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Linearly Homomorphic Encryption ?

v

Public key encryption scheme with the following properties:

v

Suppose that the set of plaintexts ./ is a ring

v

¢ « Encrypt(pk, m), ¢’ « Encrypt(pk, m")

v

c; < EvalSum(pk,c,c’) s.t.

Decrypt(sk,c;) = m + m’

v

For o € .#, c; « EvalScal(pk,c, a) s.t.

Decrypt(sk, cp) = am
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Example: Goldwasser Micali (84)
- =727,
» pk = (N, g) with N = pg an RSA integer and g € (Z/NZ)*, s.t.

(-6

¢ = ¢"? (mod N) where r < (Z/NZ)*

v

» sk=p
()=

v

v

2 ’
EvalSum : cc’r”* = g™ (rr 1" )?

v

2
EvalScal : ¢®r” = g"*(r*r”)?
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Example: Paillier (99)

v

= Z/NZ,

v

pk = N with N = pg an RSA integer

v

c=1+N)"N =1 +mN)™N (mod N?) where r & (Z/NZ)*

v

sk = (N)

v

c®MN) = (1 + NN Ne®) = 1 + mp(N)N (mod N?)

EvalSum : cc’v"N = 1+ N)m+m/(rr’r”)N

v

v

EvalScal : N = (1 + N)yme(rap”)N
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Security

» CPA security: Oscar can encrypt plaintexts of his choice
(Chosen Plaintext Attack)

» No CCA (Chosen Ciphertext Attack) security for
homomorphic schemes:

» Oscar is given a challenge ciphertext ¢
» He computes ¢’ < Encrypt(pk, 0) and ¢; < EvalSum(pk,c,c’)

» A decryption oracle queried with ¢; gives m

» Total Break (TB — CPA): find sk

» Goldwasser Micali and Paillier: factorisation of N
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Security

» Attack against Semantic Security (IND — CPA): find a bit of
information on m given c.

» For a linearly homomorphic scheme, equivalent to distinguish
encryptions of m & Mand encryptions of 0.

» Golwasser Micali is IND — CPA if it is hard to distinguish
squares from non-squares in the set of elements of (Z/NZ)*
whose Jacobi symbol is 1 (Quadratic Residuosity assumption).

> Paillier is IND — CPA if it is hard to distinguish xN from
random elements of (Z/N?Z)* (Composite Residuosity
assumption).
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One Application: An Electronic Voting Scheme

» Yes/No choice: vote 1 or 0

Alice : 0 — Encrypt(pk,0)

Bob : 1 — Encrypt(pk,1) st

~>  Decrypt(sk, c)

Zack : 1 — Encrypt(pk,1) Y. votes.

» Paillier: .# = Z/NZ with N > 21023,
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DDH ?
» ElGamal encryption scheme (85), (G, X) = (g) of order n

Alice Bob
3 ( h = g* public key & 7z
secret key
s =g
r«— Z/nZ @
Z=n(=g") Z=ci(=g"
Cy = mZ.

|meGI > CofZ ~>m

» Ciphertext of m is (§", h"m) = (cy, c;). Decryption: cy/c] 8130



ElGamal

» Security:

» TB - CPA: Given hh = g* find x:
Discrete Logarithm problem in G (DL)

» IND — CPA: Distinguish triplets (¢*,¢",¢*") in G3:
Decisional Diffie Hellman Assumption in G (DDH)

» Homomorphic properties:

> (c1,03) = (g7, W'm) < Encrypt(pk, m),
> (¢}, ¢h) = (8", h"'m’) « Encrypt(pk, m’"),
(Clc/ll Czcé) — (g1-+1-’, hr+r’mml)
(e, 5) = (g, rom®)

» Encoding problem: if M € N, need to map M tom € G
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ElGamal “in the exponent”

v

Folklore solution: M € N — gM
(c1,¢2) = (¢", "gM) « Encrypt(pk, M)
Decrypt(pk,c) : co/c] = XM ~ M

M must be small. Can only do a bounded number of
homomorphic operations:

> (CerZ) = (87r hrgM) & Encrypt(sz M)’

> (c1,¢5) = (", "'g™) « Encrypt(pk, M),

v

v

v

/ J ’
(Clci/CZCé) — (gr+r /hr+r gM+M )

(C%,C%) — (grcx,hrag.Ma)
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DDH group with an easy DL subgroup

> (G, X) = (g) a cyclic group of order n

v

n=ps,gcd(p,s) =1
(f) = F C G subgroup of G of order p

v

v

The DL problem is easy in F: There exists, Solve, a
deterministic polynomial time algorithm s.t.

Solve(p, f, f*) ~ x

v

The DDH problem is hard in G even with access to the Solve
algorithm
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A Generic Linearly Homomorphic Encryption Scheme

» N =1ZJpL
» pk:h=g"sk:x
> Encrypt :c = (cy,¢2) = (&, f"H)
> Decrypt : A « c/cq, Solve(p, f, A) ~» m
» EvalSum:
(rctg” cacylt”) = (g7 r+r'+r” e
» EvalScal :

(Cclxgr”/cg r”) — (groc+r”,hroc+r”fmoc)
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An Unsecure Instantiation

> p aprime and G = (g) = (Z/p*Z)*
» f=1+peGF=(f)={1+kp k€ Z/pZ}
> =1+ mp.

» There exist a unique (o, 1) € (Z/pZ,(Z/pZ)*) such that
g =furr

gp—l — fa(p—l) — f—oc
» Public key: h = g%,

WPt = f%% «s x mod p
> (c1,6) = (" W f™)

-1
= f 71 modp

-1 _ oxr
¢y =M s m mod p
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Partial Discrete Logarithm Problem
> (G, X) = (g) a cyclic group of order n

v

n=ps,ged(p,s) =1
(f) = F € G subgroup of G of order p
Partial Discrete Logarithm (PDL) Problem:

v

v

Given X = ¢* compute x mod p.

v

The knowledge of s makes the PDL problem easy.

v

Let  : G — G/F be the canonical surjection.
Lift Diffie-Hellman (LDH) Problem:

Given X = ¢%,Y = ¢’ and (g"") compute g

v

The LDH and PDL are equivalent. The Linearly
Homomorphic Encryption Scheme is One-Way if those
problems are hard.
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A Secure Instantiation

v

Bresson, Catalano, Pointcheval (03)

v

Let N be an RSA integer, G = (g) = (Z/N?Z)*

v

Card(G) = No(N) =n,s =@(N),p =N

v

f=1+NeG,F=(f)={1+kN,k € Z/NZ}, of order N

v

Public key : h = g*, x secret key

(c1,62) = (8", W' f™)
Based on DDH in (Z/N?Z)* and the Factorisation problem.

v

v

v

The factorisation of N acts as a second trapdoor.
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Imaginary Quadratic Orders

Imaginary Quadratic Fields
> K=Q(vAk), Ak <0

» Fundamental Discriminant:
» Ak =1 (mod 4) square-free

» A =0 (mod 4) and Ag/4 = 2,3 (mod 4) square-free

Imaginary Quadratic Orders

» (7 is a subring of K containing 1 and @ is a free Z-module of
rank 2
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Imaginary Quadratic Orders

Characterisation of Orders

> ), : ring of integers of K is the maximal order,

Ag + VA
@)AK:Z'F%Z

> 0 C Op, L :=[0Op : O]is the conductor,

Ap+ A
@):Z‘}'%Z

Ay = ? Ay is the non fundamental discriminant of @) =0
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Class Group

Class Group of discriminant A

C(Oh) = H(ON)/P(Oh)

its finite cardinal is the class number denoted k(7))

> 1(¢,) : group of Invertible Fractional Ideals of &
» P(¢,) : subgroup of Principal Ideals

» Class Number: h(7,) = v/|A|
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ElGamal in Class Group of Maximal Order

» Buchmann and Williams (88): Diffie-Hellman key exchange
and ElGamal

» Dillmann, Hamdy, Méller, Pohst, Schielzeth, Vollmer
(90-07): Implementation

» Construct Ag a fundamental negative discriminant, in order

to maximize the odd-part of C(p,); eg, Ay =—q,q=3
(mod 4), g prime : h(@, ) is odd

> choose ¢ a random class of C(7,, ) of odd order ~~ order of g
will be close to h(p, ) = VI|Ak]

» secret key: x <—— ., [VIAkll}, public key: h = g*.

» Encoding of message in G = (g) can be problematic
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Class Number and Discrete Logarithm computations

> Size of Ag? Index calculus algorithm to compute h(&7,, ) and
Discrete Logarithm in C(@, )

> Security Estimates from Biasse, Jacobson and Silvester (10):
» Complexity conjectured L (1/2,0(1))
» Ay : 1348 bits as hard as factoring a 2048 bits RSA integer
» Ay : 1828 bits as hard as factoring a 3072 bits RSA integer
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Class Groups of Non Maximal Orders

_—— Order of discriminant A, := {>Ag
O

@
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Class Groups of Non Maximal Orders

_—— ideal prime to £
ﬁA a

4

P

@-)A Q@jAK

K ~—— ideal of same norm
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Class Groups of Non Maximal Orders

ideal of same norm

N AN G,

4

o7

q
\ ideal prime to ¢
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Class Groups of Non Maximal Orders

ideal of same norm

N AN G,

4

o7

q
\ ideal prime to ¢

> @, et ;' are effective isomorphisms, computable if £ is
known
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Class Groups of Non Maximal Orders

ideal of same norm

Gy, (ANG,,
o7
Oy a
\ ideal prime to ¢
For Class Groups:

> (g gives a surjection :

Qe 0 C(Oh) — C(Oh)

21/30



Class Groups of Non Maximal Orders

ideal of same norm

On, AN G,
?7'
Opy a
\ ideal prime to ¢
For Class Groups:

» If Ax <0, Ag # -3, -4,

WEa) = ) x [ (1 _ (%) L

plt
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Cryptography in Class Groups of Non Maximal Orders

> NICE cryptosystem (New Ideal Coset Encryption), Paulus and
Takagi (00)

v

L =—-q, 0, = —qp?, p,q primes and g = 3 (mod 4)

A
(&) = h(@p) X (p - (f))

v

Public key: A, and h € ker @, with @, : C(ﬁAP) — C(Op,)

v

Secret key: p

v

C., Laguillaumie (09) :

In each non trivial class of ker ¢, there exists an ideal of
norm p?
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A Subgroup with an Easy DL Problem
> Ax = —pq, A, = —qp°, p,q primes and pg = 3 (mod 4)

h(@Ap) = p X (O )

» There exists an effective isomorphism

by (OadpOn) 1(2ZipZ)" —— ker@,

Evaluation of 1, :

Asp | Ak,
(OadpOa)” ~ (B IXUXD))
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A Subgroup with an Easy DL Problem

> Ax = —pq, A, = —qp°, p,q primes and pg = 3 (mod 4)

h(@Ap) =p X h(O))

» There exists an effective isomorphism

by (OadpOn) 1(2ipZ) —— ker,

Evaluation of 1, :
X

X
Elements of (@’AK/p@’AK) /(Z/pZ) [1] and [a + VAk] where a is
an element of (Z/pZ)*
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A Subgroup with an Easy DL Problem

> Ax = —pq, A, = —qp°, p,q primes and pg = 3 (mod 4)

h(@Ap) =p X h(O))
» There exists an effective isomorphism

by (OadpOn) 1(2ipZ) —— ker,

Evaluation of 1, :

Let A = [1 + +/Ag], one has A" = [1 + m+/Ag] = [m™! + \/Ag] for
allme{1,..,p—1} and AP = [1].
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A Subgroup with an Easy DL Problem
> Ax = —pq, A, = —qp°, p,q primes and pg = 3 (mod 4)

WOn,) = p X W(Ony)

» There exists an effective isomorphism

by (OadpOn) 1(2ipZ)” —— ker,

Evaluation of Lpp :

» Leta,, = M € O, a representative of the class A",
where L(m) is the odd integer in [-p, p] such that L(m) = 1/m
(mod p)

> The element A™ maps to the class ,(A™) = [(pl;1 (0 Op )] of
the kernel of ¢,
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A Subgroup with an Easy DL Problem
> Ax = —pq, A, = —qp°, p,q primes and pg = 3 (mod 4)
WEn) = px h(En)
» There exists an effective isomorphism

by (OadpOn) 1(2ipZ)” —— ker,

Evaluation of {,, :

A tedious computation yields

Up(A™) = [PPZ + —_L(m)p; VA,
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A Subgroup with an Easy DL Problem

> Let f = P,(A) = |pZZ + %\m—*’z] € C(@),)
» F = (f) is of order p, and

fm — Ll"p(Am) = pZZ + MZ

» Moreover if g > 4p, then p? < VIALI/2. As a result, the ideals

of norm p2 are reduced (there are the canonical
representatives)
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A New Linearly Homomorphic Encryption Scheme

> A =-pgq, b, = —qp®, p,q primes and pg = 3 (mod 4) and
(/) =-1,9>4p

> Let g be an element of C(&, ), h = g* where x secret key
> (CllCZ) = (gr/ hrfm)
» Based on DDH in C(ﬁAp) (and the Class number problem).

» Linearly homomorphic over Z/pZ where p can be chosen
(almost) independently from the security parameter
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Removing the Condition on the Relative Size of p and g

» We impose that g > 4p, in order that the reduced elements of
(f) are the ideals of norm pz.

> As a consequence [Ag| = pg > 4p?

» If we want a large message space, e.g, p of 2048 bits, Ak has
4098 bits (only 1348 needed for security).

Work with Ax = -p,and A, = p?Ag = —p°.
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Removing the Condition on the Relative Size of p and g

> Ag = -p,and A, = p*Ag = —p°.

> Let f = [pZZ + #‘/A_’”Z] € C(@h,), f" still contains the non

reduced ideal
-L(m)p + \/A
P*Z + Lomp VA )pz 'z

» We lift f and f™ in the class group of discriminant
Ap = p*Ax where the ideals of norm p? are reduced. This is
done with the map

[pp' (O

» One can show that [(p;,1 (F)JP is a subgroup of order p

-p+ A o
generated by the class of the reduced ideal [p*Z + ;/TZ]
and Discrete Logarithms are easy to compute in this subgroup
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A Faster Variant
» Original Scheme :

>

Ag =-p,and A, = pP?Ag = -p°.

- g€C(Oy) h=g"
» f generates the subgroup of order p of C(@’Ap)

>

Encrypt(pk, m) = (g, " f™)

» A faster variant :

>

>

>

’

Choose ¢’ € C(p,) and b’ = g~
Denote },, : C(y,) — C(ﬁAp) the map [(plgl(-)]ﬂ
Define Encrypt(pk, m) = (c1,¢2) = (§"", (') f™)
Decryption: Compute ¢j = {(c] ) and f™" = ¢,/c}.
Smaller ciphertext: ¢; is in C(¢,, ) instead of C(@’Ap)

Faster computation: exponentiations in C(&,, ) instead of

(@)

However, the semantic security is now based on a non

standard problem.
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Performance comparison

Cryptosystem Parameter Message Space | Encryption (ms) | Decryption (ms)
Paillier 2048 bits modulus 2048 bits 28 28
BCPo3 2048 bits modulus 2048 bits 107 54

New Proposal 1348 bits Ag 80 bits 93 49

Fast Variant 1348 bits Ag 80 bits 82 45
Fast Variant 1348 bits Ag 256 bits 105 68
Paillier 3072 bits modulus 3072 bits 109 109
BCPos3 3072 bits modulus 3072 bits 427 214
New Proposal 1828 bits Ag 80 bits 179 91
Fast Variant 1828 bits Ag 80 bits 145 -8
Fast Variant 1828 bits Ag 512 bits 226 159
Fast Variant 1828 bits Ax 912 bits 340 271

Timings performed with Sage and PARI/GP.

29/30




Others Variants and Further developments

» More general message spaces:

» Z/NZ with N = H?:l pi, with a discriminant of the form
AK = —Nq

> Z/p'Z for t > 1, with discriminants of the form A, = p? Ak,
and Ag = —pq

» An adaptation may also be possible in the infrastructure of
real quadratic fields
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