
Algorithms for integer factorization and discrete logarithms computation

Cyril Bouvier

Institut de Mathématiques de Bordeaux (IMB)
Cyril.Bouvier@u-bordeaux.fr

LFANT Seminar – September, 8th, 2015

Introduction — Cryptography

§ Public-key cryptography (or asymmetric cryptography):
§ It is widely used to secure internet connections, credit cards, electronic voting, . . .

§ The security of many public-key cryptosystems relies on the supposed difficulty of two
mathematical problems: integer factorization and discrete logarithm.

§ During my thesis, I studied two algorithms for integer factorization:
§ Elliptic Curve Method (ECM): uses elliptic curves to find small- to medium-size factors of
integers.

§ Number Field Sieve algorithm (NFS): best algorithm to completely factor large integers
that are free of small factors.

§ During my thesis, I studied two algorithms to solve the discrete logarithm problem in
finite fields:

§ Number Field Sieve for Discrete Logarithm (NFS-DL) for finite fields of large
characteristic (Fpn with large p and small n).

§ Function Field Sieve (FFS) for finite fields of small characteristic (Fpn with small p and
large n).

1 / 28

Outline of the presentation

ECM: Galois properties of elliptic curves and ECM-friendly curves
Joint work with J. Bos, R. Barbulescu, T. Kleinjung, and P. Montgomery

NFS: size optimization in the polynomial selection step
Joint work with S. Bai, A. Kruppa, and P. Zimmermann

NFS, NFS-DL, FFS: the filtering step

Conclusion and perspectives

Outline of the presentation

ECM: Galois properties of elliptic curves and ECM-friendly curves
Joint work with J. Bos, R. Barbulescu, T. Kleinjung, and P. Montgomery

NFS: size optimization in the polynomial selection step
Joint work with S. Bai, A. Kruppa, and P. Zimmermann

NFS, NFS-DL, FFS: the filtering step

Conclusion and perspectives

Elliptic curves

§ An elliptic curve E over a field K will be denoted by
E{K and the point at infinity by O.

§ Given P,Q P EpKq, their sum is denoted by P ‘ Q.

§ Given P P EpKq and k P N, kP is defined by
kP “ P ‘ ¨ ¨ ¨‘ P (k times).

§ Let E{Q be an elliptic curve. The ECM algorithm uses
the following facts:

§ for almost all primes p, the curve can be reduced
modulo p;

§ the set of points EpFpq of the reduced curve is a finite
group;

§ the group law is compatible with the reduction.

x

y

P

Q

R

P ‘ Q

2 / 28

Elliptic Curve Method (ECM)

§ Elliptic Curve Method (ECM): first described by H. Lenstra; best algorithm to find
small- to medium-size factors of integers (largest factor found had 83 digits).

§ ECM starts by choosing a positive integer B, a curve E{Q and a point P P EpQq.
Then it computes Q “ sP, where

s “
ź

πďB
π prime

πtlogpBq{ logpπqu

and where the operations of the group law from E{Q are performed modulo N.

§ A factor p of N can be retrieved from Q if #EpFpq is B-powersmooth, i.e., if all prime
powers dividing #EpFpq are at most B.

§ If a curve fails to find a factor, other curves can be used.

§ What curves should be used? All curves are not equivalent. For example, A. Kruppa
observed that the Suyama curve σ “ 11 found more factors and that the orders of the
reduced curves have a higher average valuation of 2 than other Suyama curves.

3 / 28

Torsion and Galois representations

§ Let E{Q be an elliptic curve and m ě 2 be an integer.

§ The set of m-torsion points:

EpKqrms “ t P P EpKq | mP “ O u .

Here, K is either a field extension of Q or of a finite field Fp, for a prime p.

§ An important theorem: over K , the algebraic closure of K , if the characteristic of K is
zero or coprime with m,

EpKqrms » Z{mZˆ Z{mZ.

§ QpE rmsq: smallest field extension of Q such that all the m-torsion points are defined.
It is a Galois extension.

§ The Galois group GalpQpE rmsq{Qq acts on the m-torsion points and can be identified
to a subgroup of GL2pZ{mZq, via an injective morphism denoted by ρm:

ρm : GalpQpE rmsq{Qq ãÑ AutpEpQqrmsq » AutpZ{mZˆ Z{mZq » GL2pZ{mZq.

The image of GalpQpE rmsq{Qq via ρm will be noted GpE ,mq.

4 / 28

Main theorem

Theorem
Let E{Q be an elliptic curve, m ě 2 be an integer and T be a subgroup of Z{mZˆ Z{mZ.
Then,

ProbpEpFpqrms » T q “
t g P GpE ,mq | Fixpgq » T u

#GpE ,mq
.

§ ProbpEpFpqrms » T q is defined as the limit of the density of primes p satisfying this
property.

§ Proof: Chebotarev’s density theorem applied to GpE ,mq “ GalpQpE rmsq{Qq.

§ Also proved a version where only primes congruent to a given a mod n are considered.

Corollary
Let E{Q be an elliptic curve and π be a prime number. Then,

ProbpEpFpqrπs » Z{πZq “ # t g P GpE , πq | detpg ´ Idq “ 0, g ‰ Id u
#GpE , πq

and

ProbpEpFpqrπs » Z{πZˆ Z{πZq “ 1
#GpE , πq

.

5 / 28

Example

π T d1 ProbthpE1pFpqrπs » T q d2 ProbthpE2pFpqrπs » T q
ProbexppE1pFpqrπs » T q ProbexppE2pFpqrπs » T q

3 Z{3Zˆ Z{3Z 48 1
48 « 0.02083 16 1

16 “ 0.06250
0.02082 0.06245

3 Z{3Z 48 20
48 « 0.4167 16 4

16 “ 0.2500
0.4165 0.2501

5 Z{5Zˆ Z{5Z 480 1
480 « 0.002083 32 1

32 “ 0.03125
0.002091 0.03123

5 Z{5Z 480 114
480 « 0.2375 32 10

32 “ 0.3125
0.2373 0.3125

§ E1{Q : y2
“ x3

` 5x ` 7 and E2{Q : y2
“ x3

´ 11x ` 14.

§ Theoretical values come from the previous corollary.

§ For experimental values, all primes below 225 were considered.

§ Columns d1 and d2 indicate the size of GpE1, πq and GpE2, πq, respectively.

6 / 28

Divisibility by prime powers and average valuation

§ Next goal is to compute Probpπk
� #EpFpqq and the average valuation defined by

v̄π “
ÿ

kě1

k Probpvπp#EpFpqq “ kq.

§ For an elliptic curve E{Q, a prime π and a positive integer k, I pE , π, kq is defined by

I pE , π, kq “ rGL2pZ{πkZq : GpE , πk
qs.

§ Theorem from Serre: for all elliptic curves E{Q without CM and for all primes π, the
sequence pI pE , π, kqqkě1 is bounded and non-decreasing when k goes to infinity.

Theorem
Let E{Q be an elliptic curve, π be a prime and n be a positive integer such that

@k ě n, I pE , π, kq “ I pE , π, nq.

Then, the probabilities Probpπk
� #EpFpqq, for all k ě 1, and the average valuation v̄π can

be computed as linear combinations of the probabilities ProbpEpFpqrπ
t
s » Z{πiZˆZ{πjZq,

with i ď j ď t ď n.

7 / 28

Example

π npE1, πq v̄π,th npE3, πq v̄π,th
v̄π,exp v̄π,exp

2 1 14
9 « 1.556 3 895

576 « 1.554
1.555 1.554

3 1 87
128 « 0.680 1 39

32 « 1.219
0.679 1.218

5 1 695
2304 « 0.302 1 155

192 « 0.807
0.301 0.807

§ E1{Q : y2
“ x3

` 5x ` 7 and E3{Q : y2
“ x3

´ 10875x ` 526250.

§ npE , πq is the smallest integer n such that I pE , π, kq “ I pE , π, nq, for k ě n.

§ Values of npE1, πq are proven, values of npE3, πq are conjectured.

§ Theoretical values come from the previous theorem used with n “ npEi , πq.

§ For experimental values, all primes below 225 were considered.

8 / 28

Applications

§ Apply previous results to try to identify families of elliptic curves suitable for ECM.

§ The goal is to find infinite families of curves with large Probpπk
� #EpFpqq, for small

primes π and small prime powers πk .

§ Example: the Suyama-11 subfamily:
§ Proved that for the Suyama curve with σ “ 11 the average valuation of 2 is 11{3, instead
of 10{3 for generic Suyama curves.

§ This difference is due to a smaller Galois group for the 4-torsion that leads to better
probabilities of divisibility by powers of 2 for primes congruent to 1 modulo 4.

§ Found an infinite family of Suyama curves with the same properties.

§ Obtained similar results for another subfamily of Suyama curves and for subfamilies of
twisted Edwards curves.

9 / 28

Outline of the presentation

ECM: Galois properties of elliptic curves and ECM-friendly curves
Joint work with J. Bos, R. Barbulescu, T. Kleinjung, and P. Montgomery

NFS: size optimization in the polynomial selection step
Joint work with S. Bai, A. Kruppa, and P. Zimmermann

NFS, NFS-DL, FFS: the filtering step

Conclusion and perspectives

Number Field Sieve (NFS)

§ Number Field Sieve (NFS): best algorithm to factor integers that are free of small
factors.

§ Looks for two integers x , y such that x2
” y2

pmod Nq. If x ı ˘y pmod Nq, then a
factor of N is found by computing gcdpx ˘ y ,Nq.

§ The equality of squares is obtained by constructing squares in two number fields
defined by two integer polynomials f1 and f2 with a common root m modulo N.

ZrX s

Zrα1s Zrα2s

Z{NZ

a´ bX P

a´ bα1 P Q a´ bα2

smooth? smooth?

X ÞÑα1 X ÞÑα2

α1 ÞÑm mod N α2 ÞÑm mod N

§ Relation: pa, bq pair such that fi pa{bqbdegpfi q is smooth for i P t 1, 2 u.

§ Combine relations to produce squares on both sides. It boils down to computing the
kernel of a matrix over F2.

10 / 28

Number Field Sieve (NFS)

§ Number Field Sieve (NFS): best algorithm to factor integers that are free of small
factors.

§ Looks for two integers x , y such that x2
” y2

pmod Nq. If x ı ˘y pmod Nq, then a
factor of N is found by computing gcdpx ˘ y ,Nq.

§ The equality of squares is obtained by constructing squares in two number fields
defined by two integer polynomials f1 and f2 with a common root m modulo N.

ZrX s

Zrα1s Zrα2s

Z{NZ

a´ bX P

a´ bα1 P Q a´ bα2

smooth? smooth?

X ÞÑα1 X ÞÑα2

α1 ÞÑm mod N α2 ÞÑm mod N

§ Relation: pa, bq pair such that fi pa{bqbdegpfi q is smooth for i P t 1, 2 u.

§ Combine relations to produce squares on both sides. It boils down to computing the
kernel of a matrix over F2.

10 / 28

Steps of the NFS algorithm

§ Polynomial selection: compute the pair of polynomials to build the two number fields.

§ Relations collection (a.k.a., sieving): use sieving methods to compute many relations.

§ Filtering: build the matrix from the relations.

§ Linear algebra: compute the kernel of the matrix built by the filtering step.

§ Square root: for each vector in the kernel, compute square roots in each number field
to obtain x and y .

11 / 28

Polynomial selection step in NFS

§ What conditions on the pair of polynomials pf1, f2q for polynomial selection in NFS?
§ f1 and f2 are primitive integer polynomials;

§ f1 and f2 are irreducible over Q;

§ f1 and f2 are coprime over Q;

§ f1 and f2 have a common root modulo N.

§ Linear polynomial selection: degpf1q “ 1 and side 1 is the rational side.
In practice d “ degpf2q P t 4, 5, 6 u depending on the size of N.

§ From a valid pair of polynomials pf1, f2q one can construct other valid pairs
§ by translation by any integer k:

f̃1pxq “ f1px ` kq and f̃2pxq “ f2px ` kq;

§ by rotation by an integer polynomial R P ZrX s:

f̃1pxq “ f1pxq and f̃2pxq “ f2pxq ` Rpxqf1pxq,

as long as f̃2 is still an irreducible polynomial of degree d .

12 / 28

Size optimization problem

Size optimization problem

Given pf1, f2q, find the translation k and rotation R that produce the “best” pair pf̃1, f̃2q.

§ The norm of a polynomial f is noted ‖f ‖2.

§ The norm used is not the canonical L2 norm and takes into account the fact that the
polynomials are going to be used to compute relations in the next step of the NFS
algorithm.

§ Linear polynomial selection: the norm of f̃1 is not taken into account.

§ The size optimization problem becomes:
find the translation and the rotation that minimize ‖f̃2‖2.

13 / 28

Local descent and initial translations

§ State of the art as implemented in cado-nfs software: local descent algorithm.

§ Works fine for d “ 4 and d “ 5. For larger degrees, often stuck in local minima close
to the starting points.

§ Apply some initial translations before calling the local descent algorithm to increase
the number of starting points and to avoid being stuck in local minima too far away
from the global minimum.

§ How do we choose the initial translations? Choose integer approximations of roots of
ãd´3, where the ãi ’s are polynomials in k defined by

f2pX ` kq “
d
ÿ

i“0

ãi pkqX
i .

For example, for d “ 6 and f2 “ a6X
6
` a5X

5
` ¨ ¨ ¨ ` a1X ` a0,

ã3pkq “ 20a6k
3
` 10a5k

2
` 4a4k ` a3.

14 / 28

New method: using LLL before local descent

§ New idea: Use the LLL algorithm to search for short vectors in the lattice spanned by

X 6 X 5 X 4 X 3 X 2 X 1
¨

˚

˚

˚

˝

˛

‹

‹

‹

‚

a6 a5 a4 a3 a2 a1 a0 f2
0 0 m2 ´m1 0 0 0 X 3f1
0 0 0 m2 ´m1 0 0 X 2f1
0 0 0 0 m2 ´m1 0 Xf1
0 0 0 0 0 m2 ´m1 f1

where f1 “ m2X ´m1 and f2 “ adX
d
` ¨ ¨ ¨ ` a0 (example for d “ 6).

§ A vector of this lattice corresponds to a polynomial of the form cf2 ` Rf1, with c P Z
and R an integer polynomial.

§ New degree of freedom: will output polynomial pair pf̃1, f̃2q such that Respf̃1, f̃2q “ cN.
With previous methods, Respf̃1, f̃2q “ Respf1, f2q “ f2pm1{m2qm

d
2 “ N.

§ This new method is used before the local descent algorithm and after the computation
of the initial translations.

§ New initial translations that take advantage of this new degree of freedom can be
computed.

15 / 28

Results – RSA-768 (d “ 6)

0

250

500

750

1000

64,00 66,00 68,00 70,00 72,00 74,00 76,00 78,00 80,00 82,00

N
um

be
r
of

po
ly
no

m
ia
ls

logp‖f ‖2q

Raw polynomials
Polynomials after local descent

Polynomials after local descent with initial translations
New proposed algorithm

§ The best polynomial pair found with this new method would have reduced the time
spent in the sieving step by 5%.

16 / 28

Results – RSA-896 (d “ 6)

§ RSA-896: not yet factored but a large amount of computations for polynomial
selection has been done.

1 2 3 4 5 6 7 8 9 10

Raw polynomial 98.28 98.11 96.89 98.00 97.84 98.53 97.18 98.37 96.97 96.63
Previous algorithm 82.88 82.74 82.30 82.03 82.37 83.33 82.12 79.36 83.79 82.45
New algorithm 80.53 80.16 79.33 79.75 79.78 79.83 80.04 80.72 79.92 79.38

Table: logp
∥∥f2,i∥∥2q for i P r1, 10s from 10 polynomial pairs for RSA-896.

§ The log of the norm is smaller by 2.40 on average (79.94 against 82.34) and always
smaller, with the exception of #8.

17 / 28

Results – RSA-1024 (d “ 6)

§ Applied the new algorithm on a polynomial pair previously published: it brought down
the log of the norm from 100.02 to 94.91.

§ Generated other raw polynomials to find the current best polynomial pair:
f1 “ 23877076888820427604098421X

´ 3332563300755253307596506559178566254508204949738
f2 “ 492999999999872400X 6

` 1998613099629557932800585800X 5

` 14776348389733418096949161617663667X 4

´ 173695632967027892479424675727980154323516X 3

´ 582451394818326241473231984414006567833487818962X 2

` 2960963577230162324827342801968892862098552168050827156X
´ 2036455889986853842081620589847440307464145259389368245154065

with logp‖f2‖2q “ 91.90.

§ This polynomial pair was found after around 1000 core-hours of computation. A real
computational effort for RSA-1024 should required a few thousand core-years.

18 / 28

Outline of the presentation

ECM: Galois properties of elliptic curves and ECM-friendly curves
Joint work with J. Bos, R. Barbulescu, T. Kleinjung, and P. Montgomery

NFS: size optimization in the polynomial selection step
Joint work with S. Bai, A. Kruppa, and P. Zimmermann

NFS, NFS-DL, FFS: the filtering step

Conclusion and perspectives

Filtering step of NFS, NFS-DL and FFS

§ Filtering step: common to NFS, NFS-DL and FFS algorithms. Also common to other
factoring algorithms and to other discrete logarithm algorithms.

§ In these algorithms, a relation is the decomposition of the image of one element in two
different factor bases.

§ The set of relations is seen as a matrix where a row corresponds to a relation and a
column to an element of one of the two factor bases.

Factorization:
§ Combine relations in order to generate
squares.

§ Linear algebra problem:
§ Matrix over F2

§ Left kernel

Discrete logarithm:
§ A relation is an equality between
(virtual) logarithms

§ Linear algebra problem:
§ Matrix over F`
§ Right kernel

19 / 28

Filtering step of NFS, NFS-DL and FFS

§ Beginning of the filtering step: the matrix is very large but is very sparse (around 20 to
30 non-zero coefficients per row).

§ Goal of the filtering step: to produce a matrix as small and as sparse as possible from
the given relations in order to decrease the time spent in the linear algebra step.

§ Example: data from the factorization of RSA-768:
§ input: 48 billion rows and 35 billion columns.

§ output: 193 million rows and columns with 144 non-zero coefficients per row in average.

§ Excess: difference between the number of rows and the number of columns of the
matrix.

§ Stages of the filtering step:
§ singleton removal: remove useless rows and columns;

§ clique removal: use the excess to reduce the size of the matrix;

§ merge: beginning of a Gaussian elimination.

20 / 28

Singleton removal

§ Weight: the weight of a row (resp. column) is the number of non-zero coefficients in
this row (resp. column). The total weight of the matrix is the total number of
non-zero coefficients.

§ A singleton is a column of weight 1.

§ Removing a singleton is the removal of the column and of the row corresponding to
the non-zero coefficient.

§ Implementation remarks: only need to know if a coefficient is non-zero or not, not the
actual value; in the the discrete logarithm case, the deleted rows must be saved.

§ Example:

0 1 1 0 1 1
1 1 0 1 0 1
0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

21 / 28

Singleton removal

§ Weight: the weight of a row (resp. column) is the number of non-zero coefficients in
this row (resp. column). The total weight of the matrix is the total number of
non-zero coefficients.

§ A singleton is a column of weight 1.

§ Removing a singleton is the removal of the column and of the row corresponding to
the non-zero coefficient.

§ Implementation remarks: only need to know if a coefficient is non-zero or not, not the
actual value; in the the discrete logarithm case, the deleted rows must be saved.

§ Example:

0 1 1 0 1 1
1 1 0 1 0 1
0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

21 / 28

Singleton removal

§ Weight: the weight of a row (resp. column) is the number of non-zero coefficients in
this row (resp. column). The total weight of the matrix is the total number of
non-zero coefficients.

§ A singleton is a column of weight 1.

§ Removing a singleton is the removal of the column and of the row corresponding to
the non-zero coefficient.

§ Implementation remarks: only need to know if a coefficient is non-zero or not, not the
actual value; in the the discrete logarithm case, the deleted rows must be saved.

§ Example:

0 1 1 0 1 1
1 1 0 1 0 1
0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

21 / 28

Singleton removal

§ Weight: the weight of a row (resp. column) is the number of non-zero coefficients in
this row (resp. column). The total weight of the matrix is the total number of
non-zero coefficients.

§ A singleton is a column of weight 1.

§ Removing a singleton is the removal of the column and of the row corresponding to
the non-zero coefficient.

§ Implementation remarks: only need to know if a coefficient is non-zero or not, not the
actual value; in the the discrete logarithm case, the deleted rows must be saved.

§ Example:

0 1 1 0 1 1
1 1 0 1 0 1
0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

21 / 28

Singleton removal

§ Weight: the weight of a row (resp. column) is the number of non-zero coefficients in
this row (resp. column). The total weight of the matrix is the total number of
non-zero coefficients.

§ A singleton is a column of weight 1.

§ Removing a singleton is the removal of the column and of the row corresponding to
the non-zero coefficient.

§ Implementation remarks: only need to know if a coefficient is non-zero or not, not the
actual value; in the the discrete logarithm case, the deleted rows must be saved.

§ Example:

0 1 1 0 1 1
1 1 0 1 0 1
0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

21 / 28

Clique removal

§ While the excess is larger that what is needed, it is possible to remove some rows.

§ If a row containing a column of weight 2 is removed, this column becomes a singleton
and can be removed.

§ A clique is a connected component of the graph where the nodes are the rows and the
edges are the columns of weight 2.

§ Example:
¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 0
1 0 0 1
0 1 0 1
0 0 1 0
0 0 1 1
0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

r1 r2

r3 r4 r5

r6
c1

c2

c3

§ When removing a clique, one more row than column is removed, so the excess is
reduced by 1.

22 / 28

Merge

§ Merge is the beginning of a Gaussian elimination: combinations of rows are performed
to create singletons that are then removed.

§ Singleton removal and clique removal reduce the size and the total weight of the
matrix. Merge reduces the size of the matrix but increases the total weight of the
matrix.

§ Merge is performed until a given average weight per row is reached.

§ In merge, the values of the non-zero coefficients matter. So there are some differences
between the factorization and discrete logarithm contexts.

§ Merge is the last step of the filtering step. The matrix returned by merge should be as
sparse and as small as possible.

23 / 28

Weight functions for clique removal

§ During clique removal, one can choose which cliques are removed.

§ How to choose? What choice of cliques, done during clique removal, produces the
smallest and sparsest matrix at the end of merge?

§ Used weight functions to determine the heaviest cliques that should be removed. The
weight of a clique depends on the number of rows in the clique and of the weight of
the columns appearing in a row of the clique.

§ Proposed 31 weight functions and tested them on data coming from actual
factorization and discrete logarithm computations.

§ Example of weight functions:
§ Cavallar’s weight function (Msieve): add 1 per row and 1{2w per column appearing in a
row of the clique, where w is the weight of the column.

§ GGNFS: add 1 per row and 1 per column in a row of the clique.

§ cado-nfs 1.1: add 1 per row in the clique.

24 / 28

Experiments

§ To have a fair comparison between the 31 weight functions, they were all implemented
in cado-nfs.

§ All the weight functions were benchmarked on 8 data sets: 3 coming from the
factorization context (RSA-155, B200 and RSA-704) and 5 coming from the discrete
logarithm context (computations in F2619 , F2809 and F21039 with FFS and in two prime
fields of size 155 digits and 180 digits with NFS-DL).

§ Input: set of unique relations, the target excess and the target average number of
non-zero coefficients per row.

§ Output: the matrix after merge.

§ How to compare the final matrices? To a first approximation, the complexity of the
linear algebra step is the product of the size of the matrix by its total weight. This is
the value used to compare the different weight functions.

25 / 28

Results

After clique removal At the end of the filtering step

N N N ˆW

cado-nfs 2.0 (new) 188 580 425 65 138 845 4.24ˆ 1017

Msieve 182 939 672 67 603 362 4.57ˆ 1017
`7.71%

GGNFS 197 703 703 74 570 015 5.56ˆ 1017
`31.05%

cado-nfs 1.1 203 255 785 78 239 129 6.12ˆ 1017
`44.27%

Table: Partial results for the experiment with the data of the discrete logarithm computation in F21039

§ Found two new weight functions that outperformed the others in all experiments.

§ The best weight functions after clique removal are not the best at the end of the
filtering step.

§ The best weight functions are the ones that have few or no contribution from the
number of rows in the clique.

§ The larger the initial excess, the larger the differences between the weight functions.

26 / 28

Results — Influence of the excess

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

75 100 125 150 175 200 225
0

25

50

75

100

125

150

fin
al

N
ˆ

W
(ˆ

10
15
)

R
el
at
iv
e
ex
ce
ss

(%
)

Number of unique relations (ˆ106)

Relative excess
one of the two best (new)

Msieve (Cavallar)
cado-nfs 1.1

GGNFS
cado-nfs 2.0 (new)

new

27 / 28

Outline of the presentation

ECM: Galois properties of elliptic curves and ECM-friendly curves
Joint work with J. Bos, R. Barbulescu, T. Kleinjung, and P. Montgomery

NFS: size optimization in the polynomial selection step
Joint work with S. Bai, A. Kruppa, and P. Zimmermann

NFS, NFS-DL, FFS: the filtering step

Conclusion and perspectives

Conclusion

§ Galois properties of elliptic curves: probabilities of divisibility by prime powers and
families of elliptic curves better suited for ECM.

§ Polynomial selection step of the NFS algorithm: new method for the size optimization
problem that produced better polynomial pairs.

§ Filtering step of the NFS, NFS-DL and FFS algorithms: new weight functions for
clique removal that produced smaller matrices.

§ Software: contributed to GMP-ECM and cado-nfs.

§ Other works not presented:
§ Record computations of discrete logarithms in finite fields with NFS-DL and FFS.

§ “Division-Free Binary-to-Decimal Conversion”.

28 / 28

	ECM: Galois properties of elliptic curves and ECM-friendly curves —Joint work with J. Bos, R. Barbulescu, T. Kleinjung, and P. Montgomery
	NFS: size optimization in the polynomial selection step —Joint work with S. Bai, A. Kruppa, and P. Zimmermann
	NFS, NFS-DL, FFS: the filtering step
	Conclusion and perspectives

