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Introduction

Let us state some basic results concerning arithmetical structure of
number fields:

Basic results in the number field case

1 Equality of zeta-functions is the same as arithmetical
equivalence. In particular, for finite normal extensions of Q we
have: ζK (s) = ζL(s)⇒ K ' L;

2 Isomorphism of absolute Galois groups(as topological groups)
implies isomorphism of fields: GK ' GL ⇒ K ' L.

3 Isomorphism of abelianizations of absolute Galois groups does
not imply neither isomorphism or even arithmetical
equivalence!

4 In contrast, we(actually Bart) could construct one cyclic
Galois extension K ′/K of degree three with character χ such
that LK (χ, s) occurs only for that field.
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Introduction

Now, it seems to be natural to ask:

a vague question

What could we say about this issue on the function field side?

Remark: On the function filed side there are two completely
different ways to define L-functions: one due to Dedekind, Hasse,
Artin, Weil and another one due to Carlitz, Goss, Drinfeld. Both of
this ways turned out to be very productive, but today we restrict
ourselves only to the first case.
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Introduction

For the sake of clearness, we recall some basic settings and
introduce our notations:

1 Let K be a global function field, meaning that it is a finite
extension of Fq(t), where q = pn and p is prime.

2 We define GK := Gal(K sep : K ) and ζK (s) =
∑ 1

N(a)s , where

sum is over all ideals a ∈ OK and N(a) = |OK/aOK |.
3 We denote by X smooth projective curve over Fq such that K

is isomorphic to a function field of X .

Remark: note that the following identity holds:

ζK (s) = exp

( ∞∑
m=1

#X (Fqm)

m
Tm

)
=

fX (T )

(1− T )(1− qT )
,

where T = q−s and fX (T ) ∈ Z[T ] is the Weil polynomial of X .
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Introduction

Now, we are able to formulate results and questions similar to the
number field case.

Basic results and questions in the function field case

1 By the Honda-Tate theorem, equality of zeta-functions
ζK = ζK ′ is equivalent to the existence of an isogeny between
Jacobian varieties of curves corresponding to these function
fields.

2 Isomorphism of absolute Galois groups(as topological groups)
implies isomorphism of fields: GK ' GL ⇒ K ' L.

3 We don’t know yet if isomorphism of abelianizations of
absolute Galois groups implies isomorphism or for example
equality of zeta-functions of function fields!

4 We don’t know if we could construct finite number of
abelian Galois extensions K ′i /K with characters χi such that
the list of LK (χi , s) occurs only for that field.
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General Settings

Motivated by those results we asked ourselves:

Question

Given a smooth projective curve C over Fq what could we say
about the list of zeta-functions of abelian coverings X of C ?

Definition

Let C be a curve over k = Fq and let d be a natural number prime
to p. We define XC (d , g) = {X is a curve over k , such that
g(X ) = g and there exists an abelian Galois cover φ : X → C ,
defined over k and of degree d}.
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General Settings

Remark: Note that according to the theorem of Honda and Tate
we have implication: if X is a covering of C , then ζX (s)

ζC (s) ∈ Z[T ].

Definition

We define ΛC (d , g) = { fX (T )
fC (T ) ∈ Z[T ]|X ∈ XC (d , g)}.

This is finite set of polynomials and we expect to obtain some
information about curve C from this set.
Today our main goal is to provide almost complete description for
the case C = E is an elliptic curve and g = 2, when the
characteristic of the ground field p > 3.

Pavel Solomatin L-functions of abelian coverings of curves over finite fields



General Settings

Remark: Note that according to the theorem of Honda and Tate
we have implication: if X is a covering of C , then ζX (s)

ζC (s) ∈ Z[T ].

Definition

We define ΛC (d , g) = { fX (T )
fC (T ) ∈ Z[T ]|X ∈ XC (d , g)}.

This is finite set of polynomials and we expect to obtain some
information about curve C from this set.
Today our main goal is to provide almost complete description for
the case C = E is an elliptic curve and g = 2, when the
characteristic of the ground field p > 3.

Pavel Solomatin L-functions of abelian coverings of curves over finite fields



Case d > 2

First of all let us consider case d > 2. We have the following result:

Theorem

For d > 2 we have ΛE (d , 2) is empty !

Sketch of the proof: Suppose that C is an abelian cover of E of
degree d > 2. Without loss of generality we could suppose that C
and E are defined over Fq. Since C is a hyper-elliptic curve there
exists a unique involution τ ∈ Aut(C ) such that C/〈τ〉 ' P1.
Moreover, because τ is unique, it lies in the center of Aut(C ) and
hence we have the following commutative diagram:

C
2
> P1

E

d

∨
2
> P1

d
∨
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Case d > 2

Let us apply Riemann-Hurwitz theorem to the covering C → E .

We have:

(2gC − 2) = d(2gE − 2) +
∑
p∈C

(ep − 1),

and hence: ∑
p∈C

(ep − 1) = 2.

Since by assumptions this is a Galois-covering, this means that
there are only three possibilities for the ramification divisor: either
we have ramification in one point of type (e1, e2) = (2, 2), two
different points with ramification index ei = 2 or ramification
exactly at one point with ramification index e1 = 3. In the first
case we have d = 4, in the second we have d = 2 and finally, in
the last case we have d = 3. This proves, that d ≤ 4.
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Cases d = 3 and d = 4 are much more delicate. We have to use
Riemann-Hurwitz and some Galois-theory for other coverings in the
commutative diagram discussed above.

On the other hand, ΛE (2, 2) provides some interesting information
about E .
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Preliminaries, the case d=2

Now we are going to discuss the case d = 2.
Let E be an elliptic curve over Fq, with characteristic p > 3. Let C
be a curve of genus g(C ) = 2 together with the covering map
φ : C → E of degree 2. Such a curve is called a biellptic curve.

Example

If E is given by the affine equation y 2 = x3 + ax + b, then one
could take C with affine part defined by v 2 = u6 + au2 + b and
map φ : (x , y)→ (u2, v).

From algebraic geometry we have the following characterization of
C :

Theorem

The curve C is bielliptic covering of E if and only if the Jacobian
variety J(C ) of the curve C is (2,2)-isogenous to a product of two
elliptic curves E × E ′.
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Preliminaries, the case d=2

Theorem

The curve C is bielliiptic covering of E if and only if the Jacobian
variety J(C ) of the curve C is (2,2)-isogenous to a product of two
elliptic curves E × E ′.

Now, according to the Honda-Tate theory we have:

fC (T ) = fE (T )fE ′(T ) = (qT 2 − aqT + 1)(qT 2 − a′qT + 1),

where aq = q + 1−#E (Fq) and a′q = q + 1−#E ′(Fq). So, to
describe ΛE (2, 2) it is enough to find all possible values of a′q.

Our main task is equivalent to the following:

Task

Given an elliptic curve E find all numbers a′q such that there exists
an elliptic curve E ′ with a′q = q + 1−#E ′(Fq) and with property
that abelian surface E × E ′ is (2,2)-isogenous to the Jacobian
variety of some smooth projective curve C .
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Examples over F5

By using explicit class field theory we could calculate all the
elements in ΛE (2, 2) for any given E over Fq.

In order to do that
we must implement the following algorithm:

1 choose a ramification divisor m of degree 2 on E .

2 take the ray class field FE ,m associated to the pair (E ,m).

3 take any index two subgroup H of Gal(FE ,m : F ), here F is a
function field of E .

4 finally verify that the curve X corresponding to H has genus 2
and calculate its zeta-function.

I’ve implement this script in Magma.
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Examples over F5

Table : Data for elliptic curves over F5

Curve E J-invariant a5 Values of a′5 # Autk(E )

y 2 = x3 + 1 0 0 0;±2;±4 2

y 2 = x3 + 2 0 0 0;±2;±4 2

y 2 = x3 + x 3 2 ±2 4

y 2 = x3 + x + 2 1 2 0;±2;±4 2

y 2 = x3 + x + 1 2 -3 ±1;±3 2

y 2 = x3 + 2x 3 4 0;±2 4

y 2 = x3 + 2x + 1 4 -1 ±1;±3 2

y 2 = x3 + 3x 3 -4 0;±2 4

y 2 = x3 + 3x + 2 4 1 ±1;±3 2
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What kind of information we could read from the above table?

1 For any E and E ′ as above we have ap = a′p mod (2).

2 If a′p occurs then also (−a′p) is in the list.

3 For general curve these are the only restrictions.More
contritely, one could note that if j(E ) 6= 0, 1728 and E (Fp)[2]
is not isomorphic to the full group C2 ⊕ C2 then any a′p = ap
mod (2) occurs. But if E (Fp)[2] ' C2 ⊕ C2 then ΛE (2, 2)
consists of all a′p = ap mod (4), still provided we are in the
case j(E ) 6= 0, 1728.

Remark: The similar result also holds for curves with j(E ) = 0 or
1728, but with possibly few exceptions depending on which twist
of E are defined over Fp. Also, later we will give an answer for
elliptic curves defined over any finite field, not only over Fp.
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remarks about the proof

A few words about the proof:

1 Easy exercise.

2 Related with quadratic twist of E ′.

3 Requires basic algebraic-geometry construction due to E. Kani
and some work with Galois-module structures on torsion
points of E .

Now we are going to explain this basic construction.
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the basic construction

Let n be a prime number with (n, p) = 1.

Given two elliptic curves
E and E ′ with isomorphism α as Galois modules E [n] ' E ′[n],
which is anti-isometry with respect to the Weil-paring. Let Γα be
the graph of α in E × E ′. Consider surface Aα ' E × E ′/Γα. It is
(n, n)-isogenous to E × E ′.
We have the following commutative diagram:

E × E
[n]
> Ê × Ê

Aα

φ

∨
> Âα

φ̂

∧

Moreover, it is turned out that Aα has principal polarization θ
which comes from polarization on E × E ′. According to the
general theory Aα is a Jacobain surface of some, possible not
smooth curve C of (arithmetic) genus two.
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> Âα

φ̂

∧

Moreover, it is turned out that Aα has principal polarization θ
which comes from polarization on E × E ′. According to the
general theory Aα is a Jacobain surface of some, possible not
smooth curve C of (arithmetic) genus two.

Pavel Solomatin L-functions of abelian coverings of curves over finite fields



the basic construction

Let n be a prime number with (n, p) = 1. Given two elliptic curves
E and E ′ with isomorphism α as Galois modules E [n] ' E ′[n],
which is anti-isometry with respect to the Weil-paring. Let Γα be
the graph of α in E × E ′. Consider surface Aα ' E × E ′/Γα. It is
(n, n)-isogenous to E × E ′.
We have the following commutative diagram:

E × E
[n]
> Ê × Ê
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the basic construction

Theorem

The curve C constructed above is smooth if and only if the
isomorphism α of Galois modules is not the restriction of a
geometric isogeny φ of degree i(n− i) between E (k̄) ' E ′(k̄), with
0 < i < n. Moreover, any such C appears in this way.

In our case n = 2 and hence i = 1, but geometric isogeny of
degree one is necessary geometric isomorphism! It means that our
task is equivalent to the following:

The main task

Given E find all a′q such that there exists a curve E ′ with
a′q = q + 1−#E ′(Fq) and an isomorphism α between E [2] and
E ′[2] such that α is not the restriction of a geometric isomorphism
between E and E ′.

By working with Galois module structure on E [2] we provide a
proof of our main theorem.
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The main result over Fp

Let E be an elliptic curve over Fp.

Definition

1 AE = {(pT 2 − a′pT + 1), for a′p ∈ [−2
√

p; 2
√

p] ∩ Z, ap = a′p
mod (2)};

2 BE = {(pT 2 − a′pT + 1), for a′p ∈ [−2
√

p; 2
√

p] ∩ Z, ap = a′p
mod (4)}.

Theorem

Suppose E is an elliptic curve over Fp with j(E ) 6= 0, 1728 and
p > 3. Then:

1 if E (Fp)[2] 6' C2 ⊕ C2 then ΛE (2, 2) = AE ;

2 if E (Fp)[2] ' C2 ⊕ C2 then ΛE (2, 2) = BE ;

Remark: The similar result holds also for the case j(E ) = 0 or
j(E ) = 1728, but with possibly few exceptions.
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Idea of the proof

Let us sketch important steps of the proof. We know that
Gal(ksep : k) is generated by the frobenious element π.

Suppose E
is an elliptic curve Fp with p > 3 such that and j(E ) 6= 0, 1728.
Suppose #E (Fp) = 1 mod (2), then E (Fp)[2] = {0}. Therefore
Galois-module structure on E is C3, meaning that π switches three
other 2-torsion points by circle. Hence for any two such curves we
have an isomorphism of E [2] as Galois-modules.
Now if a′p = 1 mod (2) is a number in a Hasse interval
[−2
√

p; 2
√

p] then there exists an elliptic curve E ′ with
isomorphism α : E [2] ' E ′[2] as Galois-modules. The existence of
E ′ is guarantee by the theorem due to Waterhouse.
Finally, if j(E ) 6= 0, 1728 then Aut(E ) = {±1} which acts trivially
on two-torsion points. But the same time, we always have
non-trivial isomorphism of Galois-modules in this case. This proves
that there exists a smooth project curve C with Jac(C )
(2,2)-isogenous to the product of E and E ′.
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Idea of the proof

Suppose a′p = 0 mod (2) then also #E (Fp) = 0 mod (2). There
are two cases:

1 #E (Fp) = 0 mod (4), hence E (Fp)[2] ' C2 or
E (Fp)[2] ' C2 ⊕ C2;

2 #E (Fp) = 2 mod (4), hence E (Fp)[2] ' C2;

A priori we have a problem with case when #E (Fp) = 0 mod (4).
We will show that with one little exception both two-torsion
structures occurs in a given isogeny class!
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Idea of the proof

We have the following lemma which shows that actually almost
always both cases occurs in the given isogeny class:

Theorem

Given elliptic curve E over Fq such that 4|#E (Fq) we have:

1 if aq 6= ±2
√

q, then in the isogeny class corresponding to E
there exist elliptic curves E ′, E ′′ with E ′(Fq)[2] = C2 and
E ′′(Fq)[2] = C2 ⊕ C2;

2 if aq = ±2
√

q, then any elliptic curve E ′ isogenous to E has
E ′(Fq)[2] ' C2 ⊕ C2.

It means we are done!
Remark: Cases with j(E ) = 0, 1728 are a little bit more delicate.
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What about general case?

Now we are able to generalize our result to any finite field k = Fq.

Definition

We will call an integer number N in the Hasse interval
[−2
√

q; 2
√

q] admissible if there exists an elliptic curve E over Fq

with aq = q + 1−#E (Fq) = N.
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Theorem of Waterhouse provides a precise answer witch numbers
are admissible:

Theorem

The number N is admissible if and only if one of the following
conditions holds:

1 (p;N)=1;
2 if q = p2n+1 and one of the following holds:

1 N=0;
2 N = ±2n+1, p = 2;
3 N = ±3n+1, p = 3;

3 if q = p2n and one of the following holds:
1 N = ±2pn;
2 N = ±pn, p 6= 1 mod (3);
3 N = 0, p 6= 1 mod (4);
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Definition

1 AE = {(qT 2 − a′qT + 1), for a′q is an admissible such that
aq = a′q mod (2)};

2 BE = {(qT 2 − a′qT + 1), for a′q is an admissible such that
aq = a′q mod (4)}.

Theorem

Suppose E is an elliptic curve over Fq with j(E ) 6= 0, 1728 and
p > 3. Then:

1 if E (Fq)[2] ' {0} then ΛE (2, 2) = AE ;

2 if E (Fq)[2] ' C2 then ΛE (2, 2) = AE/{qT 2 ± 2
√

qT + 1};
3 if E (Fq)[2] ' C2 ⊕ C2 then ΛE (2, 2) = BE ;
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remark

Remark: The similar result holds also for the case j(E ) = 0 or
j(E ) = 1728, but with possibly few exceptions. This exceptions
occur if and only if in the isogeny class corresponding to a′q for any
pair (E ′, α) we have that isomorphism α : E ′[2] ' E [2] comes from
the restriction of a geometric isomorphism between E and E ′.

Pavel Solomatin L-functions of abelian coverings of curves over finite fields



Thank you!
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