Post-quantum cryptography based on isogeny problems?

Christophe Petit
University of Oxford

The threat of quantum computers

Business Yourmensy Mathe Datu Makis Comparies Ecomsmy
Do quantum computers threaten global encryption systems?

Quantum Computers: The End of Cryptography?


```
be Faisons vuve }\times\mathbb{\mathbb{T}}\mathrm{ How quantum computen }x\square
'technology/news/11224058/How-quantum-computers-will-undermine-cryptography.html
onique Perit * Kadolog *
    C | Privacy and cookies | Jobs | Dating | Offers | Shop | Puzzles | Investor
```


The ©elegraph

Home Video News World Sport Finance Comment Culture Travel Iife Women Fas

hose - techinology * tichinology news
How quantum computers will undermine cryptography
Quantum computing has many benefits, but it could also undermine the cryptographic algorithms that underpin the World Wide Web, according to a former NSA technical director

OXFORD

Isogeny Problems

- Recently proposed for post-quantum cryptography
- Classical and quantum algorithms still exponential time
- Some history, e.g. David Kohel's PhD thesis in 1996
- Natural problems from a number theory point of view

Outline

Motivation

Isogenies and Cryptographic Protocols

Hard and Easy Isogeny Problems

Computing Isogenies using Torsion Point Images

Conclusion

Outline

Motivation

Isogenies and Cryptographic Protocols

Hard and Easy Isogeny Problems

Computing Isogenies using Torsion Point Images

Conclusion

Isogenies

- Let p be a prime. Up to isomorphism, any supersingular elliptic curve is defined over $\mathbb{F}_{p^{2}}$
- An isogeny from a curve E_{0} is a morphism $\phi: E_{0} \rightarrow E_{1}$ sending 0 to 0
- In Weierstrass affine coordinates we can write

$$
\phi: E_{0} \rightarrow E_{1}: \phi(x, y)=\left(\frac{\varphi(x)}{\psi^{2}(x, y)}, \frac{\omega(x, y)}{\psi^{3}(x, y)}\right)
$$

where ψ^{2} only depends on x, and $\omega / \psi^{3}=y s(x) / t(x)$

- Isogeny degree is $\operatorname{deg} \phi=\max \left\{\operatorname{deg} \varphi, \operatorname{deg} \psi^{2}\right\}$
- Often we write $E_{1}=E_{0} / G$ where $G=\operatorname{ker} \phi$

Isogeny problems

- Isogeny problems with potential interest for cryptography are about "computing" isogenies between two curves, or some variant of this problem

Isogeny problems

- Isogeny problems with potential interest for cryptography are about "computing" isogenies between two curves, or some variant of this problem
- For these problems to be "hard" these isogenies must have "large" degree
- So representation as a rational map not efficient enough
- Can often assume degree is smooth hence can return isogeny as a composition of low degree isogenies

Isogeny problems

- Isogeny problems with potential interest for cryptography are about "computing" isogenies between two curves, or some variant of this problem
- For these problems to be "hard" these isogenies must have "large" degree
- So representation as a rational map not efficient enough
- Can often assume degree is smooth hence can return isogeny as a composition of low degree isogenies
- Attacker sometimes given extra information on isogenies

Isogeny graphs

- Over \bar{K} the ℓ-torsion $E[\ell]$ (points of order dividing ℓ) is isomorphic to $\mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}$
- There are $\ell+1$ cyclic subgroups of order ℓ; each one is the kernel of a degree ℓ isogeny
- ℓ-isogeny graph : each vertex is a j-invariant over \bar{K}, each edge corresponds to one degree ℓ isogeny
- Undirected graph : to every $\phi: E_{1} \rightarrow E_{2}$ corresponds a dual isogeny $\hat{\phi}: E_{2} \rightarrow E_{1}$ with $\phi \hat{\phi}=[\operatorname{deg} \phi]$
- In supersingular case all j and isogenies defined over $\mathbb{F}_{p^{2}}$ and graphs are Ramanujan (optimal expansion graphs)
- Isogeny problems \sim finding paths in these graphs

Hash function

$$
H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}
$$

- Collision resistance : hard to find m, m^{\prime} such that $H(m)=H\left(m^{\prime}\right)$
- Preimage resistance : given h, hard to find m such that $H(m)=h$
- Second preimage resistance : given m, hard to find m^{\prime} such that $H\left(m^{\prime}\right)=h$
- Popular ones use block cipher like compression functions and Merkle-Damgård ; not based on maths problems

Charles-Goren-Lauter hash function

Properties

- Uniform output distribution for large enough messages
- Preimage problem for CGL hash function : Let E_{0} and E_{1} be two supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ with $\left|E_{0}\left(\mathbb{F}_{p^{2}}\right)\right|=\left|E_{1}\left(\mathbb{F}_{p^{2}}\right)\right|$. Find $e \in \mathbb{N}$ and an isogeny of degree ℓ^{e} from E_{0} to E_{1}.
- Collision problem for CGL hash function :

Let E_{0} be a supersingular elliptic curve over $\mathbb{F}_{p^{2}}$. Find $e_{1}, e_{2} \in \mathbb{N}$, a supersingular elliptic curve E_{1} and two distinct isogenies (i.e. with distinct kernels) of degrees respectively $\ell^{e_{1}}$ and $\ell^{e_{2}}$ from E_{0} to E_{1}.

Key agreement

- Alice and Bob want to agree on a common secret key
- They only exchange public messages
- Eve can see all messages exchanged, yet she should not be able to infer the secret key

Diffie-Hellman key agreement

- Choose g generating a cyclic group
- Alice picks a random a and sends g^{a}
- Bob picks a random b and sends g^{b}
- Alice computes $\left(g^{b}\right)^{a}=g^{a b}$
- Bob computes $\left(g^{a}\right)^{b}=g^{a b}$
- Eve cannot compute a, b or $g^{a b}$ from g^{a} and g^{b} (discrete logarithm, Diffie-Hellman problems)

Isogeny-based Diffie-Hellman

- Choose a prime p, and $N_{A}, N_{B} \in \mathbb{N}$ with $\operatorname{gcd}\left(N_{A}, N_{B}\right)=1$ Choose E_{0} a supersingular curve over $\mathbb{F}_{p^{2}}$
- Alice picks a cyclic subgroup $G_{A} \subset E_{0}\left[N_{A}\right]$ defining an isogeny $\phi_{A}: E_{0} \rightarrow E_{A}=E_{0} / G_{A}$ and she sends E_{A} to Bob
- Bob picks a cyclic subgroup $G_{B} \subset E_{0}\left[N_{B}\right]$ defining an isogeny $\phi_{A}: E_{0} \rightarrow E_{B}=E_{0} / G_{B}$ and he sends E_{B} to Alice

- Shared key is $E_{0} /\left\langle G_{A}, G_{B}\right\rangle=E_{B} / \phi_{B}\left(G_{A}\right)=E_{A} / \phi_{A}\left(G_{B}\right)$

Isogeny-based Diffie-Hellman (2)

- To compute the shared key Alice will need $\phi_{B}\left(G_{A}\right)$. This is achieved as follows :
- Let $G_{A}=\left\langle\alpha_{A} P_{A}+\beta_{A} Q_{A}\right\rangle$ where $\left\langle P_{A}, Q_{A}\right\rangle=E_{0}\left[N_{A}\right]$ and at least one of α_{A}, β_{A} coprime to N_{A}
- Bob reveals $\phi_{B}\left(P_{A}\right)$ and $\phi_{B}\left(Q_{A}\right)$ in first round
- Alice computes $\phi_{B}\left(G_{A}\right)=\left\langle\alpha_{A} \phi_{B}\left(P_{A}\right)+\beta_{A} \phi_{B}\left(Q_{A}\right)\right\rangle$

Isogeny-based Diffie-Hellman (2)

- To compute the shared key Alice will need $\phi_{B}\left(G_{A}\right)$. This is achieved as follows :
- Let $G_{A}=\left\langle\alpha_{A} P_{A}+\beta_{A} Q_{A}\right\rangle$ where $\left\langle P_{A}, Q_{A}\right\rangle=E_{0}\left[N_{A}\right]$ and at least one of α_{A}, β_{A} coprime to N_{A}
- Bob reveals $\phi_{B}\left(P_{A}\right)$ and $\phi_{B}\left(Q_{A}\right)$ in first round
- Alice computes $\phi_{B}\left(G_{A}\right)=\left\langle\alpha_{A} \phi_{B}\left(P_{A}\right)+\beta_{A} \phi_{B}\left(Q_{A}\right)\right\rangle$
- Can compute ϕ_{A} efficiently if N_{A} smooth
- Can represent torsion points efficiently if either
- $N_{A}=\prod \ell_{i}^{e_{i}}$ with $\ell_{i}^{e_{i}}$ bounded
- $N_{A} \mid p-1$

Supersingular key agreement protocol

$$
\begin{gathered}
E_{A},\left\langle R_{A}\right\rangle \\
P_{B}, Q_{B}, R_{B} \\
\phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right) \\
\phi_{A}\left(R_{B}\right) \\
\theta_{0} \\
E_{0} /\left\langle R_{B}\right\rangle \\
\phi_{B}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right) \\
\phi_{B}\left(R_{A}\right)
\end{gathered}
$$

- Jao-De Feo chose $N_{i}=\ell_{i}^{e_{i}}$ and $p=N_{A} N_{B} f+1$
- A priori safer to use arbitrary primes and $N_{i} \approx p^{2}$

Identification protocol / proof of knowledge

- Prover wants to prove knowledge of a secret to Verifier without revealing it (can be used for authentication)

Identification protocol / proof of knowledge

- Prover wants to prove knowledge of a secret to Verifier without revealing it (can be used for authentication)
- Security requirements :
- Correctness : if Prover knows the secret then Prover can convince Verifier
- Soundness : if Prover convinces Verifier then Prover must know the secret
- Zero-knowledge : nothing is leaked about the secret

Jao-De Feo-Plût identification protocol

- Proof of knowledge of an isogeny ϕ between two given curves E_{0} and E_{1}

$$
E_{0} \xrightarrow{\phi} E_{1}
$$

Jao-De Feo-Plût identification protocol

- Proof of knowledge of an isogeny ϕ between two given curves E_{0} and E_{1}

- 3-round protocol :
- Prover commits with E_{2} and E_{3}
- Verifier challenges Prover with one bit b
- Prover reveals ψ and ψ^{\prime} if $b=0$, and ϕ^{\prime} if $b=1$

Public Key Encryption and Signatures

- Public Key Encryption ~ digital lock: everybody can lock/encrypt but one needs private key to unlock/decrypt
- Diffie-Hellman-like key exchange protocol leads to ElGamal-like public key encryption

Public Key Encryption and Signatures

- Public Key Encryption ~ digital lock: everybody can lock/encrypt but one needs private key to unlock/decrypt
- Diffie-Hellman-like key exchange protocol leads to ElGamal-like public key encryption
- Digital signatures are analog to real signatures
- Identification protocols lead to digital signatures using the Fiat-Shamir transform (or any alternative)
- In [Galbraith-P-Silva 2017] we build an alternative identification protocol and signature scheme

Outline

Hard and Easy Isogeny Problems

Computing Isogenies using Torsion Point Images

Conclusion

Isogeny from kernel

- Given $G=\operatorname{ker} \phi$ can compute ϕ with Vélu's formulae

$$
\phi(P)=\left(x_{P}+\sum_{Q \in G \backslash\{O\}}\left(x_{P+Q}-x_{Q}\right), \quad y_{P}+\sum_{Q \in G \backslash\{O\}}\left(y_{P+Q}-y_{Q}\right)\right)
$$

using $O(\# G)$ operations

Isogeny from kernel

- Given $G=\operatorname{ker} \phi$ can compute ϕ with Vélu's formulae

$$
\phi(P)=\left(x_{P}+\sum_{Q \in G \backslash\{O\}}\left(x_{P+Q}-x_{Q}\right), \quad y_{P}+\sum_{Q \in G \backslash\{O\}}\left(y_{P+Q}-y_{Q}\right)\right)
$$

using $O(\# G)$ operations

- If $\# G$ is composite then better to write ϕ as a composition of prime degree isogenies
- If $\# G=\prod \ell_{i}^{e_{i}}$ write $G=\prod G_{i}$ with $\# G_{i}=\ell_{i}^{e_{i}}$

Endomorphism ring computation

- Given an elliptic curve E defined over a finite field K, compute the endomorphism ring of E

Endomorphism ring computation

- Given an elliptic curve E defined over a finite field K, compute the endomorphism ring of E
- We focus on the supersingular case so $\operatorname{End}(E)$ is a maximal order in the quaternion algebra $B_{p, \infty}$
- Output $=$ some efficient representation of basis elements
- Problem considered by David Kohel in his PhD thesis (Berkeley 1996)

Kohel's algorithm for supersingular curves

- Fix a small ℓ. Given a curve E, compute all its neighbors in isogeny graph. Compute all neighbors of neighbors, etc, until a loop is found, corresponding to an endomorphism

- Complexity $\tilde{O}(\sqrt{p})$

Isogeny computation

- Given elliptic curves E_{0}, E_{1} defined over a finite field K, compute an isogeny $\phi: E_{0} \rightarrow E_{1}$

Isogeny computation

- Given elliptic curves E_{0}, E_{1} defined over a finite field K, compute an isogeny $\phi: E_{0} \rightarrow E_{1}$
- For the problem to be hard then $\operatorname{deg} \phi$ must be large, so ϕ cannot be returned as a rational map
- Same hardness as endomorphism ring computation, at least heuristically
- May impose some conditions on the degree, for example $\operatorname{deg} \phi=\ell^{e}$ for some e, with same hardness heuristically
- Can be solved in $O(\sqrt{p})$ with two trees from E_{0} and E_{1} in the isogeny graph

Deuring correspondence

- Deuring correspondence (1931) : bijection from supersingular curves over $\overline{\mathbb{F}}_{p}$ (up to Galois conjugacy) to maximal orders in the quaternion algebra $B_{p, \infty}$ (up to conjugation)

$$
E \rightarrow O \approx \operatorname{End}(E)
$$

Deuring correspondence

- Deuring correspondence (1931) : bijection from supersingular curves over $\overline{\mathbb{F}}_{p}$ (up to Galois conjugacy) to maximal orders in the quaternion algebra $B_{p, \infty}$ (up to conjugation)

$$
E \rightarrow O \approx \operatorname{End}(E)
$$

- Under this correspondence translate isogeny $\varphi: E_{1} \rightarrow E_{2}$ into ideal I, both left ideal of O_{1} and right ideal of O_{2}, with degree $\varphi=$ norm of I

Quaternion isogeny computation

- Input : two maximal orders O_{0} and O_{1} in $B_{p, \infty}$
- Output: a O_{0}-left ideal $J=I q$ with ℓ-power norm, where I is a O_{0}-left ideal and a O_{1}-right ideal, and $q \in B_{p, \infty}^{*}$
- Following Deuring's correspondence this corresponds to computing an isogeny $\varphi: E_{0} \rightarrow E_{1}$ with power of ℓ degree where $\operatorname{End}\left(E_{0}\right) \approx O_{0}$ and $\operatorname{End}\left(E_{1}\right) \approx O_{1}$

Quaternion isogeny computation

- Input : two maximal orders O_{0} and O_{1} in $B_{p, \infty}$
- Output : a O_{0}-left ideal $J=I q$ with ℓ-power norm, where I is a O_{0}-left ideal and a O_{1}-right ideal, and $q \in B_{p, \infty}^{*}$
- Following Deuring's correspondence this corresponds to computing an isogeny $\varphi: E_{0} \rightarrow E_{1}$ with power of ℓ degree where $\operatorname{End}\left(E_{0}\right) \approx O_{0}$ and $\operatorname{End}\left(E_{1}\right) \approx O_{1}$
- ANTS 2014 heuristic algorithm (Kohel-Lauter-P-Tignol) solves the problem with $e=\log _{\ell} n(I) \approx \frac{7}{2} \log p$
- Can be adapted to powersmooth norms

Explicit Deuring correspondence

- Given supersingular invariant, return corresponding order
$=$ Endomorphism ring computation problem
\rightarrow Believed to be hard

Explicit Deuring correspondence

- Given supersingular invariant, return corresponding order
$=$ Endomorphism ring computation problem
\rightarrow Believed to be hard
- Given a maximal order, compute corresponding invariant
$=$ Inverse endomorphism ring computation problem
\rightarrow Heuristic polynomial time algorithm

Explicit Deuring correspondence

- Given supersingular invariant, return corresponding order
$=$ Endomorphism ring computation problem
\rightarrow Believed to be hard
- Given a maximal order, compute corresponding invariant $=$ Inverse endomorphism ring computation problem
\rightarrow Heuristic polynomial time algorithm
- Candidate one-way function!

Special isogeny problems

- In Jao-De Feo-Plût protocols special problems are used

1. A special prime p is chosen so that $p=N_{1} N_{2} \pm 1$ with $N_{1} \approx N_{2} \approx \sqrt{p}$
2. There are $\approx p / 12$ supersingular invariants but only $N_{1} \approx \sqrt{p}$ possible choices for E_{1}
3. Extra information provided : compute $\phi: E_{0} \rightarrow E_{1}$ of degree N_{1} knowing $\phi(P)$ for all $P \in E_{0}\left[N_{2}\right]$

- Point 2 improves tree-based attacks to $O\left(p^{1 / 4}\right)$
- We now focus on Point 3

Outline

Motivation

Isogenies and Cryptographic Protocols

Hard and Easy Isogeny Problems

Computing Isogenies using Torsion Point Images

Conclusion

Motivation

- Attack on Jao-De Feo-Plût protocol : compute an isogeny $\phi_{1}: E_{0} \rightarrow E_{1}$ of degree N_{1} given action of ϕ_{1} on $E_{0}\left[N_{2}\right]$
- How useful is this additional information?

Motivation

- Attack on Jao-De Feo-Plût protocol : compute an isogeny $\phi_{1}: E_{0} \rightarrow E_{1}$ of degree N_{1} given action of ϕ_{1} on $E_{0}\left[N_{2}\right]$
- How useful is this additional information?
- If $\operatorname{gcd}\left(N_{1}, N_{2}\right) \neq 1$ can recover (part of) ϕ_{1}

Motivation

- Attack on Jao-De Feo-Plût protocol : compute an isogeny $\phi_{1}: E_{0} \rightarrow E_{1}$ of degree N_{1} given action of ϕ_{1} on $E_{0}\left[N_{2}\right]$
- How useful is this additional information?
- If $\operatorname{gcd}\left(N_{1}, N_{2}\right) \neq 1$ can recover (part of) ϕ_{1}
- Active attacks : replace $\phi_{1}\left(P_{2}\right), \phi_{1}\left(Q_{2}\right)$ by well-chosen points so that (part of) the secret is leaked in shared key [Galbraith-P-Shani-Ti 2016 + others]

Motivation

- Attack on Jao-De Feo-Plût protocol : compute an isogeny $\phi_{1}: E_{0} \rightarrow E_{1}$ of degree N_{1} given action of ϕ_{1} on $E_{0}\left[N_{2}\right]$
- How useful is this additional information?
- If $\operatorname{gcd}\left(N_{1}, N_{2}\right) \neq 1$ can recover (part of) ϕ_{1}
- Active attacks : replace $\phi_{1}\left(P_{2}\right), \phi_{1}\left(Q_{2}\right)$ by well-chosen points so that (part of) the secret is leaked in shared key [Galbraith-P-Shani-Ti 2016 + others]
- What about passive attacks (eavesdropping only)?

Warm-up : computing endomorphisms with auxilliary information

- Let p be a prime and let E be a supersingular elliptic curve defined over $\mathbb{F}_{p^{2}}$. Let ϕ be a non scalar endomorphism of E with smooth order N_{1}. Let N_{2} be a smooth integer with $\operatorname{gcd}\left(N_{1}, N_{2}\right)=1$, and let P, Q be a basis of $E\left[N_{2}\right]$.
- Let R be a subring of $\operatorname{End}(E)$ that is either easy to compute, or given (for example, scalar multiplications).
- Given $E, P, Q, \phi(P), \phi(Q), \operatorname{deg} \phi, R$, compute ϕ.

Warm-up : computing endomorphisms with auxilliary information

- Let p be a prime and let E be a supersingular elliptic curve defined over $\mathbb{F}_{p^{2}}$. Let ϕ be a non scalar endomorphism of E with smooth order N_{1}. Let N_{2} be a smooth integer with $\operatorname{gcd}\left(N_{1}, N_{2}\right)=1$, and let P, Q be a basis of $E\left[N_{2}\right]$.
- Let R be a subring of $\operatorname{End}(E)$ that is either easy to compute, or given (for example, scalar multiplications).
- Given $E, P, Q, \phi(P), \phi(Q), \operatorname{deg} \phi, R$, compute ϕ.
- Best previous algorithm : meet-in-the-middle in $\tilde{O}\left(\sqrt{N_{1}}\right)$

Algorithm sketch (with $R=\mathbb{Z}$)

- We know ϕ on the N_{2} torsion. Deduce $\hat{\phi}$ on the N_{2} torsion and $\operatorname{Tr}(\phi)$ if $N_{2}>2 \sqrt{N_{1}}$.

Algorithm sketch (with $R=\mathbb{Z}$)

- We know ϕ on the N_{2} torsion. Deduce $\hat{\phi}$ on the N_{2} torsion and $\operatorname{Tr}(\phi)$ if $N_{2}>2 \sqrt{N_{1}}$.
- Consider $\psi:=a \phi+b$ for $a, b \in \mathbb{Z}$.

Can evaluate ψ on the N_{2} torsion.

Algorithm sketch (with $R=\mathbb{Z}$)

- We know ϕ on the N_{2} torsion. Deduce $\hat{\phi}$ on the N_{2} torsion and $\operatorname{Tr}(\phi)$ if $N_{2}>2 \sqrt{N_{1}}$.
- Consider $\psi:=a \phi+b$ for $a, b \in \mathbb{Z}$.

Can evaluate ψ on the N_{2} torsion.

- Find $a, b \in \mathbb{Z}$ such that

$$
\operatorname{deg} \psi=a^{2} \operatorname{deg} \phi+b^{2}+a b \operatorname{Tr} \phi=N_{2} N_{1}^{\prime}
$$

with N_{1}^{\prime} small and smooth. Write $\psi=\psi_{N_{1}^{\prime}} \psi_{N_{2}}$.

Algorithm sketch (with $R=\mathbb{Z}$)

- We know ϕ on the N_{2} torsion.

Deduce $\hat{\phi}$ on the N_{2} torsion and $\operatorname{Tr}(\phi)$ if $N_{2}>2 \sqrt{N_{1}}$.

- Consider $\psi:=a \phi+b$ for $a, b \in \mathbb{Z}$.

Can evaluate ψ on the N_{2} torsion.

- Find $a, b \in \mathbb{Z}$ such that

$$
\operatorname{deg} \psi=a^{2} \operatorname{deg} \phi+b^{2}+a b \operatorname{Tr} \phi=N_{2} N_{1}^{\prime}
$$

with N_{1}^{\prime} small and smooth. Write $\psi=\psi_{N_{1}^{\prime}} \psi_{N_{2}}$.

- Identify ker $\psi_{N_{2}}$ from $\psi\left(E\left[N_{2}\right]\right)$ and deduce $\psi_{N_{2}}$.
- Find $\psi_{N_{1}^{\prime}}$ with a meet-in-the-middle strategy.

Algorithm sketch (with $R=\mathbb{Z}$)

- We know ϕ on the N_{2} torsion.

Deduce $\hat{\phi}$ on the N_{2} torsion and $\operatorname{Tr}(\phi)$ if $N_{2}>2 \sqrt{N_{1}}$.

- Consider $\psi:=a \phi+b$ for $a, b \in \mathbb{Z}$.

Can evaluate ψ on the N_{2} torsion.

- Find $a, b \in \mathbb{Z}$ such that

$$
\operatorname{deg} \psi=a^{2} \operatorname{deg} \phi+b^{2}+a b \operatorname{Tr} \phi=N_{2} N_{1}^{\prime}
$$

with N_{1}^{\prime} small and smooth. Write $\psi=\psi_{N_{1}^{\prime}} \psi_{N_{2}}$.

- Identify ker $\psi_{N_{2}}$ from $\psi\left(E\left[N_{2}\right]\right)$ and deduce $\psi_{N_{2}}$.
- Find $\psi_{N_{1}^{\prime}}$ with a meet-in-the-middle strategy.
- Find $\operatorname{ker} \phi$ by evaluating $(\psi-b) / a$ on the N_{1} torsion, and deduce ϕ.

Finding (a, b) and Complexity

- We have $\operatorname{deg} \psi=a^{2} \operatorname{deg} \phi+b^{2}+a b \operatorname{Tr} \phi$

$$
=\left(b+a \frac{\operatorname{Tr} \phi}{2}\right)^{2}+a^{2}\left(\operatorname{deg} \phi-\left(\frac{\operatorname{Tr} \phi}{2}\right)^{2}\right)
$$

- We want $\operatorname{deg} \psi=N_{2} N_{1}^{\prime}$ and N_{1}^{\prime} small and smooth

Finding (a, b) and Complexity

- We have $\operatorname{deg} \psi=a^{2} \operatorname{deg} \phi+b^{2}+a b \operatorname{Tr} \phi$

$$
=\left(b+a \frac{\operatorname{Tr} \phi}{2}\right)^{2}+a^{2}\left(\operatorname{deg} \phi-\left(\frac{\operatorname{Tr} \phi}{2}\right)^{2}\right)
$$

- We want $\operatorname{deg} \psi=N_{2} N_{1}^{\prime}$ and N_{1}^{\prime} small and smooth
- Solutions to $\operatorname{deg} \psi=0 \bmod N_{2}$ form a dimension 2 lattice
- We compute a reduced basis, then search for a small linear combination of short vectors until N_{1}^{\prime} smooth

Finding (a, b) and Complexity

- We have $\operatorname{deg} \psi=a^{2} \operatorname{deg} \phi+b^{2}+a b \operatorname{Tr} \phi$

$$
=\left(b+a \frac{\operatorname{Tr} \phi}{2}\right)^{2}+a^{2}\left(\operatorname{deg} \phi-\left(\frac{\operatorname{Tr} \phi}{2}\right)^{2}\right)
$$

- We want $\operatorname{deg} \psi=N_{2} N_{1}^{\prime}$ and N_{1}^{\prime} small and smooth
- Solutions to $\operatorname{deg} \psi=0 \bmod N_{2}$ form a dimension 2 lattice
- We compute a reduced basis, then search for a small linear combination of short vectors until N_{1}^{\prime} smooth
- Heuristic analysis shows we can expect $N_{1}^{\prime} \approx \sqrt{N_{1}}$. Revealing $\phi\left(E\left[N_{2}\right]\right)$ leads to a near square root speedup. (Some parameter restrictions apply.)

Open problem: subfield curves

- If E is defined over \mathbb{F}_{p} we can take $R=\mathbb{Z}[\pi]$
- Let $\phi^{\prime}=\phi-\operatorname{Tr} \phi$ and consider

$$
\psi=\left(a \phi^{\prime}+b\right) \pi_{p}+c \phi^{\prime}+d
$$

- Let $\Delta=\operatorname{deg} \phi-\left(\frac{\operatorname{Tr} \phi}{2}\right)^{2}$. We want $\operatorname{deg} \psi=\left(a^{2} \Delta+b^{2}\right) p+\left(c^{2} \Delta+d^{2}\right)+(a d-b c) \operatorname{Tr}\left(\phi^{\prime} \pi_{p}\right)=N_{1}^{\prime} N_{2}$ with N_{1}^{\prime} small and smooth

Open problem: subfield curves

- If E is defined over \mathbb{F}_{p} we can take $R=\mathbb{Z}[\pi]$
- Let $\phi^{\prime}=\phi-\operatorname{Tr} \phi$ and consider

$$
\psi=\left(a \phi^{\prime}+b\right) \pi_{p}+c \phi^{\prime}+d
$$

- Let $\Delta=\operatorname{deg} \phi-\left(\frac{\operatorname{Tr} \phi}{2}\right)^{2}$. We want $\operatorname{deg} \psi=\left(a^{2} \Delta+b^{2}\right) p+\left(c^{2} \Delta+d^{2}\right)+(a d-b c) \operatorname{Tr}\left(\phi^{\prime} \pi_{p}\right)=N_{1}^{\prime} N_{2}$ with N_{1}^{\prime} small and smooth
- Heuristic analysis : when $N_{2} \approx N_{1} p$ we should be able to get $N_{1}^{\prime}=O(1)$,

Open problem: subfield curves

- If E is defined over \mathbb{F}_{p} we can take $R=\mathbb{Z}[\pi]$
- Let $\phi^{\prime}=\phi-\operatorname{Tr} \phi$ and consider

$$
\psi=\left(a \phi^{\prime}+b\right) \pi_{p}+c \phi^{\prime}+d
$$

- Let $\Delta=\operatorname{deg} \phi-\left(\frac{\operatorname{Tr} \phi}{2}\right)^{2}$. We want $\operatorname{deg} \psi=\left(a^{2} \Delta+b^{2}\right) p+\left(c^{2} \Delta+d^{2}\right)+(a d-b c) \operatorname{Tr}\left(\phi^{\prime} \pi_{p}\right)=N_{1}^{\prime} N_{2}$ with N_{1}^{\prime} small and smooth
- Heuristic analysis : when $N_{2} \approx N_{1} p$ we should be able to get $N_{1}^{\prime}=O(1)$, but I cannot solve the above equation

Computing isogenies with auxilliary information

- Let p be a prime. Let $N_{1}, N_{2} \in \mathbb{Z}$ coprime. Let E_{0} be a supersingular elliptic curve over $\mathbb{F}_{p^{2}}$. Let $\phi_{1}: E_{0} \rightarrow E_{1}$ be an isogeny of degree N_{1}.
- Let R_{0}, R_{1} be subrings of $\operatorname{End}\left(E_{0}\right)$, End $\left(E_{1}\right)$ respectively. Assume R_{0} contains more than scalar multiplications.
- Given $N_{1}, E_{1}, R_{0}, R_{1}$ and the image of ϕ_{1} on the whole N_{2} torsion, compute ϕ_{1}.

Computing isogenies with auxilliary information

- Let p be a prime. Let $N_{1}, N_{2} \in \mathbb{Z}$ coprime. Let E_{0} be a supersingular elliptic curve over $\mathbb{F}_{p^{2}}$. Let $\phi_{1}: E_{0} \rightarrow E_{1}$ be an isogeny of degree N_{1}.
- Let R_{0}, R_{1} be subrings of $\operatorname{End}\left(E_{0}\right)$, End $\left(E_{1}\right)$ respectively. Assume R_{0} contains more than scalar multiplications.
- Given $N_{1}, E_{1}, R_{0}, R_{1}$ and the image of ϕ_{1} on the whole N_{2} torsion, compute ϕ_{1}.
- Best previous algorithm : meet-in-the-middle in $\tilde{O}\left(\sqrt{N_{1}}\right)$

General idea

- For $\theta \in \operatorname{End}\left(E_{0}\right)$ consider $\phi=\phi_{1} \theta \hat{\phi}_{1} \in \operatorname{End}\left(E_{1}\right)$
- Evaluate ϕ on the N_{2} torsion
- Apply techniques from above on ϕ
- Compute $\operatorname{ker} \hat{\phi}_{1}=\operatorname{ker} \phi \cap E_{1}\left[N_{1}\right]$
- Deduce $\hat{\phi}_{1}$ and ϕ_{1}

Remarks

- Several authors have suggested to use $j\left(E_{0}\right)=1728$ for efficiency reasons. In this case $\operatorname{End}\left(E_{0}\right)$ is entirely known and moreover it contains a degree 1 non scalar element. Both aspects are useful in attacks.
- The paper develops two attacks but we expect variants and improvements to come.

Impact on Key Agreement Protocol

- For $j\left(E_{0}\right)=1728$ and when $N_{1} \approx p^{2}$ and $N_{2} \approx N_{1}^{4}$ this approach leads to polynomial time key recovery (heuristic analysis)
- Assuming only that $\operatorname{End}\left(E_{0}\right)$ has a small element, then if $\log N_{2} \approx\left(\log ^{2} N_{1}\right)$, a variant of the above strategy also leads to polynomial time key recovery (heuristic analysis)
- Parameters suggested by De Feo-Jao-Plût $N_{1} \approx N_{2} \approx \sqrt{p}$ are not affected so far

Outline

Motivation

Isogenies and Cryptographic Protocols

Hard and Easy Isogeny Problems

Computing Isogenies using Torsion Point Images

Conclusion

OXFORD

Conclusion

- Revealing images of torsion points helps the resolution of (at least some) isogeny problems
- Endomorphism ring computation \& pure isogeny problems are natural problems with some history but
- More classical and quantum cryptanalysis needed
- Beware of variants
- We can build some crypto protocols on isogeny problems (key exchange, public key encryption, signatures) with reasonable efficiency. Other protocols?

Thanks!

- Questions?

