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Definition

Definition
Let r be an integer, E an elliptic curve with coefficients in a field K , P a point on E
with coefficients in K so that [r ]P = 0 (where [r ]P := P + · · ·+ P = 0, r times).
Given µ a solution of µr = 1 in an extension of K , the pairing of E × E with respect to
r , P and µ is the map

eE ,r ,P,µ : Z
rZP ×

Z
rZP → µZ/rZ

([a]P , [b]P) 7→ µab.

Properties of a pairing e

1. e([λ]P ,Q) = e(P ,Q)λ = e([λ]Q,P)

2. e([a]P , [b1]P + [b2]P) = e([a]P , [b1]P) · e([a]P , [b2]P)

3. if a is such that e([a]P , [b]P) = 1 for all b then a = 0.
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Three-party Diffie-Hellman

Problem
Alice, Bob and Carol use a public elliptic curve E and a pairing e with respect to a
point P. Each of the participants broadcast simultaneously an information in a public
channel. How can they agree on a common key ?

Joux’s protocol

1. Simultaneously, each participant generates a random integer in [0, r − 1] and
broadcasts a multiple of P :
• Alice generates a and computes [a]P ;
• Bob generates b and computes [b]P ;
• Carol generates c and computes [c]P ;

2. Simultaneously, each participant computes the pairing of the received information
and computes the common key:
• Alice computes e([b]P , [c]P)a;
• Bob computes e([c]P , [a]P)b;
• Carol computes e([a]P , [b]P)c ;

Common secret key: µabc .
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Discrete logarithm

Definition
Given a finite group G generated by an element P of order r , we call discrete logarithm
of Pa (or [a]P in additive notation) in base P the integer a ∈ [0, r − 1]. The discrete
logarithm problem (DLP) consists of computing the discrete logarithm of any element.

Generic algorithm

A combination of Pohlig-Hellman reduction and Pollard’s rho solves DLP in a generic
group G after O(

√
r) operations, where r is the largest prime factor of #G .

Relation to pairings

A pairing e : 〈P〉 × 〈P〉 → K (µ) is safe only if

1. DLP in E [r ] is hard; (DLP on elliptic curves) if log2 #G = n, cost=2
n
2

2. DLP in K (µ) is hard. (DLP in finite fields) if log2 #K (µ) = N, cost≈ exp( 3
√
N)
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DLP: an example (1)

Parameters

• p = 12101

• g = 7 is a generator of G = (Z/pZ)∗

• ` = 11 is a prime factor of (p − 1) = #G

• B = 10 is the smoothness bound

• factor base 2, 3, 5, 7

Finding relations among logs

75 mod p = 4706 = 2 · 13 · 181

The last relation gives:
7 = 3 log7 3 + 2 log7 5

25 = 8 log7 2 + 1 log7 3

42 = 6 log7 2 + 2 log7 5.
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DLP: an example (2)

Thanks to the Pohlig-Hellman reduction

we do the linear algebra computations modulo ` = 11.

Linear algebra computations

We have to find the unknown log7 2, log7 3 and lg7 5 in the equation0 3 2

8 1 0

6 0 2

 ·
log7 2

log7 3

log7 5

 ≡
 7

25

42

 mod 11.

Conjecture

The matrix obtained by the technique above has maximal rank.

We can drop all conjectures by modifying the algorithm, but this variant is fast and,
even if the matrix has smaller rank we can find logs.

Solution
We solve to obtain log7 2 ≡ 0 mod 11; log7 3 ≡ 3 mod 11 and log7 5 ≡ 10 mod 11.
For this small example we can also use Pollard’s rho method and obtain that

log7 3 = 8869 ≡ 3 mod 11.
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DLP: an example (3)

At this point, we know discrete logarithms of the factor base and of smooth numbers:

log7(10) = log7 2 + log7 5 ≡ 10 mod 11.

Smoothing by randomization

Consider a residue modulo p which is not 10-smooth, e.g. h = 151. We take random
exponents a and test is (g ah) mod p is B-smooth.

The discrete logarithms of the two members are equal:

5 + log7(151) = 2 log7 2 + 7 log7 3.

We find log7(151) ≡ 3 mod 11.

Remark
This part of the computations is independent of the relation collection and linear
algebra stages. It is called individual logarithm stage.
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Comparison among cryptographic primitives

N = pq p and q

curve, g , g x

p, g

g x

x

x

factoring

ECDLP

DLP

• elliptic curves: can be hard-coded without loss of security

• finite fields: if hard-coded, an attacker can do precomputations, so the cost of
DLP becomes equal to that of individual logarithm.
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LogJam

Records and precise estimations

bitsize common part possible for individual logarithm

512 7.7 core-years everybody 10 min

768 4.5k core-years academic level 2 days

1024 35M core-years state level 30 days

When default parameters are given

Among the servers using 512-bit primes (Table 1 Logjam paper):

• 82% used the same prime;

• 10% more used a second prime;

• 8% others used a total of 463 primes.

Similar proportions occur for 1024 and 2048-bit primes, and ECDSA.

Pairings are vulnerable to LogJam so we must produce pairing-friendly curves on the fly.
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Computing pairings

Some algorithms for Tate-Lichtenbaum

• Miller (see Miller 1986)

• Ate (see Barreto-Galbraith-O hEigeataigh and Scott 2007)

• Eta (see Hess, Smart and Vercauteren 2006)

Cost
Depending on the each curve but it grows with

• log2 r ,

• log2(qk).
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Cryptographic sizes

A priori key sizes

security (bits) key size RSA key size ECDSA quotient

80 1024 160 6

128 3072 256 12

256 15360 512 30

Pairings

• DLP over elliptic curves (ECDSA) must be as hard as DLP in Fpn (RSA under the
assumption that it is as hard as factoring);

• most important cases: 2 ≤ n ≤ 30;

• very fast construction (Barreto-Naehrig) at n = 12.
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Embedding degree

Definition
The embedding degree of a curve E defined over Fq with respect to an integer r is the
smallest integer k so that r divides qk − 1.

Random curves have large embedding degree

• Parings allow to reduce the DLP on a curve of cardinality ≈ q to the DLP in the
finite field Fqk .

• Balasubramanian and Köblitz 1998 : For random curves k ≈ q. Hence even if DLP
in finite fields was polynomial time it wouldn’t be enough to break DLP on curves.

Definition
A curve E defined over Fq is pairing-friendly with respect to a prime r if

• r >
√
q;

• k < (log2 r)/8

We must construct pairing-friendly curves.
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CM method

Constructing pairings

Given an embedding degree k and a parameter D we construct a pairing-friendly curve
E as follows:

1. Find three integers q, r and t subject to the CM equations in next slide; The
three integers will be so that
• Fq is the field of coefficients;
• E has q + 1− t points;
• E has a subgroup of order r .

2. Apply the complex method to construct a curve E of parameters q, r and t. The
cost is O(h2+εD ) where hD is the class number of Q(

√
D) (for a random D,

hD '
√
D).
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CM equations

Two primes q and r and a square-free integer D satisfy the CM conditions if

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2
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Super-singular curves

Idea
Take t = 0 and k = 2. Indeed,

1. Φk(t − 1) ≡ 0 (mod r) (true for all r because Φ2(−1) = 0)

2. q + 1− t ≡ 0 (mod r) (true for any divisor r of q + 1)

3. ∃y , 4q = Dy 2 + t2 (true for any q)

Limits

• if q = 2 or q = 3 we can have k ∈ {1, 2, 3, 4, 6} (but small characteristic and
hence subject to the quasi-polynomial time attack)

• if q ≥ 5 we have two possibilities
• k = 2 OK
• k = 1 but q = p2s and E or its twist are isomorphic to a pairing of embedding

degree 2 defined over ps (F(p2s)1=F(ps )2
).

R. Barbulescu — Overview pairings 16 / 37



Super-singular curves

Idea
Take t = 0 and k = 2. Indeed,

1. Φk(t − 1) ≡ 0 (mod r) (true for all r because Φ2(−1) = 0)

2. q + 1− t ≡ 0 (mod r) (true for any divisor r of q + 1)

3. ∃y , 4q = Dy 2 + t2 (true for any q)

Limits

• if q = 2 or q = 3 we can have k ∈ {1, 2, 3, 4, 6} (but small characteristic and
hence subject to the quasi-polynomial time attack)

• if q ≥ 5 we have two possibilities
• k = 2 OK
• k = 1 but q = p2s and E or its twist are isomorphic to a pairing of embedding

degree 2 defined over ps (F(p2s)1=F(ps )2
).

R. Barbulescu — Overview pairings 16 / 37



Cocks-Pinch

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method

1. replace (2) by an equivalent equation

2. select r so that r ≡ 1 mod k and (−Dr ) = 1

3. solve (2) for y

4. solve (3) for q

Limits
We have no control on the size of q. We would like r ≈ q but we have
q = 1

4(small + (random residue of r)2) ≈ r 2.
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Dupont-Enge-Morain

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method

1. replace (2) by an equivalent equation

2. compute R(a) = Rest(Φk(t − 1), a + (t − 2)2); enumerate a’s and take
• r a prime factor of R(a)
• compute gcd(Φk(t − 1) mod r , a + (t − 2)2 mod r) and obtain t if it is linear

3. solve (3) for q

Limits

Very few integers a are such that R(a) ≈ 2256 and both E and its twist are secure, e.g.
for k = 16 and D = 3 there are only a = 39193, 61815.
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Sparse families (e.g. MNT)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method when ϕ(k) = 2 (example when k = 3)

1. put r = Φk(t − 1), which satisfies (1)

2. put q = r + t − 1, which satisfies (2)

3. put t = t(x), t linear, and note that this forces q = q(x), quadratic polynomial q
(e.g. t(x) = −1± 6x and q(x) = 12x2 − 1). This transforms (3) into a
generalized Pell equation

4. solve the generalized Pell equation to get y and x , and therefor q

Limits

• If ϕ(k) > 4 then the plane curve that we obtain has genus ≥ 2 and by Faltings’
theorem it has a finit set of solutions.

• The cases ϕ(k) ≤ 4 imply k = 2, 3, 4, 6, 8, 10 which are less than the value
required by pairings. (Rmk: Freeman worked the case k = 10).
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• If ϕ(k) > 4 then the plane curve that we obtain has genus ≥ 2 and by Faltings’
theorem it has a finit set of solutions.

• The cases ϕ(k) ≤ 4 imply k = 2, 3, 4, 6, 8, 10 which are less than the value
required by pairings. (Rmk: Freeman worked the case k = 10).
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Sparse families (e.g. MNT)
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Complete families (e.g. BN)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method

1. replace (2) by an equivalent equation

2. • select r(x) ∈ Q[x ] so that Q[x ]/r(x) which contains a root of x2−D and Φk(x)
• take t = t(x) to be such that t − 1 is a kth root of unity mod r(x)

3. put y = t(x)/
√
−D which satisfies (2)

4. solve (3) for q

Note that we generate a large number of elliptic curves very quickly.

Limits
q has a polynomial form. In the case of factoring this is a vulnerability.
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Plan of the lecture

I Pairings

I Pairing-friendly curves

I Progress of NFS attacks

I Consequences
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The number field sieve(NFS): diagram

NFS for DLP in Fp

Let f , g ∈ Z[x ] be two irreducible polynomials which have a common root m modulo p.

a − bx ∈ Z[x ]

Z/pZ

Z[x ]/〈f (x)〉 Z[x ]/〈g(x)〉
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The number field sieve(NFS): diagram

NFS for DLP in Fp

Let f , g ∈ Z[x ] be two irreducible polynomials which have a common root m modulo p.

a − bx ∈ Z[x ]

Z/pZ

Z[αf ] Z[αg ]

x 7→ αf x 7→ αg

αf 7→ m αg 7→ m
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The NFS algorithm for Fp

F (a, b) =
∑d

i=0 fia
ibd−i where d = deg f and G (a, b) = g1a + g0b.

Input a finite field Fp, two elements t (generator) and s
Output logt s

1: (Polynomial selection) Choose two polynomials f and g in Z[x ] which have a
common root modulo p;

2: (Sieve) Collect relatively prime pairs (a, b) such that F (a, b) and G (a, b) are
B-smooth (for a parameter B);

3: Write a linear equation for each pair (a, b) found in the Sieve stage.

4: (Linear algebra) Solve the linear system to find (virtual) logarithms of the prime
ideals of norm less than B ;

5: (Individual logarithm) Write logt s in terms of the previously computed logs.
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Why is the polynomial selection important?

Size of norms

• If E 2 is the cost of the relation collection, then we sieve all pairs a, b so that
|a|, |b| ≤ E .

• |F (a, b)| = |
∑d

i=0 fia
ibd−i | ≤ E d‖f ‖ and |G (a, b)| = |g1a + g0b| ≤ E‖g‖.

• If we reduce ‖f ‖ and ‖g‖ we can reduce the work.

Polynomial selection: Base-m method

Put m = bp 1
d+1c and write p = pdm

d + pd−1m
d−1 + · · · p1m + p0 in base m and put

• f = pdx
d + · · ·+ p1x + p0;

• g = x −m.
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The special number field sieve (SNFS)

Example: when factoring N = 21039 − 1 the polynomial selection is easy

• d = 4, m = 2260, f = x4 − 2

• d = 5, m = 2208, f = x5 − 2

• d = 6, m = 2173, f = 2x6 − 1

Definition: an integer N is d-SNFS

for an absolute constant A if there exists f ∈ Z[x ] and m ∈ Z so that

N = f (m)

and ‖f ‖ ≤ A. Note that |m| ≤ N
1
d = (N

1
d+1 )1+o(1).

Consequences

When we run NFS with ‖f ‖ = O(1) we say that we run SNFS because the complexity
is reduced.
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Size of keys for RSA (naive computation)

key of n bits

se
cu

ri
ty

s
(i

n
bi

ts
)

−

768

−

1024

−

2048
−

3072

−

6144

−67

−80

−107

−128

Extrapolation formula (based on the RSA-768 record)

2s = 2−8L2n[64]

where LN [c] = exp(( c
9
)
1
3 (loge N)

1
3 (loge(loge N))

2
3 )
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Size of keys for SNFS (naive computation)

key of n bits

se
cu

ri
ty

s
(i

n
bi

ts
)

−

768

−

1024

−

2048
−

3072

−

6144

−67

−80

−107

−128

Extrapolation formula (based on factoring 21039 − 1)

2s = 2−7L2n[32]

where LN [c] = exp(( c
9
)
1
3 (loge N)

1
3 (loge(loge N))

2
3 )
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Chronology: adapting SNFS from factoring to pairings

Index Calculus

• Fp, ’77, Adleman

• F2n, ’82, Hellman Reyneri, use polynomials instead of numbers

• Fpn, ’94, Adleman DeMarrais, Fpn = Z[ι]/pZ[ι].

NFS and FFS

• Fp, ’90, Gordon / Schirokauer

• F2n, ’94, Adleman, use polynomials instead of numbers

• Fpn,
• ’00, Schirokauer, Fpn = Z[ι]/pZ[ι] (TNFS).
• ’06, Joux Lercier Smart Vercauteren, modify polynomial selection (JLSV)
• new, Kim Barbulescu, combiner TNFS and JLSV: exTNFS
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Joux, Lercier, Smart, Vercauteren

NFS for DLP in Fpn

Let f , g ∈ Z[x ] be two irreducible polynomials which have a common root m modulo p.

a − bx ∈ Z[x ]

(Z[x ]/〈pZ)/〈ϕ〉

Z[x ]/〈f (x)〉 Z[x ]/〈g(x)〉
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Joux, Lercier, Smart, Vercauteren

NFS for DLP in Fpn

Let f , g ∈ Z[x ] be two irreducible polynomials which have a common root m factor
ϕ(x) modulo pwhich is irreducible of degree n.

a − bx ∈ Z[x ]

(Z[x ]/〈pZ)/〈ϕ〉

Z[αf ] Z[αg ]

x 7→ αf x 7→ αg

mod pOQ(αf ) mod pOQ(αg )
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Joux-Pierrot’s SNFS when n ≥ 1

Method when p = Π(u)

1. Enumerate polynomials S of degree ≤ n − 1 until xn + S(x)− u is irreducible
modulo p;

2. return g = xn + S(x)− u and f = Π(xn + S(x))

Correction: f (x)− p = Π(xn + S(x))− Π(u) = (xn + S(x)− u)(· · · ).

Size of norms
The product of norms, which must be small, has size

E n(d+1)Q
1
nd ,

where E and Q are given.

Difficulty in practice: optimal only when nd ≈ 8.
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TNFS diagram
NFS for DLP in Fp

Let f , g ∈ Z[x ] be two irreducible polynomials which have a common root m modulo p.

a − bx ∈ Z[x ]

Z/pZ ' Fp

Z[x ]/〈f (x)〉 = Z[αf ] Z[x ]/〈g(x)〉 = Z[αg ]
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TNFS diagram
NFS for DLP in Fp

Let f , g ∈ Z[x ] be two irreducible polynomials which have a common root m modulo p.

Let h ∈ Z[x ] be a monic irreducible polynomial of degree k such that p is inert in its
number field Q(ι); we have Z[ι]/pZ[ι] ' Fpk .

a − bx ∈ Z[x ]

Z/pZ' Fp

Z[x ]/〈f (x)〉 =Z[αf ] Z[x ]/〈g(x)〉 =Z[αg ]

x 7→ αf x 7→ αg

αf 7→ m αg 7→ m
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TNFS diagram
NFS for DLP in Fpk

Let f , g ∈ Z[x ] be two irreducible polynomials which have a common root m modulo p.

Let h ∈ Z[x ] be a monic irreducible polynomial of degree k such that p is inert in its
number field Q(ι); we have Z[ι]/pZ[ι] ' Fpk .

a − bx ∈ Z[ι][x ]

Z[ι]/pZ[ι] ' Fpk

Z[ι][x ]/〈f (x)〉 = Z[ι][αf ] Z[ι][x ]/〈g(x)〉 = Z[ι][αg ]

x 7→ αf x 7→ αg

αf 7→ m αg 7→ m

STNFS: if p = P(u) we have f = P
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exTNFS diagram

a − bx ∈ Z[ι][x ]

(Z[ι]/pZ[ι])[t]/〈k(t)〉 ' Fpηκ

Z[ι][x ]/〈f (x)〉 Z[ι][x ]/〈g(x)〉

Explanation

• TNFS as if n = η

• Joux-Pierrot as if n = κ (any other method when p is not SNFS)

SexTNFS: when p = P(u) we take f = P(xη).
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exTNFS diagram

a − bx ∈ Z[ι][x ]

(Z[ι]/pZ[ι])[t]/〈k(t)〉 ' Fpηκ

Z[ι][x ]/〈f (x)〉 Z[ι][x ]/〈g(x)〉

mod f mod g

mod p

mod k

mod p

mod k

Explanation

• TNFS as if n = η

• Joux-Pierrot as if n = κ (any other method when p is not SNFS)

SexTNFS: when p = P(u) we take f = P(xη).
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DLP in Fpn when p is not SNFS but n is composite with
good factors

quasi

MNFS

MNFS+conj

MNFS

conjugation

exTNFS

2.42

1.74

1.92
2.152.15

small medium large
1/3 2/3

lp

complexity=Lpn(1/3, c)

t

exTNFS+Conj

where p = Lpn(lp,O(1))
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Complete families (e.g. BN)

SNFS

• The complexity has been revised from L[64] to L[32] where

LN [c] = exp((c9)
1
3 (loge N)

1
3 (loge(loge N))

2
3 )

• If LQnew[32] = LQold[64] then we obtain log2Q
new = (2 + o(1)) log2Q

old.

• Hence, if q is SNFS we must double the key size log2(qk). Since k is fixed in thes
families, we must increase q (and r).

It is a consequence of the starting idea

The first step of the construction of pairing-friendly curves of this type is to set r and t
to be SNFS, then we set q as an expression of r and t.
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Conclusion

Summary

property of pairing-friendly curves attack which exploits it

small ϕ(k) exTNFS for composite k

SNFS q SNFS variant of exTNFS

Unaffected pairings

1. Cocks-Pinch when k = 5, 7, etc

2. Menezes’ k = 1 curves
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