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Modular curves

Let G C PSL2(7Z) be a subgroup of finite index. It acts on Poincaré’s upper half plane

h:={z € C: Imz > 0} by fractional linear transformations:

aby .:az—kb
(cd) = CZ—I—d7

as well as on its boundary, the real projective line P! (R)
ap + bq

ab) . . . .
(ca) - wea) =0
N.B. We identify the point at infinity (1 : 0) with 400 on the Riemann sphere.
Let h* = h U P(Q) be the completed upper half plane. The quotient space G\ b is

compactified by adding a finite number of cusps from G'\IP*(Q). The result is the modular curve
X (G) = G\b*, a compact Riemann surface.

Motivating example:
G=T¢(N):={(2%) €SLa(Z): c=0 (mod N)};

in this case, X () is the classical modular curve X (V). FANT Seminar 2015.0531104.07106-14) . 328



Modular forms (1/2)

For a given integer k, the group GG acts in weight k on functions on b

Flev:=(cz+d) f(y-2), v=(24) eG.

A modular function of weight k for GG is a meromorphic function on h* (on b and at all cusps)

satisfying

For instance, a modular function of weight O is a function on X (G); a form of weight 2 is a
differential on X (G): since d( - z) = (cz + d)~?dz, we have

v (f(2)dz) := fly-2)d(y-2) = (f |27)(2) dz = f(z)dz.

Forms of higher (even) weights 2k are sections of appropriate line bundles on X(G) (k-fold
differentials).
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Modular forms (2/2)

A modular form for (3 is a holomorphic modular function on h*. Let M} (G) be the C-vector

space of modular forms of weight k for G5.

Theorem . dim¢ Mi(G) < +00.

For instance, for G = I'o(INV), we have dim¢ My (G) ~ &5
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Cusp forms, L-series

Assume for the moment that G = I'g(IV): the definitions implies that f € M} (G) satisfies
f(z+1) = f(z) and has a Fourier expansion at infinity f(2) = >, anq", where
q — eXp(2i7TZ). (For a general congruence subgroup and a general cusp, there is an expansion in ql/H,

depending on the width H > 1 of the cusp, for an appropriate local parameter q.)

Let S.(G) C My (G) be the subspace of cusp forms: vanishing at all cusps. In particular,
ap = 0 and we can define associated L-series, for f € Si.(G):

— Zann_sa f7X7 Zanx S,

n>1 n>1

where ' is a Dirichlet character. The a,, = O(n%) are polynomially bounded =- those functions
are in principle defined for Re s big enough, in a right half-plane. In fact, they are entire functions.
Completing them by a gamma factor, we obtain A(f, 3) satisfying a functional equation relating s
to k — s. Critical values L( f, 7), for integers 0 < j < k, are of particular interest.
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Hecke operators, Atkin-Lehner theory (1/2)

Still assume that G = FO(N). (Analogous results hold for I'; (/V').) There is a canonical

decomposition

Sk(G) — Sk(G)old > Sk(G)newa

where Soq contains the forms from S (I'g(M)), M a strict divisor of IV; and Spey is the
interesting part. (A basis of Shew can be computed via the intersection of kernels of explicit linear operators

associated to divisors of /V.)

For any integer n > 1 we have a Hecke operator 1, on Mk(G) These linear “averaging”
operators commute and satisfy nice multiplicativity relations, e.g. 15, = 17,15 when

(m,n) = 1and (mn, N) = 1, or formulas expressing 1), in terms of T}, for p prime. Formally,

Tnf F= Z f |k s

vETo(N)\Dn,

where D,, is the set of matrices of determinant n.in Mo(Z)/{— Id, Id}. (The sum is finite. We

extend the action f |  from PSL2(Z) to D,, by multiplying our formula for ¥ € PSLo(Z) by n*~ 1)
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Hecke operators, Atkin-Lehner theory (2/2)

Nice properties of Hecke operators:

P all 7, with (n, N) = 1 are diagonalizable, their eigenvalues are algebraic integers;
B they stabilize Sk (G), in fact both Spew and Syq separately;
D there exist a C-basis of Sy, of simultaneous eigenvectors for all T}, ;

®if f=D>,-1an9" € Snew is an eigenvector for all T},, then a; # 0 and we can normalize

fsothata; = 1;then T}, f = a, f. Such a form is called primitive.

P 3 primitive form satisfies a product formula

L(f,s) = H (1-— app_s)_l H (1 — app”® +pk_1_23)_1 .

p|N pIN

it f => a,q" is primitive, then Q(f) := Q(as, as, ... ) is a number field.
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Example

The simplest example is

A(q) =q H (1 —¢")** = q—24¢° + 252¢° — 1472¢* . . .,

n>1
the only primitive form in S12(PSLa(Z)).

Let £2/Q be an elliptic curve of conductor N and L(E, s) = >, - a,n”° its L-series. Then

Z anq" € So(T'g(N))new s primitive.

n>1

For instance, let
E:y*4+y=a°—2°—10x —20 (= 11al),

then the corresponding primitive form is

g [[JA-¢")A—¢")V =q-2¢"-¢+2¢"+¢....

n=1
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Periods and critical L-values (1/2)

Let f € Sk (G), the period
8 .
/ f(Z)ZJdZ, J € Z)Ov
r
is well-defined for any r, s € P! (@) (The integral does not depend on the path in b joining the cusps since f
is holomorphic in , and it converges since | decreases exponentially at cusps.)

Let f = > . anq™ € S2(G); heuristically, periods should be related to L-values, barring

convergence issues. ..

0 | 0 . 1
2@'7T/ f(2)z7dz ~ Zan/ 2imexp(2imnz)z! dz ~ A -L(f,7+1).
100 n J 100 (_2277-)]

7

~

= (—2imn) 7.2 -T(j+1)
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Periods and critical L-values (2/2)

It can actually be proven rigorously in a more general form:

Theorem . Let f € Si(G), G a congruence subgroup. Then

i /:Of(z)zjdz=( g;ﬁ) L(fj+1),

for all critical 0 < j < k — 2.

Similarly for twists by a primitive Dirichlet character of conductor D > 1, in weight 2:

—a/D

Z X(a 2@7?/ f(z)dz = L(f,x, 1),

a mod D [

as well as more complicated generalizations in higher weight.

Periods know all about (twisted) critical L-values.
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Complex modular symbols, weight 2

Let Ag := Div'(P(Q)): given s, € P1(Q), think of the divisor [s] — [r], as an oriented
path in fj connecting r — s. E.g., the semicircle connecting s to 7, or a vertical line through 7 if
s = 100. Those divisors generate Ag. Note that Ag is a GLa(Q)-module : for g € GL2(Q),

g-([s]=1Ir]) =1lg-s]—1lg-7]|

In matrix form, it r = (a : ¢), s = (b : d), the matrix (¢ %) codes the path [s] — [r]: then the
path g - ([s] — [r]) is identified with the matrix g x (25).

Let f € S2(G), we define a map ¢ from Ag to C by

s] — [r] > 2im / " £(2) dz

(Well-defined: Chasles relation.) Since f € S5((G), we have
-8 ~v-S S
fedz= [ flrndty2) = [ fe)de
v v r
Thus ¢y € Homg (A, C): (v - D) =¢(D) forally € G.
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Complex modular symbols, general weight £

The relevant period integrals attached to f € S (G) are the
S .
/ f(2)z7dz, 0<j<k-—2.
.

Let V = Symk_2(C2), realized as the space of homogeneous polynomials of degree k — 2 in
C[X, Y], together with the right SLo(Z) action: (P | v)(X,Y) := P((X,Y) x v~ 1).
There is a natural right action on Hom(Ag, V'): for ¢ € Hom(Ag, V'), define ¢ | v by

(¢ [V)(D):=¢(v-D)[v, VD€A.
Define ¢y € Hom(Ag, V') by
wrlls) = ) i=2im [ f(2)(eX +Y)*2dz eV

Then ¢ | v = ¢ forany v € G | Again, ¢y € Homg (Ao, V).
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Proof of 1) € Homg(Ag, V)

Let v = ( ) € (3. Recall that

fley=F,
(P|)(X,Y):=P(X,Y)xy "), PeV,

(Cb ’ '7)(D) — qﬁ(fy . D) ‘ ~,
0r(lsl~ ) =2 [ FEEX+Y) s €V

We have

:2m/8f cz+dk( (gjj_g))k_QdZ
k—2

=2ir [ £l (X (7)) dly-2)
rv-s k—2
=2im [ SE(EYV)E) =t (=)

‘T
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Cohomological interpretation

Let G C PSL(2, Z) be a congruence subgroup, and V' be a right G-module. One defines the
cohomology of the modular curve X (G) with coefficients in V, the group of interest being

HY(X(G),V); one can again define Hecke operators in this context.
Back to previous example: G = I'o(N), V = Sym”* 2 C?,
(P)(X,Y) = P(X,Y)y)), PeV,

We recover classical C-vector spaces of holomorphic modular forms for G':
Theorem (Eichler-Shimura).

H(X(G),V) ~Heeke Sk(G) @ Mi(G)

Cohomology classes are not that explicit. . .
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Abstract modular symbols (1/3)

Classical modular symbols for G = I'g(IV') provide

B an algebraic version of periods of holomorphic forms,

- a way to describe (and compute!) My, (G) as a Hecke-module from finite rational data,

For general G (congruence subgroup) and V' (over C, IFp, Qp, Z., infinite dimensional. . .), they

also are

® a2 concrete realization of cohomology classes H (X (G), V') that afford a painless way to
define (and compute!) general spaces of “modular forms”, or rather systems of Hecke

eigenvalues, using basic linear algebra.
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Abstract modular symbols (2/3)

Let Ag := Div?(P1(Q)), generated by the divisors [3] — [c], which we denote by {a, 3} and
see as a path through the completed upper half plane §* linking the two cusps o« — 3. Thisis a

left GL(Z, @)—module via fractional linear transformations:
(25) - [(u:v)] = [(au+ b : cu+ dv)].

Let G C PSLy(Z) be a subgroup of finite index and let V' be a right G-module. Hom (Ag, V')
becomes a right G-module via

(@ | Y)(D) :=¢(v- D) | v

We define the V -valued modular symbols on GG by
Symbs (V) := Homg (Ao, V), ¢ |v=¢,Vo € G.

N.B. Ag is “almost free” as a Z|(G]-module, of finite type ! A symbol is defined by the set of
values (satisfying simple relations) it takes on chosen generators.
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Abstract modular symbols (3/3)

Theorem (Ash-Stevens). Let G be a congruence subgroup and V a right
G-module. Provided that the orders of torsion elements of G act invertibly on

V' (e.g. if V is a vector space), we have a canonical isomorphism

Symb (V) ~ H (X (G), V).

Assume V also allows a right action by the semi-group GL(2, Q) N M5(Z), then we can define
a Hecke action on Symb (V). E.g. if G = ['¢(IN') and £ is prime, then

(-1
Top == 6| (§9) + 2 61(59).

=0
if¢ 1N .

If o 1= ( _01 (1)) normalizes G, then it acts as an involution on Symb~(V); if 2 acts invertibly on

V, this yields a decomposition
Symbg (V) = Symbs (V)1 @ Symb (V)™

into eigenspaces for this action.
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Computing A\ as a Z|G|-module (1/5)

Llet G C ' =PSL(2,Z)and B = [I" : G] < 400. The subgroup G is given via an

enumeration (my1, . .., mp) of matrices representing G\ PSL(2, Z). Assume that

 the coset representatives m; have size O(log B )C,

® the map (7 € I' — its coset), i.e. the unique 7 such that Gy = G'm;, is computed in
polynomial time O (log ||y|| + log B)°.

In particular, both the membership problem (v € (G?) and test for equivalence (y1 ~qg Y2 ?) are

solved in polynomial time in the size of the y; € 1.
Theorem (Manin). If B=1 (G=T), then

Ao ~r Z[T)/I, where I:=Z[T](1+0)+Z[)(1+71+72),
where 0 = (Y §), 7= (? :1> and I' = (o, 7).
In this case a V/-valued modular symbol ¢ € Homrp(Ag, V') is defined by v, v € V s.t.

Ve |(14+0)=v, | (1+74+7%) =0.
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Computing A\ as a Z|G|-module (2/5)

In principle, Manin’s theorem yields a presentation of Ag as a Z|G| module: Z|I'| is free

(generated by the m;), and quotienting out yields relations of the form
mi(l -+ O') = M; + M0 = My + V; ;M € I,
for some j and 7y; ; € G. There’s a neater, simpler, way.

Fact: the torsion elements in PSLo(Z) have order 2 or 3.
Theorem (Pollack-Stevens). Let G C PSLy(Z) be a subgroup of finite index

B without 3-torsion. There exist a connected fundamental domain F for the

action of G on b* all of whose vertices are cusps and whose boundary is a

union of unimodular paths.
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Computing A\ as a Z|G|-module (3/5)

Proof. Start from the hyperbolic triangle R = (0, 1,i00), a fundamental domain

for T'g(2). We use Farey dissection to add further triangles until we obtain the

full domain : given 2 cusps (a : b) < (¢ : d) on the boundary of current domain
arRU---Ua,R,

such that ad — be = 1, the third vertex of the triangle (§ 3) R is the mediant
7 < Zig < <. Add the new trlangle to the domain if and only if

ozz'ﬂ (¢5)7 1 Q [Vl <e<r,0<7j<2. The algorithm stops after at most B
triangles are added. []

If G has 3-torsion : assentially the same, but we must split triangles in 3: R = T U 7T U 72T,
where T' = (0, eim™/3 100), and we sometimes add only 1/3 of a triangle (1" instead of a ).
Theorem . Under our asumptions on G, the fundamental domain F can be
computed in time O(B).

N.B. some complexity estimates only depend on the number of cusps rather than B, which is
advantageous: G = I'¢(p) has index p + 1 but only 2 cusps.
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Computing A\ as a Z|G|-module (4/5)

® i G has no torsion then A is generated by the g; := [c;+1] — [¢;], paths between

consecutive vertices of J, with the single relation ) ., g; = 0!

O i G has 2-torsion, then it can happen that v;g; = —g; for some ; € (G swapping ¢; and
ci+1 (implies y; has order 2). Then (1 4+ ;) - g; = 0 and g; is torsion.

O |f G has 3-torsion, then we have extra torsion relations corresponding to going around a

triangle o R fixed by an element of order 3.
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Computing A\ as a Z|G|-module (5/5)

Summary: In general, we obtain

2 “minimal” system of generators (g;), i < n, g, = (00| — [0].
O relations explicitly written down (without computation):

 one relation for each conjugacy class of 2-torsion elements in G: (1 + ;) - g; = 0,
1<71<s

® one for each pairs of conjugacy classes of 3-torsion elements: (1 +; + v?) - g; = 0,
s+1<i<s+r.

® and one “boundary relation” (walk around the fundamental domain and come back to
starting point).

Corollary . Given G a finite index subgroup and V' a right G-module. Choose
any n — 1 elements v; € V', compatible with the torsion relations when 1 < s+ r
(e.g. vi(1 4+ ;) =0, i.e restrict v; to an eigenspace V; C V' ). Solve for v, so
that the boundary relation is satisfied. Then ¢(g;) = v; uniquely defines a

modular symbol ¢, and all modular symbols arise in this way.
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Discrete logarithm in A\ as 7Z|G|-module

Recall that a (non-trivial) path (a : ¢) — (b : d) is encoded by the matrix
(‘CL 3) € My(Z) N GL2(Q)™. A unimodular path has determinant 1.

Recall that the subgroup & is given via an enumeration (ml, Ce e mB) of matrices representing
G\ PSL(2,72).
P the discrete logs m; = Y \; g4, ¢ < B, are precomputed: O(B?) time and space.

® apath co — (b : d) can be written as a sum of O(log max(|b|, |d|)) unimodular paths.

Proof: write the finite continued fraction of b / d. The successive convergents satisfy
(p—1:q-1) =(1:0),...,(pn : qn) = (b:d)anddet (g g1 ) = +£1. O

® apath (a:c) — (b: d) can be written as a sum of O(log max(|al, ||, |c|, |d]))
unimodular paths. Proof: (a : ¢) — (1 : 0) — (b : d). Better (halve number of paths on
average), U 1 (‘CLZ) — (0 d,) (HNF), then U - ;. O

® a2 unimodular path is uniquely written as -y - m; for some v € G.
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p-adic L functions (1/4)

Let f € Si(G),V = C|X,Y|,_2. Recall that ) € Symbg (V') defined by

wrlls) = ) i=2im [ f(2)(eX +Y)*2dz €V

knows about critical L-values:

(0] — [ico]) = Y XIyRTd (k B 2) (—2jz'!w)jL(f’j +1).

0<j<k—2 J

Theorem (Manin, Shimura). There ezist Q}t c C such that

(—2im)J - Q?@’

for all Dirichlet characters x and j < k — 2. (Precisely in Q;_l)jX(_l)@.)

By fixing an embedding of Q C @, we can consider those renormalized L£(f, x,7 + 1) as
p-adic numbers!
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p-adic L functions (2/4)

Fix a prime p. Let I be a congruence sugroup of level prime to pand G := I' N T'g(p). Let
f € Sk(G) be a normalized eigenform, with T, f = . f.

The p-adic L-function 1 £ associated to f should be a way to associate
(7,x) — L(f,x,7 + 1). It's going to be a p-adic distribution, mapping “nice functions”
(characters, polynomials) to p-adic numbers. Precisely, assume that v, () < k — 1; for any

finite order character 'y of Z;; of conductor p™ and any integer 0 < 5 < k — 2, we want

| | 1 L -
wp(ed - x) = a Ut L _p(r y 71 i1 1) €@,

T(x71)

This defines (4 ¢ uniquely, for a given choice of complex periods Q? The distribution ¢ can be

evaluated on locally analytic functions (x is locally constant but not analytic!); we write
J g(t) dpg(t) for pug(g).

Hard to compute when defined this way: Riemann sums with (at least) p” terms to evaluate
modulo p".
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p-adic L functions (3/4)

Let V' = Dy(Z,) =: D, the space of locally analytic p-adic distributions on Z,,, with weight
k — 2 action of G&:

b—|—dz)

1k 6) =1 -9), where (1-9)(2) 1= (ot e2)2p (L0

This defines Symb (D), the space of overconvergent modular symbols.

Composing with the p-adic period map pi: D — Symk_2 @2, given by

pes [V = X0 2due),

defines specializations
k—2 m2
Symbg (D) — Symbg (Sym” = Q).
The target of this map is finite dimensional while the source has infinite dimension!

Nevertheless, by restricting to natural subspaces, Pollack and Stevens obtain a Hecke-equivariant
isomorphism.
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p-adic L functions (4/4)

The p-adic slope of a primitive form f € Si(G) is vy(ap), itis < k — 1. (Critical slope when
equality.)
Theorem (Stevens). The map

SymbG(D)(<k_l) — Synrle(Sylrnk_2 @p)(<k_1)

1s an 1somorphism, compatible with Hecke action.

Theorem . Let f be primitive for G of non-critical slope and

Of € SymbG(S'ymk_2 Qp) be the corresponding classical modular eigensymbol.
Let ® ¢ be the unique overconvergent eigensymbol lifting ¢r. Then

® +(|0] — [too]) is the p-adic L-function of g.

The case of critical slope can also be dealt with in a similar way.

Theorem . The ®;([0] — [icc])(27) modulo pM =7, j < M can be computed in
time pMOW : polynomial time for fized p.
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