝑘 = N with N = 𝑝𝑞 an RSA integer

▶ 𝑐 ≡ (1 + N)𝑚𝑟 ≡ (1 + 𝑚N)𝑟 (mod N) where 𝑟 $←− (𝐙/N𝐙)×

▶ 𝑠𝑘 = φ(N)

▶ 𝑐φ() ≡ (1 + N)𝑚φ()𝑟φ() ≡ 1 + 𝑚φ(N)N (mod N)

▶ 𝖤𝗏𝖺𝗅𝖲𝗎𝗆 : 𝑐𝑐′𝑟″ ≡ (1 + N)𝑚+𝑚′(𝑟𝑟′𝑟″)

▶ 𝖤𝗏𝖺𝗅𝖲𝖼𝖺𝗅 : 𝑐α𝑟″ ≡ (1 + N)𝑚α(𝑟α𝑟″)
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Security

▶ 𝖢𝖯𝖠 security: Oscar can encrypt plaintexts of his choice
(Chosen Plaintext Attack)

▶ No 𝖢𝖢𝖠 (Chosen Ciphertext Attack) security for
homomorphic schemes:

▶ Oscar is given a challenge ciphertext 𝑐
▶ He computes 𝑐′ ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝑝𝑘, 0) and 𝑐 ← 𝖤𝗏𝖺𝗅𝖲𝗎𝗆(𝑝𝑘, 𝑐, 𝑐′)
▶ A decryption oracle queried with 𝑐 gives 𝑚

▶ Total Break (𝖳𝖡 − 𝖢𝖯𝖠): find 𝑠𝑘

▶ Goldwasser Micali and Paillier: factorisation of N
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Security

▶ Attack against Semantic Security (𝖨𝖭𝖣 − 𝖢𝖯𝖠): find a bit of
information on 𝑚 given 𝑐.

▶ For a linearly homomorphic scheme, equivalent to distinguish

encryptions of 𝑚 $←− M and encryptions of 0.

▶ Golwasser Micali is 𝖨𝖭𝖣 − 𝖢𝖯𝖠 if it is hard to distinguish
squares from non-squares in the set of elements of (𝐙/N𝐙)×
whose Jacobi symbol is 1 (Quadratic Residuosity assumption).

▶ Paillier is 𝖨𝖭𝖣 − 𝖢𝖯𝖠 if it is hard to distinguish 𝑥 from
random elements of (𝐙/N𝐙)× (Composite Residuosity
assumption).
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One Application: An Electronic Voting Scheme

▶ Yes/No choice: vote 1 or 0

Alice ∶ 0 → 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝑝𝑘, 0)

Bob ∶ 1 → 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝑝𝑘, 1)

⋮ ⋮ ⋮ ⋮

Zack ∶ 1 → 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝑝𝑘, 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇝
𝑐 s.t.

𝖣𝖾𝖼𝗋𝗒𝗉𝗍(𝗌𝗄, 𝖼)
=

∑ votes.

▶ Paillier: ℳ = 𝐙/N𝐙 with N > 2.
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𝖣𝖣𝖧 ?
▶ ElGamal encryption scheme (85), (G, ×) = ⟨𝑔⟩ of order 𝑛

Alice Bob

𝑥 $←− 𝐙/𝑛𝐙
secret key

ℎ = 𝑔𝑥 public key
ℎ

𝑟 $←− 𝐙/𝑛𝐙
𝑐 = 𝑔𝑟 𝑐

Z = ℎ𝑟 (= 𝑔𝑥𝑟) Z = 𝑐𝑥 (= 𝑔𝑥𝑟)

𝑚 ∈ G
𝑐 = 𝑚Z 𝑐/Z⇝ 𝑚

▶ Ciphertext of 𝑚 is (𝑔𝑟, ℎ𝑟𝑚) = (𝑐, 𝑐). Decryption: 𝑐/𝑐𝑥 8/30



ElGamal
▶ Security:

▶ 𝖳𝖡 − 𝖢𝖯𝖠: Given ℎ = 𝑔𝑥 find 𝑥:
Discrete Logarithm problem in G (𝖣𝖫)

▶ 𝖨𝖭𝖣 − 𝖢𝖯𝖠: Distinguish triplets (𝑔𝑥, 𝑔𝑟, 𝑔𝑥𝑟) in G:
Decisional Diffie Hellman Assumption in G (𝖣𝖣𝖧)

▶ Homomorphic properties:
▶ (𝑐, 𝑐) = (𝑔𝑟, ℎ𝑟𝑚) ← Encrypt(𝑝𝑘,𝑚),
▶ (𝑐′, 𝑐′) = (𝑔𝑟

′ , ℎ𝑟′𝑚′) ← Encrypt(𝑝𝑘,𝑚′),

(𝑐𝑐′, 𝑐𝑐′) = (𝑔𝑟+𝑟
′ , ℎ𝑟+𝑟′𝑚𝑚′)

(𝑐α , 𝑐α ) = (𝑔𝑟α, ℎ𝑟α𝑚α)

▶ Encoding problem: if M ∈ 𝐍, need to map M to 𝑚 ∈ G
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ElGamal “in the exponent”

▶ Folklore solution : M ∈ 𝐍 ↦ 𝑔

▶ (𝑐, 𝑐) = (𝑔𝑟, ℎ𝑟𝑔) ← Encrypt(𝑝𝑘,M)

▶ Decrypt(𝑝𝑘, 𝑐) ∶ 𝑐/𝑐𝑥 = 𝑔 ⇝M

▶ M must be small. Can only do a bounded number of
homomorphic operations:

▶ (𝑐, 𝑐) = (𝑔𝑟, ℎ𝑟𝑔) ← Encrypt(𝑝𝑘,M),
▶ (𝑐′, 𝑐′) = (𝑔𝑟

′ , ℎ𝑟′𝑔′ ) ← Encrypt(𝑝𝑘,M ′),

(𝑐𝑐′, 𝑐𝑐′) = (𝑔𝑟+𝑟
′ , ℎ𝑟+𝑟′𝑔+′ )

(𝑐α , 𝑐α ) = (𝑔𝑟α, ℎ𝑟α𝑔α)
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𝖣𝖣𝖧 group with an easy 𝖣𝖫 subgroup

▶ (G, ×) = ⟨𝑔⟩ a cyclic group of order 𝑛

▶ 𝑛 = 𝑝𝑠, gcd(𝑝, 𝑠) = 1

▶ ⟨𝑓⟩ = F ⊂ G subgroup of G of order 𝑝

▶ The 𝖣𝖫 problem is easy in F: There exists, 𝖲𝗈𝗅𝗏𝖾, a
deterministic polynomial time algorithm s.t.

𝖲𝗈𝗅𝗏𝖾(𝑝, 𝑓, 𝑓𝑥)⇝ 𝑥

▶ The 𝖣𝖣𝖧 problem is hard in G even with access to the 𝖲𝗈𝗅𝗏𝖾
algorithm

11/30



A Generic Linearly Homomorphic Encryption Scheme

▶ ℳ = 𝐙/𝑝𝐙

▶ 𝑝𝑘 ∶ ℎ = 𝑔𝑥, 𝑠𝑘 ∶ 𝑥

▶ 𝖤𝗇𝖼𝗋𝗒𝗉𝗍 ∶ 𝑐 = (𝑐, 𝑐) = (𝑔𝑟, 𝑓𝑚ℎ𝑟)

▶ 𝖣𝖾𝖼𝗋𝗒𝗉𝗍 ∶ A ← 𝑐/𝑐𝑥, 𝖲𝗈𝗅𝗏𝖾(𝑝, 𝑓,A)⇝ 𝑚

▶ 𝖤𝗏𝖺𝗅𝖲𝗎𝗆 ∶

(𝑐𝑐′𝑔𝑟
″ , 𝑐𝑐′ℎ𝑟

″) = (𝑔𝑟+𝑟′+𝑟″ , ℎ𝑟+𝑟′+𝑟″𝑓𝑚+𝑚′)
▶ 𝖤𝗏𝖺𝗅𝖲𝖼𝖺𝗅 ∶

(𝑐α𝑔𝑟
″ , 𝑐αℎ𝑟

″) = (𝑔𝑟α+𝑟″ , ℎ𝑟α+𝑟″𝑓𝑚α)
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An Unsecure Instantiation
▶ 𝑝 a prime and G = ⟨𝑔⟩ = (𝐙/𝑝𝐙)×

▶ 𝑓 = 1 + 𝑝 ∈ G, F = ⟨𝑓⟩ = {1 + 𝑘𝑝, 𝑘 ∈ Z/𝑝Z}
▶ 𝑓𝑚 = 1 + 𝑚𝑝.
▶ There exist a unique (α, 𝑟) ∈ (𝐙/𝑝𝐙, (𝐙/𝑝𝐙)×) such that
𝑔 = 𝑓α𝑟𝑝

𝑔𝑝− = 𝑓α(𝑝−) = 𝑓−α
▶ Public key : ℎ = 𝑔𝑥,

ℎ𝑝− = 𝑓−α𝑥 ⇝ 𝑥 mod 𝑝
▶ (𝑐, 𝑐) = (𝑔𝑟, ℎ𝑟𝑓𝑚)

𝑐𝑝− = 𝑓−α𝑟 ⇝ 𝑟 mod 𝑝

𝑐𝑝− = 𝑓−α𝑥𝑟−𝑚 ⇝ 𝑚 mod 𝑝
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Partial Discrete Logarithm Problem
▶ (G, ×) = ⟨𝑔⟩ a cyclic group of order 𝑛
▶ 𝑛 = 𝑝𝑠, gcd(𝑝, 𝑠) = 1
▶ ⟨𝑓⟩ = F ⊂ G subgroup of G of order 𝑝
▶ Partial Discrete Logarithm (𝖯𝖣𝖫) Problem:

Given X = 𝑔𝑥 compute 𝑥 mod 𝑝.

▶ The knowledge of 𝑠 makes the 𝖯𝖣𝖫 problem easy.
▶ Let π ∶ G → G/F be the canonical surjection.

Lift Diffie-Hellman (𝖫𝖣𝖧) Problem:

Given X = 𝑔𝑥, Y = 𝑔𝑟 and π(𝑔𝑥𝑟) compute 𝑔𝑥𝑟

▶ The 𝖫𝖣𝖧 and 𝖯𝖣𝖫 are equivalent. The Linearly
Homomorphic Encryption Scheme is One-Way if those
problems are hard.
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A Secure Instantiation

▶ Bresson, Catalano, Pointcheval (03)

▶ Let N be an RSA integer, G = ⟨𝑔⟩ = (𝐙/N𝐙)×

▶ Card(G) = Nφ(N) = 𝑛, 𝑠 = φ(N), 𝑝 = N

▶ 𝑓 = 1 + N ∈ G, F = ⟨𝑓⟩ = {1 + 𝑘N, 𝑘 ∈ Z/NZ}, of order N

▶ Public key : ℎ = 𝑔𝑥, 𝑥 secret key

▶ (𝑐, 𝑐) = (𝑔𝑟, ℎ𝑟𝑓𝑚)

▶ Based on 𝖣𝖣𝖧 in (𝐙/N𝐙)× and the Factorisation problem.

▶ The factorisation of N acts as a second trapdoor.
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Imaginary Quadratic Orders

Imaginary Quadratic Fields

▶ K = 𝐐(√Δ), Δ < 0
▶ Fundamental Discriminant:

▶ Δ ≡ 1 (mod 4) square-free
▶ Δ ≡ 0 (mod 4) and Δ/4 ≡ 2, 3 (mod 4) square-free

Imaginary Quadratic Orders

▶ 𝒪 is a subring of K containing 1 and 𝒪 is a free 𝐙-module of
rank 2
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Imaginary Quadratic Orders

Characterisation of Orders

▶ 𝒪 : ring of integers of K is the maximal order,

𝒪 = 𝐙 +
Δ + √Δ

2 𝐙

▶ 𝒪 ⊂ 𝒪 , ℓ ∶= [𝒪 ∶ 𝒪 ] is the conductor,

𝒪 = 𝐙 + Δℓ + √Δℓ2 𝐙

Δℓ = ℓΔ is the non fundamental discriminant of 𝒪ℓ ∶= 𝒪
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Class Group

Class Group of discriminant Δ

C(𝒪) ∶= I(𝒪)/P(𝒪)

its finite cardinal is the class number denoted ℎ(𝒪)

▶ I(𝒪) : group of Invertible Fractional Ideals of 𝒪
▶ P(𝒪) : subgroup of Principal Ideals

▶ Class Number: ℎ(𝒪) ≈ √|Δ|
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ElGamal in Class Group of Maximal Order

▶ Buchmann and Williams (88): Diffie-Hellman key exchange
and ElGamal

▶ Düllmann, Hamdy, Möller, Pohst, Schielzeth, Vollmer
(90-07): Implementation

▶ Construct Δ a fundamental negative discriminant, in order
to maximize the odd-part of C(𝒪 ); e.g., Δ𝑘 = −𝑞, 𝑞 ≡ 3
(mod 4), 𝑞 prime : ℎ(𝒪 ) is odd

▶ choose 𝑔 a random class of C(𝒪 ) of odd order⇝ order of 𝑔
will be close to ℎ(𝒪 ) ≈ √|Δ|

▶ secret key: 𝑥 $←− {0,… , ⌊√|Δ|⌋}, public key: ℎ = 𝑔𝑥.

▶ Encoding of message in G = ⟨𝑔⟩ can be problematic
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Class Number and Discrete Logarithm computations

▶ Size of Δ? Index calculus algorithm to compute ℎ(𝒪) and
Discrete Logarithm in C(𝒪)

▶ Security Estimates from Biasse, Jacobson and Silvester (10):
▶ Complexity conjectured L | |(1/2, 𝑜(1))
▶ Δ𝑘 : 1348 bits as hard as factoring a 2048 bits RSA integer
▶ Δ𝑘 : 1828 bits as hard as factoring a 3072 bits RSA integer
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Class Groups of Non Maximal Orders

𝒪ℓ

Order of discriminant Δℓ ∶= ℓΔ

𝒪
Order of discriminant Δ

▶ φℓ et φ−ℓ are effective isomorphisms, computable if ℓ is
known

For Class Groups:

▶ φℓ gives a surjection :
φ̄ℓ ∶ C(𝒪ℓ) C(𝒪)

For Class Groups:

▶ If Δ < 0, Δ ≠ −3, −4,

ℎ(𝒪ℓ) = ℎ(𝒪) × ℓ
𝑝∣ℓ

1 − 
Δ
𝑝 

1
𝑝
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Class Groups of Non Maximal Orders

𝒪ℓ a
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1
𝑝
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Class Groups of Non Maximal Orders

𝒪ℓ A ∩ 𝒪ℓ
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𝒪 A
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Cryptography in Class Groups of Non Maximal Orders
▶ 𝖭𝖨𝖢𝖤 cryptosystem (New Ideal Coset Encryption), Paulus and

Takagi (00)

▶ ∆ = −𝑞, ∆𝑝 = −𝑞𝑝, 𝑝, 𝑞 primes and 𝑞 ≡ 3 (mod 4)

ℎ(𝒪𝑝) = ℎ(𝒪) × 𝑝 − 
Δ
𝑝 

▶ Public key: Δ𝑝 and ℎ ∈ ker φ̄𝑝, with φ̄𝑝 ∶ C(𝒪𝑝) → C(𝒪)

▶ Secret key: 𝑝

▶ C., Laguillaumie (09) :

In each non trivial class of ker φ̄𝑝, there exists an ideal of
norm 𝑝
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A Subgroup with an Easy 𝖣𝖫 Problem

▶ ∆ = −𝑝𝑞, ∆𝑝 = −𝑞𝑝, 𝑝, 𝑞 primes and 𝑝𝑞 ≡ 3 (mod 4)

ℎ(𝒪𝑝) = 𝑝 × ℎ(𝒪)

▶ There exists an effective isomorphism

ψ𝑝: 𝒪 /𝑝𝒪
×
/ 𝐙/𝑝𝐙

× ker φ̄𝑝∼

Evaluation of ψ𝑝 :

As 𝑝 ∣ Δ,
𝒪 /𝑝𝒪

×
≃ 𝐅𝑝[X]/(X)

×
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A Subgroup with an Easy 𝖣𝖫 Problem

▶ ∆ = −𝑝𝑞, ∆𝑝 = −𝑞𝑝, 𝑝, 𝑞 primes and 𝑝𝑞 ≡ 3 (mod 4)

ℎ(𝒪𝑝) = 𝑝 × ℎ(𝒪)

▶ There exists an effective isomorphism

ψ𝑝: 𝒪 /𝑝𝒪
×
/ 𝐙/𝑝𝐙

× ker φ̄𝑝∼

Evaluation of ψ𝑝 :

Elements of 𝒪 /𝑝𝒪
×
/ 𝐙/𝑝𝐙

×
: [1] and [𝑎 + √Δ] where 𝑎 is

an element of (𝐙/𝑝𝐙)×
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A Subgroup with an Easy 𝖣𝖫 Problem

▶ ∆ = −𝑝𝑞, ∆𝑝 = −𝑞𝑝, 𝑝, 𝑞 primes and 𝑝𝑞 ≡ 3 (mod 4)

ℎ(𝒪𝑝) = 𝑝 × ℎ(𝒪)

▶ There exists an effective isomorphism

ψ𝑝: 𝒪 /𝑝𝒪
×
/ 𝐙/𝑝𝐙

× ker φ̄𝑝∼

Evaluation of ψ𝑝 :

Let A = [1 + √Δ], one has A𝑚 = [1 + 𝑚√Δ] = [𝑚− + √Δ] for
all 𝑚 ∈ {1,… , 𝑝 − 1} and A𝑝 = [1].
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A Subgroup with an Easy 𝖣𝖫 Problem
▶ ∆ = −𝑝𝑞, ∆𝑝 = −𝑞𝑝, 𝑝, 𝑞 primes and 𝑝𝑞 ≡ 3 (mod 4)

ℎ(𝒪𝑝) = 𝑝 × ℎ(𝒪)

▶ There exists an effective isomorphism

ψ𝑝: 𝒪 /𝑝𝒪
×
/ 𝐙/𝑝𝐙

× ker φ̄𝑝∼

Evaluation of ψ𝑝 :

▶ Let α𝑚 = (𝑚)+√
 ∈ 𝒪 , a representative of the class A𝑚,

where L(𝑚) is the odd integer in [−𝑝, 𝑝] such that L(𝑚) ≡ 1/𝑚
(mod 𝑝)

▶ The element A𝑚 maps to the class ψ𝑝(A𝑚) = [φ−𝑝 (α𝑚𝒪)] of
the kernel of φ̄𝑝
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A Subgroup with an Easy 𝖣𝖫 Problem
▶ ∆ = −𝑝𝑞, ∆𝑝 = −𝑞𝑝, 𝑝, 𝑞 primes and 𝑝𝑞 ≡ 3 (mod 4)

ℎ(𝒪𝑝) = 𝑝 × ℎ(𝒪)

▶ There exists an effective isomorphism

ψ𝑝: 𝒪 /𝑝𝒪
×
/ 𝐙/𝑝𝐙

× ker φ̄𝑝∼

Evaluation of ψ𝑝 :

A tedious computation yields

ψ𝑝(A𝑚) =
⎡
⎢⎢⎢⎢⎣𝑝𝐙 +

−L(𝑚)𝑝 + √Δ𝑝
2 𝐙

⎤
⎥⎥⎥⎥⎦
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A Subgroup with an Easy 𝖣𝖫 Problem

▶ Let 𝑓 = ψ𝑝(A) = 𝑝𝐙 +
−𝑝+√𝑝

 𝐙 ∈ C(𝒪𝑝)

▶ F = ⟨𝑓⟩ is of order 𝑝, and

𝑓𝑚 = ψ𝑝(A𝑚) =
⎡
⎢⎢⎢⎢⎣𝑝𝐙 +

−L(𝑚)𝑝 + √Δ𝑝
2 𝐙

⎤
⎥⎥⎥⎥⎦

▶ Moreover if 𝑞 > 4𝑝, then 𝑝 < √|Δ𝑝|/2. As a result, the ideals
of norm 𝑝 are reduced (there are the canonical
representatives)
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A New Linearly Homomorphic Encryption Scheme

▶ ∆ = −𝑝𝑞, ∆𝑝 = −𝑞𝑝, 𝑝, 𝑞 primes and 𝑝𝑞 ≡ 3 (mod 4) and
(𝑝/𝑞) = −1, 𝑞 > 4𝑝

▶ Let 𝑔 be an element of C(𝒪𝑝), ℎ = 𝑔𝑥 where 𝑥 secret key

▶ (𝑐, 𝑐) = (𝑔𝑟, ℎ𝑟𝑓𝑚)

▶ Based on 𝖣𝖣𝖧 in C(𝒪𝑝) (and the Class number problem).

▶ Linearly homomorphic over 𝐙/𝑝𝐙 where 𝑝 can be chosen
(almost) independently from the security parameter
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Removing the Condition on the Relative Size of 𝑝 and 𝑞

▶ We impose that 𝑞 > 4𝑝, in order that the reduced elements of
⟨𝑓⟩ are the ideals of norm 𝑝.

▶ As a consequence |Δ| = 𝑝𝑞 > 4𝑝

▶ If we want a large message space, e.g., 𝑝 of 2048 bits, Δ has
4098 bits (only 1348 needed for security).

Work with Δ = −𝑝, and Δ𝑝 = 𝑝Δ = −𝑝.
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Removing the Condition on the Relative Size of 𝑝 and 𝑞
▶ Δ = −𝑝, and Δ𝑝 = 𝑝Δ = −𝑝.

▶ Let 𝑓 = 𝑝𝐙 + −𝑝+√𝑝
 𝐙 ∈ C(𝒪𝑝), 𝑓𝑚 still contains the non

reduced ideal

𝑝𝐙 +
−L(𝑚)𝑝 + √Δ𝑝

2 𝐙

▶ We lift 𝑓 and 𝑓𝑚 in the class group of discriminant
Δ𝑝 = 𝑝Δ where the ideals of norm 𝑝 are reduced. This is
done with the map

[φ−𝑝 (⋅)]𝑝

▶ One can show that [φ−𝑝 (F)]𝑝 is a subgroup of order 𝑝

generated by the class of the reduced ideal [𝑝𝐙 +
−𝑝+

√
𝑝

 𝐙]
and Discrete Logarithms are easy to compute in this subgroup
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A Faster Variant
▶ Original Scheme :

▶ Δ = −𝑝, and Δ𝑝 = 𝑝Δ = −𝑝.
▶ 𝑔 ∈ C(𝒪𝑝 ), ℎ = 𝑔𝑥
▶ 𝑓 generates the subgroup of order 𝑝 of C(𝒪𝑝 )
▶ 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝑝𝑘,𝑚) = (𝑔𝑟, ℎ𝑟𝑓𝑚)

▶ A faster variant :
▶ Choose 𝑔′ ∈ C(𝒪 ) and ℎ′ = 𝑔𝑥′

▶ Denote ψ𝑝 ∶ C(𝒪 ) → C(𝒪𝑝 ) the map [φ−𝑝 (⋅)]𝑝

▶ Define 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝑝𝑘,𝑚) = (𝑐, 𝑐) = (𝑔′𝑟, ψ(ℎ′𝑟)𝑓𝑚)
▶ Decryption: Compute 𝑐′ = ψ(𝑐𝑥

′
 ) and 𝑓𝑚 = 𝑐/𝑐′.

▶ Smaller ciphertext: 𝑐 is in C(𝒪 ) instead of C(𝒪𝑝 )
▶ Faster computation: exponentiations in C(𝒪 ) instead of
C(𝒪𝑝 )

▶ However, the semantic security is now based on a non
standard problem.

28/30



Performance comparison

Cryptosystem Parameter Message Space Encryption (ms) Decryption (ms)
Paillier 2048 bits modulus 2048 bits 28 28
BCP03 2048 bits modulus 2048 bits 107 54

New Proposal 1348 bits  80 bits 93 49
Fast Variant 1348 bits  80 bits 82 45
Fast Variant 1348 bits  256 bits 105 68

Paillier 3072 bits modulus 3072 bits 109 109
BCP03 3072 bits modulus 3072 bits 427 214

New Proposal 1828 bits  80 bits 179 91
Fast Variant 1828 bits  80 bits 145 78
Fast Variant 1828 bits  512 bits 226 159
Fast Variant 1828 bits  912 bits 340 271

Timings performed with Sage and PARI/GP.
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Others Variants and Further developments

▶ More general message spaces:

▶ 𝐙/N𝐙 with N = ∏𝑛
𝑖= 𝑝𝑖, with a discriminant of the form

Δ = −N𝑞
▶ 𝐙/𝑝𝑡𝐙 for 𝑡 > 1, with discriminants of the form Δ𝑝𝑡 = 𝑝𝑡Δ,

and Δ = −𝑝𝑞

▶ An adaptation may also be possible in the infrastructure of
real quadratic fields
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