
Agence nationale de la sécurité des systèmes d’information

Université Denis Diderot - Paris 7

The SEA algorithm in PARI/GP

Julien Keuffer

Internship advisors : Jean-Pierre Flori and Jérôme Plût

Tuesday 24th November 2015

Using groups in cryptography

Diffie-Hellman key-exchange
protocol
El-Gamal cryptosystem
Electronic signature

Security related to hardness of
the discrete logarithm problem

A gA

exp

log

A Google certificate

Elliptic curves in cryptography The SEA algorithm in PARI/GP 2 / 26

The discrete logarithm problem (DLP)

Generic attacks on discrete logarithm use at least O(
√

#G1) operations in
G , where #G1 is the largest prime factor of #G .

Multiplicative group of finite fields : subexponential methods to
compute logarithm.

Elliptic curves : no known algorithm doing better for general elliptic
curves

DLP on elliptic curves defined over Fp

Faster methods exist for special classes of elliptic curves in which DLP can
be transported to a group where it is easier to solve :

MOV/Frey-Rück attack : transport DLP in Fq where q = pt

and t is the smallest integer such that pt = 1 mod #E (Fp)

Anomalous attack : #E = p, DLP can be transported to Z/pZ

Elliptic curves in cryptography The SEA algorithm in PARI/GP 3 / 26

Why compute the number of points of an elliptic curve ?
I To ensure the difficulty of the DLP.
I Some protocols (e.g. ECDSA) need #E for calculations.

Finding an elliptic curve suitable for cryptography requires a lot of
computations.

−→ need to have a fast point counting algorithm.

Elliptic curves in cryptography The SEA algorithm in PARI/GP 4 / 26

PARI/GP
SEA algorithm implemented in a PARI module : ellsea.c.
Used in GP via the ellcard() function.
Implementation based on Reynald Lercier’s thesis (1997).
Improvement have been proposed since.

My internship’s goal
Study, implementation within PARI/GP and comparison of two articles :

« Computing the eigenvalue in the Schoof-Elkies-Atkin algorithm
using Abelian lifts » (Mihăilescu, Morain & Schost),
« Fast algorithms for computing the eigenvalue in the
Schoof-Elkies-Atkin algorithm » (Gaudry & Morain).

Elliptic curves in cryptography The SEA algorithm in PARI/GP 5 / 26

Schoof’s algorithm

First polynomial algorithm published by Schoof in 1985.
Led to cryptography based on elliptic curves randomly selected.

Basic idea of the algorithm (K = Fp, p > 3, E : y 2 = x3 + Ax + B) :
Frobenius’s endomorphism ϕ : (x , y) 7→ (xp, yp) verifies :
ϕ2 − tϕ+ p idE = 0,
t is called the trace of ϕ and is linked to #E (Fp) by :

#E (Fp) = p + 1− t and |t| 6 2
√
p

t mod ` is computed for small primes `,
one is able to compute t as soon as

∏
` > 4

√
p,

number of ` required : O(log p), size of ` used : O(log p)

Algorithme SEA The SEA algorithm in PARI/GP 6 / 26

Schoof’s algorithm

Computation of t mod `

Calculations are done in
E [`]={P ∈ E (Fp) tq [`]P = O}
This group contains `2 points
whose coordinates live in Fp (for
` 6= p)
E [`] is described by a polynomial
ψ` : roots of ψ` are abscissae of
E [`] points,
for P ∈ E [`], t mod ` is the value
such that :

ϕ2(P)+[p mod `]P =[t mod`]ϕ(P)

degψ` = `2−1
2 = O(`2)

O P1

P2

2P1

2P2

3P1

3P2

4P1

4P2

P1 + P2

Representation of E [5]

Algorithme SEA The SEA algorithm in PARI/GP 7 / 26

Schoof’s algorithm

Computation of t mod `

To search t mod `, let P ∈ E [`] and try all the values τ ∈ J0, `− 1K until
the following relation holds :

ϕ2(P) + [p mod `]P = [τ]ϕ(P), (1)

A priori, `-torsion point coordinates belong to Fp,
→ must work with abstract `-torsion represented by :

Aψ = Fp[x , y]/(ψ`(x), y2 − x3 − Ax − B).

In Aψ, P =(x , y) is a `-torsion point and the equality (1) becomes :

(xp
2
, yp

2
) + [p mod `](x , y) = [τ](xp, yp) (2)

Algorithme SEA The SEA algorithm in PARI/GP 8 / 26

Schoof’s algorithm

Schoof’s algorithm complexity
Exponentiation dominates complexity in the algorithm
` = O(log p), using O(log p) `,
for a given `, computations of xp and xp

2
modulo ψ` : O(`4 log3 p),

idem for yp and yp
2
,

−→ complexity in O(log8 p).

Too much for an efficient use in cryptography.

Algorithme SEA The SEA algorithm in PARI/GP 9 / 26

Improvements by Elkies and Atkin (1)

Diagonalize the Frobenius
ϕ E [`] can be represented by a 2× 2 matrix,

The characteristic polynomial of ϕ E [`] is x2 − tx + p mod `,
its discriminant is ∆` = t2 − 4p mod `,
case ∆` is a nonzero square in F` then :

ϕ E [`] is diagonalizable,
working on a one-dimensional eigenspace,
computing one eigenvalue λ is enough (because t = λ+ p

λ mod `)

case ∆` = 0 : ∆` = 0⇔ t2 = 4p mod ` so t = ±2√p mod `,
case ∆` is not a square : only a subset of possible values for t
determination of whether ∆` is a square in F` can be deduced from
the splitting type of the `-th modular polynomial : not the topic

A prime number ` such that ϕ E [`] is diagonalizable is an Elkies prime,
otherwise ` is an Atkin prime.

Algorithme SEA The SEA algorithm in PARI/GP 10 / 26

Improvements by Elkies and Atkin (2)

Working on an eigenspace of E [`]
for an Elkies prime ` one can compute
a subgroup of E [`], denoted Cλ
(one-dimensional eigenspace of ϕ E [`])
Cλ is described by a polynomial f`
which divides ψ`,
deg f` = O(`) (degψ` = O(`2))
let P ∈ Cλ, λ is the value such that :

ϕ(P) = [λ]P O P1

P2

2P1

2P2

3P1

3P2

4P1

4P2

→ `2 → `

Subgroup of E [5]

Algorithme SEA The SEA algorithm in PARI/GP 11 / 26

Improvement by Elkies and Atkin (3)

Let P ∈ Cλ, searching λ such that : ϕ(P) = [λ]P ,
→ working in Af = Fp[x , y]/(f`(x), y2 − x3 − Ax − B).
Search of λ ∈ J1, `− 1K such that : (xp, yp) = [λ](x , y).

Complexity
Exponentiation dominates complexity :
Computations mod f` instead of mod ψ`
(deg f` = O(`), degψ` = O(`2))
−→ O(log 6 p)

Computation of f` costs O(`2 log2 p)

Algorithme SEA The SEA algorithm in PARI/GP 12 / 26

Optimised search of the eigenvalues

In the following, ` is an Elkies prime

Three different algorithms for eigenvalue search
Implemented in PARI : exhaustive search.
Optimisation 1 : baby-step giant-step algorithm(Gaudry-Morain),
Optimisation 2 : MMS algorithm (Mihăilescu-Morain-Schost)

Computing the eigenvalues The SEA algorithm in PARI/GP 13 / 26

Implemented in PARI : exhaustive search

Principle
only testing ordinates

opposite of a point is free : P = (x , y)⇒ [−1]P = (x ,−y)
([i]P)y = y · (Pi,y (x)) −→ only using x ,
Frobenius computation : yp−1 = (x3 + Ax + B)

p−1
2

yp
?
= ±(P)y , y

p ?
= ±([2]P)y , . . . , y

p ?
= ±([`−1

2]P)y

−→ O(`) operations in the curve to find λ

Computing the eigenvalues The SEA algorithm in PARI/GP 14 / 26

Baby-step giant-step

Principle
time-memory trade-off,
search 1 6 i ,±j 6 d

√
`e such that : [i]ϕ(P) = [j]P with P ∈ Cλ

if a collision is found : λ = j/i mod `
Algorithm :

precompute and store multiples of P
compute multiples of ϕ(P) and search for a collision in the table of
multiples of P.
find the sign of the eigenvalue

−→ O(
√
`) operations in the curve to find λ

(but need to store O(
√
`) abscissae)

Computing the eigenvalues The SEA algorithm in PARI/GP 15 / 26

Baby-step giant-step

Implementation of baby-step giant-step
calculations in projective coordinates :

only computing abscissae of multiples and using division polynomials
for calculations
abscissae are fractions ai

bi
, storing couples (ai , bi),

equality test between two fractions (ie collision) evaluated with a linear
form

collision found −→ λ known up to sign :
` ≡ 1 mod 4 : need to compute ordinates of the collision points to
determinate the sign
Gaudry-Morain propose a method to recover xp from yp with a gcd
computation whose cost is inferior to the cost of computing xp and yp.
` ≡ 3 mod 4 : conclusion with Dewaghe’s formula .

Computing the eigenvalues The SEA algorithm in PARI/GP 16 / 26

Dewaghe’s formula
Let ` ≡ 3 mod 4, λ0 be the eigenvalue known up to sign and r be the
resultant of f` and x3 + Ax + b, then :

λ =

(
λ0

`

)(
r

p

)
λ0. (3)

Thus, to obtain the eigenvalue one only needs to :
compute a resultant between a degree `−1

2 polynomial and a degree 3
polynomial
compute two Legendre symbols
apply formula (3).

Computing the eigenvalues The SEA algorithm in PARI/GP 17 / 26

MMS

Principle
λ ∈ (F`)∗⇒ log(λ)∈Z/(`−1)Z,
q1q2 = `− 1, gcd(q1, q2) = 1
search for log(λ)mod q1,
search for log(λ)mod q2,
log(λ) mod `− 1 is computed with

the CRT and λ is obtained.
intensive use of modular composition

t

mod `1

mod q1 mod q2

mod `2

mod q3 mod q4

q1q2 = `1 − 1 q3q4 = `2 − 1

Computing the eigenvalues The SEA algorithm in PARI/GP 18 / 26

MMS

Computation of q | `− 1, q odd :

Let Aλ = Fp[X]/(f`), n = `−1
2 and P ∈ Cλ.

f`(X) =
n∏

a=1

(X − ([a]P)x)

∃C ∈ Fp[X] permutating the roots of f` tq :

x → C (x)→ C (2)(x)→ . . .→ C (n)(x) = x

from the definition of C , ∃v such that :

(ϕ(P))x = ([λ]P)x = C (v)(x)

∃ η0 ∈ Aλ such that :

η0 → C (η0)→ . . .→ C (q)(η0) = η0

(M is the minimal polynomial of η0, deg(M)=q)

Fp[X]/(f`)

Fp

Fp[X]/(M(X))`−1
2

q

Extensions of Fp

Computing the eigenvalues The SEA algorithm in PARI/GP 19 / 26

MMS

Morain-Mihăilescu-Schost algorithm (q odd)

let c be a generator of (Z/`Z)∗ and x = logc λ.
let q odd such that : q | `− 1,
denote q′ = `−1

2q so H =<cq>, K =<cq
′
>. Compute :

η0 =
∑
a∈H

ga(x) =

q′−1∑
j=0

ghj (x) and η1 = η0(gk(x)) (for x ∈ Aλ)

where ga ∈ Aλ and ga(x) = ([a]P)x , P = (x , y) ∈ Cλ

there exists C ∈ Fp[X] such that : C (η0) = η1,
compute M, η0 minimal polynomial, whose degree is q,
computation of X p modulo M and iterates of C (for composition)
leads to x mod q

using the CRT to conclude
Computing the eigenvalues The SEA algorithm in PARI/GP 20 / 26

MMS
finding v such that(ϕ(P))x = ([λ]P)x = C (v)(x) uses a baby step
giant step algorithm
computing are more expensive when q is even :
requires constructions dealing with the ordinates, cost roughly doubles
complexity is hard to evaluate : two different contributions, not always
the same dominating

Computing the eigenvalues The SEA algorithm in PARI/GP 21 / 26

Comparison of the methods

256-bits curves 512-bits curves

Relation between the time (ms) to compute the eigenvalue and `.
(100 curves measured)

Computing the eigenvalues The SEA algorithm in PARI/GP 22 / 26

Comparison of the methods

768-bits curves a 1024-bits curve

Relation between the time (ms) to compute the eigenvalue and `.

Computing the eigenvalues The SEA algorithm in PARI/GP 23 / 26

Comparison of the methods

Conclusion
BSGS is a significative improvement compared to exhaustive search,

BSGS becomes rapidly quicker,
clear difference for 300-bits curves and for larger curves,

MMS is said to be quicker than BSGS in the article but not for
cryptographic sizes (at least with my implementation) :

benchmarks on the paper are made on a 8000-bits curve !
however optimisations of my implementation are possible.

some ide as to improve my implementation of MMS :
suggested in the article : some computations made with an even q can
be used for computations with odd q,
comp are the different factorizations of `− 1 and use the optimal
decomposition : `− 1 = q1q2.

Computing the eigenvalues The SEA algorithm in PARI/GP 24 / 26

Conclusion

Some ideas to improve SEA in PARI/GP
any improvement of polynomial arithmetic will improve performance of
the SEA algorithm
BSGS can be applied in the isogeny cycles case : once λ mod ` is
found it is sometimes possible to find λ mod `m for some integers m.
for an Elkies prime, finding the factor f` of the division polynomial
requires to compute an isogenous curve of degree `. The algorithm
used in PARI/GP is not in the state of the art : the most efficient
algorithm has been published by Bostan-Morain-Salvy-Schost.
Implement BMSS would improve the speed of SEA.

Conclusion The SEA algorithm in PARI/GP 25 / 26

Thank you for your attention,

any questions ?

Conclusion The SEA algorithm in PARI/GP 26 / 26

	Elliptic curves in cryptography
	Algorithme SEA
	Computing the eigenvalues
	Exhaustive search
	Baby-step giant-step
	MMS
	Comparison of the methods

	Conclusion

