Agence nationale de la sécurité des systèmes d'information

Université Denis Diderot - Paris 7

The SEA algorithm in PARI/GP

Julien Keuffer

Internship advisors : Jean-Pierre Flori and Jérôme Plût

Tuesday 24th November 2015

Using groups in cryptography

- Diffie-Hellman key-exchange protocol
- El-Gamal cryptosystem
- Electronic signature

Security related to hardness of the discrete logarithm problem

A Google certificate

The discrete logarithm problem (DLP)

Generic attacks on discrete logarithm use at least $O\left(\sqrt{\# G_{1}}\right)$ operations in G, where $\# G_{1}$ is the largest prime factor of $\# G$.

- Multiplicative group of finite fields : subexponential methods to compute logarithm.
- Elliptic curves : no known algorithm doing better for general elliptic curves

DLP on elliptic curves defined over \mathbb{F}_{p}

Faster methods exist for special classes of elliptic curves in which DLP can be transported to a group where it is easier to solve :

- MOV/Frey-Rück attack : transport DLP in \mathbb{F}_{q} where $q=p^{t}$ and t is the smallest integer such that $p^{t}=1 \bmod \# E\left(\mathbb{F}_{p}\right)$
- Anomalous attack : $\# E=p$, DLP can be transported to $\mathbb{Z} / p \mathbb{Z}$

Why compute the number of points of an elliptic curve?

- To ensure the difficulty of the DLP.
- Some protocols (e.g. ECDSA) need \#E for calculations.

Finding an elliptic curve suitable for cryptography requires a lot of computations.
\longrightarrow need to have a fast point counting algorithm.

PARI/GP

- SEA algorithm implemented in a PARI module : ellsea.c.
- Used in GP via the ellcard() function.
- Implementation based on Reynald Lercier's thesis (1997).
- Improvement have been proposed since.

My internship's goal

Study, implementation within PARI/GP and comparison of two articles:

- «Computing the eigenvalue in the Schoof-Elkies-Atkin algorithm using Abelian lifts » (Mihăilescu, Morain \& Schost),
- «Fast algorithms for computing the eigenvalue in the Schoof-Elkies-Atkin algorithm »(Gaudry \& Morain).

Schoof's algorithm

First polynomial algorithm published by Schoof in 1985.
Led to cryptography based on elliptic curves randomly selected.
Basic idea of the algorithm $\left(\mathbb{K}=\mathbb{F}_{p}, p>3, E: y^{2}=x^{3}+A x+B\right)$:

- Frobenius's endomorphism $\varphi:(x, y) \mapsto\left(x^{p}, y^{p}\right)$ verifies :
$\varphi^{2}-t \varphi+p i d_{E}=0$,
t is called the trace of φ and is linked to $\# E\left(\mathbb{F}_{p}\right)$ by :

$$
\# E\left(\mathbb{F}_{\mathrm{p}}\right)=p+1-t \quad \text { and } \quad|t| \leqslant 2 \sqrt{p}
$$

- $t \bmod \ell$ is computed for small primes ℓ,
- one is able to compute t as soon as $\prod \ell>4 \sqrt{p}$,
- number of ℓ required: $O(\log p)$, size of ℓ used : $O(\log p)$

Schoof's algorithm

Computation of $t \bmod \ell$

- Calculations are done in
$E[\ell]=\left\{P \in E\left(\overline{\mathbb{F}}_{p}\right) \operatorname{tq}[\ell] P=\mathcal{O}\right\}$
This group contains ℓ^{2} points whose coordinates live in $\overline{\mathbb{F}}_{p}$ (for $\ell \neq p$)
- $E[\ell]$ is described by a polynomial ψ_{ℓ} : roots of ψ_{ℓ} are abscissae of $E[\ell]$ points,
- for $P \in E[\ell], t \bmod \ell$ is the value such that:
$\varphi^{2}(P)+[p \bmod \ell] P=[t \bmod \ell] \varphi(P)$
- $\operatorname{deg} \psi_{\ell}=\frac{\ell^{2}-1}{2}=O\left(\ell^{2}\right)$

Representation of $E[5]$

Schoof's algorithm

Computation of $t \bmod \ell$

To search $t \bmod \ell$, let $P \in E[\ell]$ and try all the values $\tau \in \llbracket 0, \ell-1 \rrbracket$ until the following relation holds :

$$
\begin{equation*}
\varphi^{2}(P)+[p \bmod \ell] P=[\tau] \varphi(P) \tag{1}
\end{equation*}
$$

- A priori, ℓ-torsion point coordinates belong to $\overline{\mathbb{F}}_{p}$, \rightarrow must work with abstract ℓ-torsion represented by :

$$
\mathcal{A}_{\psi}=\mathbb{F}_{p}[x, y] /\left(\psi_{\ell}(x), y^{2}-x^{3}-A x-B\right)
$$

- In $\mathcal{A}_{\psi}, P=(x, y)$ is a ℓ-torsion point and the equality (1) becomes:

$$
\begin{equation*}
\left(x^{p^{2}}, y^{p^{2}}\right)+[p \bmod \ell](x, y)=[\tau]\left(x^{p}, y^{p}\right) \tag{2}
\end{equation*}
$$

Schoof's algorithm

Schoof's algorithm complexity

Exponentiation dominates complexity in the algorithm

- $\ell=O(\log p)$, using $O(\log p) \ell$,
- for a given ℓ, computations of x^{p} and $x^{p^{2}}$ modulo $\psi_{\ell}: O\left(\ell^{4} \log ^{3} p\right)$,
- idem for y^{p} and $y^{p^{2}}$,
\longrightarrow complexity in $O\left(\log ^{8} p\right)$.

Too much for an efficient use in cryptography.

Improvements by Elkies and Atkin (1)

Diagonalize the Frobenius

- $\varphi_{\mid E[\ell]}$ can be represented by a 2×2 matrix,
- The characteristic polynomial of $\varphi_{[E[\ell]}$ is $x^{2}-t x+p \bmod \ell$, its discriminant is $\Delta_{\ell}=t^{2}-4 p \bmod \ell$,
- case Δ_{ℓ} is a nonzero square in \mathbb{F}_{ℓ} then :
- $\varphi_{\mid E[\ell]}$ is diagonalizable,
- working on a one-dimensional eigenspace,
- computing one eigenvalue λ is enough (because $t=\lambda+\frac{p}{\lambda} \bmod \ell$)
- case $\Delta_{\ell}=0: \Delta_{\ell}=0 \Leftrightarrow t^{2}=4 p \bmod \ell$ so $t= \pm 2 \sqrt{p} \bmod \ell$,
- case Δ_{ℓ} is not a square : only a subset of possible values for t
- determination of whether Δ_{ℓ} is a square in \mathbb{F}_{ℓ} can be deduced from the splitting type of the ℓ-th modular polynomial : not the topic

A prime number ℓ such that $\varphi_{\mid E[\ell]}$ is diagonalizable is an Elkies prime, otherwise ℓ is an Atkin prime.

Improvements by Elkies and Atkin (2)

Working on an eigenspace of $E[\ell]$

- for an Elkies prime ℓ one can compute a subgroup of $E[\ell]$, denoted C_{λ} (one-dimensional eigenspace of $\varphi_{\mid E[\ell]}$)
- C_{λ} is described by a polynomial f_{ℓ} which divides ψ_{ℓ},
- $\operatorname{deg} f_{\ell}=O(\ell) \quad\left(\operatorname{deg} \psi_{\ell}=O\left(\ell^{2}\right)\right)$
- let $P \in C_{\lambda}, \lambda$ is the value such that:

$$
\varphi(P)=[\lambda] P
$$

Subgroup of $E[5]$

Improvement by Elkies and Atkin (3)

- Let $P \in C_{\lambda}$, searching λ such that : $\varphi(P)=[\lambda] P$, \rightarrow working in $\mathcal{A}_{f}=\mathbb{F}_{p}[x, y] /\left(f_{\ell}(x), y^{2}-x^{3}-A x-B\right)$.
- Search of $\lambda \in \llbracket 1, \ell-1 \rrbracket$ such that : $\left(x^{p}, y^{p}\right)=[\lambda](x, y)$.

Complexity

- Exponentiation dominates complexity :

Computations mod f_{ℓ} instead of $\bmod \psi_{\ell}$ $\left(\operatorname{deg} f_{\ell}=O(\ell), \operatorname{deg} \psi_{\ell}=O\left(\ell^{2}\right)\right)$ $\longrightarrow O\left(\log ^{6} p\right)$

- Computation of f_{ℓ} costs $O\left(\ell^{2} \log ^{2} p\right)$

Optimised search of the eigenvalues

In the following, ℓ is an Elkies prime

Three different algorithms for eigenvalue search

- Implemented in PARI : exhaustive search.
- Optimisation 1 : baby-step giant-step algorithm(Gaudry-Morain),
- Optimisation 2 : MMS algorithm (Mihăilescu-Morain-Schost)

Implemented in PARI : exhaustive search

Principle

- only testing ordinates
- opposite of a point is free : $P=(x, y) \Rightarrow[-1] P=(x,-y)$
- $([i] P)_{y}=y \cdot\left(P_{i, y}(x)\right) \longrightarrow$ only using x,
- Frobenius computation : $y^{p-1}=\left(x^{3}+A x+B\right)^{\frac{p-1}{2}}$
- $y^{p} \stackrel{?}{=} \pm(P)_{y}, y^{p} \stackrel{?}{=} \pm([2] P)_{y}, \ldots, y^{p} \stackrel{?}{=} \pm\left(\left[\frac{\ell-1}{2}\right] P\right)_{y}$
$\longrightarrow O(\ell)$ operations in the curve to find λ

Baby-step giant-step

Principle

- time-memory trade-off,
- search $1 \leqslant i, \pm j \leqslant\lceil\sqrt{\ell}\rceil$ such that: $[i] \varphi(P)=[j] P$ with $P \in C_{\lambda}$
- if a collision is found : $\lambda=j / i \bmod \ell$
- Algorithm :
- precompute and store multiples of P
- compute multiples of $\varphi(P)$ and search for a collision in the table of multiples of P.
- find the sign of the eigenvalue
$\longrightarrow O(\sqrt{\ell})$ operations in the curve to find λ (but need to store $O(\sqrt{\ell})$ abscissae)

Baby-step giant-step

Implementation of baby-step giant-step

- calculations in projective coordinates :
- only computing abscissae of multiples and using division polynomials for calculations
- abscissae are fractions $\frac{a_{i}}{b_{i}}$, storing couples (a_{i}, b_{i}),
- equality test between two fractions (ie collision) evaluated with a linear form
- collision found $\longrightarrow \lambda$ known up to sign :
- $\ell \equiv 1 \bmod 4$: need to compute ordinates of the collision points to determinate the sign
Gaudry-Morain propose a method to recover x^{p} from y^{p} with a gcd computation whose cost is inferior to the cost of computing x^{p} and y^{p}.
- $\ell \equiv 3 \bmod 4$: conclusion with Dewaghe's formula .

Dewaghe's formula

Let $\ell \equiv 3 \bmod 4, \lambda_{0}$ be the eigenvalue known up to sign and r be the resultant of f_{ℓ} and $x^{3}+A x+b$, then :

$$
\begin{equation*}
\lambda=\left(\frac{\lambda_{0}}{\ell}\right)\left(\frac{r}{p}\right) \lambda_{0} . \tag{3}
\end{equation*}
$$

Thus, to obtain the eigenvalue one only needs to :

- compute a resultant between a degree $\frac{\ell-1}{2}$ polynomial and a degree 3 polynomial
- compute two Legendre symbols
- apply formula (3).

MMS

Principle

- $\lambda \in\left(\mathbb{F}_{\ell}\right)^{*} \Rightarrow \log (\lambda) \in \mathbb{Z} /(\ell-1) \mathbb{Z}$,
- $q_{1} q_{2}=\ell-1, \operatorname{gcd}\left(q_{1}, q_{2}\right)=1$
- search for $\log (\lambda) \bmod q_{1}$,
- search for $\log (\lambda) \bmod q_{2}$,
- $\log (\lambda) \bmod \ell-1$ is computed with the CRT and λ is obtained.
- intensive use of modular composition

$\bmod q_{1} \bmod q_{2} \bmod q_{3} \bmod q_{4}$

$$
q_{1} q_{2}=\ell_{1}-1 \quad q_{3} q_{4}=\ell_{2}-1
$$

MMS

Computation of $q \mid \ell-1, q$ odd :

Let $\mathcal{A}_{\lambda}=\mathbb{F}_{p}[X] /\left(f_{\ell}\right), n=\frac{\ell-1}{2}$ and $P \in C_{\lambda}$.

- $f_{\ell}(X)=\prod_{a=1}^{n}\left(X-([a] P)_{x}\right)$
- $\exists C \in \mathbb{F}_{p}[X]$ permutating the roots of $f_{\ell} \mathrm{tq}$:

$$
x \rightarrow C(x) \rightarrow C^{(2)}(x) \rightarrow \ldots \rightarrow C^{(n)}(x)=x
$$

- from the definition of $C, \exists v$ such that:

$$
(\varphi(P))_{x}=([\lambda] P)_{x}=C^{(v)}(x)
$$

- $\exists \eta_{0} \in \mathcal{A}_{\lambda}$ such that :

$$
\eta_{0} \rightarrow C\left(\eta_{0}\right) \rightarrow \ldots \rightarrow C^{(q)}\left(\eta_{0}\right)=\eta_{0}
$$

(M is the minimal polynomial of $\eta_{0}, \operatorname{deg}(M)=q$)

MMS

Morain-Mihăilescu-Schost algorithm (q odd)

- let c be a generator of $(\mathbb{Z} / \ell \mathbb{Z})^{*}$ and $x=\log _{c} \lambda$.
- let q odd such that : $q \mid \ell-1$,
- denote $q^{\prime}=\frac{\ell-1}{2 q}$ so $\left.H=<c^{q}\right\rangle, K=<c^{q^{\prime}}>$. Compute :

$$
\eta_{0}=\sum_{a \in H} g_{a}(x)=\sum_{j=0}^{q^{\prime}-1} g_{h^{j}}(x) \text { and } \eta_{1}=\eta_{0}\left(g_{k}(x)\right) \quad\left(\text { for } x \in \mathcal{A}_{\lambda}\right)
$$

$$
\text { where } g_{a} \in \mathcal{A}_{\lambda} \text { and } g_{a}(x)=([a] P)_{x}, P=(x, y) \in C_{\lambda}
$$

- there exists $C \in \mathbb{F}_{p}[X]$ such that : $C\left(\eta_{0}\right)=\eta_{1}$,
- compute M, η_{0} minimal polynomial, whose degree is q,
- computation of X^{p} modulo M and iterates of C (for composition) leads to $\times \bmod q$
- using the CRT to conclude

MMS

- finding v such that $(\varphi(P))_{x}=([\lambda] P)_{x}=C^{(v)}(x)$ uses a baby step giant step algorithm
- computing are more expensive when q is even : requires constructions dealing with the ordinates, cost roughly doubles
- complexity is hard to evaluate : two different contributions, not always the same dominating

Comparison of the methods

256-bits curves

512-bits curves

Relation between the time (ms) to compute the eigenvalue and ℓ. (100 curves measured)

Comparison of the methods

Relation between the time (ms) to compute the eigenvalue and ℓ.

Comparison of the methods

Conclusion

- BSGS is a significative improvement compared to exhaustive search,
- BSGS becomes rapidly quicker,
- clear difference for 300-bits curves and for larger curves,
- MMS is said to be quicker than BSGS in the article but not for cryptographic sizes (at least with my implementation) :
- benchmarks on the paper are made on a 8000 -bits curve!
- however optimisations of my implementation are possible.
- some ide as to improve my implementation of MMS :
- suggested in the article : some computations made with an even q can be used for computations with odd q,
- comp are the different factorizations of $\ell-1$ and use the optimal decomposition : $\ell-1=q_{1} q_{2}$.

Conclusion

Some ideas to improve SEA in PARI/GP

- any improvement of polynomial arithmetic will improve performance of the SEA algorithm
- BSGS can be applied in the isogeny cycles case : once $\lambda \bmod \ell$ is found it is sometimes possible to find $\lambda \bmod \ell^{m}$ for some integers m.
- for an Elkies prime, finding the factor f_{ℓ} of the division polynomial requires to compute an isogenous curve of degree ℓ. The algorithm used in PARI/GP is not in the state of the art : the most efficient algorithm has been published by Bostan-Morain-Salvy-Schost. Implement BMSS would improve the speed of SEA.

Thank you for your attention, any questions?

