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How quantum computers will undermine cryptography

Quantum computing has many benefits, but it could also undermine the
sraphic algorithms that underpin the World Wide Web, according to a

SA technical director
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Isogeny Problems

v

Recently proposed for post-quantum cryptography
Classical and quantum algorithms still exponential time
Some history, e.g. David Kohel's PhD thesis in 1996

Natural problems from a number theory point of view

v

v

v
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Isogenies

Let p be a prime. Up to isomorphism, any supersingular
elliptic curve is defined over [F .

An isogeny from a curve Eq is a morphism ¢ : Ey — E;
sending 0 to 0

In Weierstrass affine coordinates we can write

p(x)  wxy) )
V2(x,y) V3 (x,y)

where 1% only depends on x, and w/v® = ys(x)/t(x)
Isogeny degree is deg ¢ = max{deg ¢, deg ¢*}
Often we write £; = Ey/G where G = ker ¢

¢1E0—>Eli¢(xa}’):(
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Isogeny problems

» |sogeny problems with potential interest for cryptography
are about “computing” isogenies between two curves, or
some variant of this problem
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Isogeny problems

» |sogeny problems with potential interest for cryptography
are about “computing” isogenies between two curves, or
some variant of this problem

» For these problems to be “hard” these isogenies must
have “large” degree

» So representation as a rational map not efficient enough

» Can often assume degree is smooth hence can return
isogeny as a composition of low degree isogenies
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Isogeny problems

» |sogeny problems with potential interest for cryptography
are about “computing” isogenies between two curves, or
some variant of this problem

» For these problems to be “hard” these isogenies must
have “large” degree

» So representation as a rational map not efficient enough

» Can often assume degree is smooth hence can return
isogeny as a composition of low degree isogenies

» Attacker sometimes given extra information on isogenies
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Isogeny graphs

Over K the (-torsion E[(] (points of order dividing ¢)
is isomorphic to Z, x Z,

There are ¢ + 1 cyclic subgroups of order ¢; each one is
the kernel of a degree ¢ isogeny

(-isogeny graph : each vertex is a j-invariant over K,
each edge corresponds to one degree ¢ isogeny

Undirected grapAh ‘to every ¢ By — E» corresponds

a dual isogeny ¢ : E; — E; with ¢¢ = [deg ¢]

In supersingular case all j and isogenies defined over [F .
and graphs are Ramanujan (optimal expansion graphs)
Isogeny problems ~ finding paths in these graphs
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Hash function

v

v

v

v

H:{0,1}" — {0,1)}"
Collision resistance :
hard to find m, m’" such that H(m) = H(m')

Preimage resistance :
given h, hard to find m such that H(m) = h

Second preimage resistance :
given m, hard to find m’ such that H(m') = h

Popular ones use block cipher like compression functions
and Merkle-Damgard ; not based on maths problems
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Charles-Goren-Lauter hash function

Hash of the Future? =

Have you ever struggled to solve a maze? Then imagine trying to finda ~ 71% ey
path through a tangled, three-dimensional maze as large as the Milky = (0
Way. By incorporating such a maze into a hash function, Kristin D o
Lauter of Microsoft Research in Redmond, Washington, is betting g ™
that neither you nor anyone else will solve that problem.
Technically, Lauter’s maze is called an “expander «
graph” (see figure, right). Nodes in the graph corre- o
spond to elliptic curves, or equations of the form y? = o )
X +ax+ b. Each curve leads to three other curves by L] L) >
a mathematical relation, now called isogeny, that )
Pierre de Fermat discovered while trying to prove
his famous Last Theorem. -
To hash a digital file using an expander L 2 2
graph, you would convert the bits of data s
into directions: 0 would mean “turn right,” 2 n ~
1 would mean “turn left.” In the maze (&
illustrated here, after the initial step 1-2, m s
the blue path encodes the directions 1,0, 1, 1, 0, ¥
0,0, 0, 1, ending at point 24, which would be the
digital signature of the string 101100001. The red .
loop shows a collision of two paths, which would be (o [
practically impossible to find in the immense maze o 1,
envisioned by Lauter. 0 S W
Although her hash function (developed with colleagues o
Denis Charles and Eyal Goren) is provably secure, Lauter admits
that it is not yet fast enough to compete with iterative hash func- (2%, 1
tions. However, for applications in which speed is less of an issue—
for example, where the files to be hashed are relatively small—Lauter o
believes it might be a winner. -D.M. e C
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Properties

» Uniform output distribution for large enough messages

» Preimage problem for CGL hash function :
Let Ey and E; be two supersingular elliptic curves over
Fe with |Eo(F2)| = |E1(Fp2)|. Find e € N and an
isogeny of degree /¢ from Eq to E;.

» Collision problem for CGL hash function :
Let Eq be a supersingular elliptic curve over .. Find
e1, & € N, a supersingular elliptic curve E; and two
distinct isogenies (i.e. with distinct kernels) of degrees
respectively ¢t and (2 from Ej to E;.
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Key agreement

» Alice and Bob want to agree on a common secret key
» They only exchange public messages

» Eve can see all messages exchanged, yet she should not
be able to infer the secret key
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Diffie-Hellman key agreement

v

Choose g generating a cyclic group

v

Alice picks a random a and sends g?
Bob picks a random b and sends g

v

v

Alice computes (g?)? = g

v

Bob computes (g?)° = g

v

Eve cannot compute a, b or g?° from g2 and g°
(discrete logarithm, Diffie-Hellman problems)
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Isogeny-based Diffie-Hellman

» Choose a prime p, and Na, Ng € N with gcd(Na, Ng) =1
Choose Eq a supersingular curve over [F .

» Alice picks a cyclic subgroup Ga C Ep[N4] defining an
isogeny ¢4 : Eg — Ex = Eg/Ga and she sends E, to Bob

» Bob picks a cyclic subgroup Gg C Ey[Ng] defining an
isogeny ¢4 : Eg — Eg = Ey/Gg and he sends Eg to Alice

Exa = Ey/Ga s
" Eo/(Ga, Gg)
B

& Eg = Ey/Gg
» Shared key is Ey/(Ga, Gg) = Eg/¢p8(Ga) = Ea/da(GB)

Christophe Petit - Bordeaux - May 2017




Isogeny-based Diffie-Hellman (2)

» To compute the shared key Alice will need ¢g(Ga).
This is achieved as follows :
> Let GA = <aAPA +BAQA> where <PA, QA> = E()[NA]
and at least one of as, Ba coprime to Ny
» Bob reveals ¢g(Pa) and ¢g(Qa) in first round
» Alice computes ¢g(Ga) = (@app(Pa) + Bads(Qa))
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Isogeny-based Diffie-Hellman (2)

» To compute the shared key Alice will need ¢g(Ga).
This is achieved as follows :
> Let GA = <aAPA +BAQA> where <PA, QA> = E()[NA]
and at least one of as, Ba coprime to Ny
» Bob reveals ¢g(Pa) and ¢g(Qa) in first round
» Alice computes ¢g(Ga) = (@app(Pa) + Bads(Qa))

» Can compute ¢4 efficiently if Ny smooth

» Can represent torsion points efficiently if either
> Na =[] €5 with €5 bounded
» Nalp—1
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Supersingular key agreement protocol

Eo/(Ra, Rg)

¢A P
PA’ QA RA M B \
Pe, Qs RB \ /
Eo/(R

os( A)7¢B( Qa)
¢oB(Ra)

» Jao-De Feo chose N; = (5 and p = NaNgf + 1
» A priori safer to use arbitrary primes and N; ~ p?
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|dentification protocol / proof of knowledge

» Prover wants to prove knowledge of a secret to Verifier
without revealing it (can be used for authentication)
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|dentification protocol / proof of knowledge

» Prover wants to prove knowledge of a secret to Verifier
without revealing it (can be used for authentication)

» Security requirements :
» Correctness : if Prover knows the secret then
Prover can convince Verifier
» Soundness : if Prover convinces Verifier then
Prover must know the secret
» Zero-knowledge : nothing is leaked about the secret

ERSITY OF
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Jao-De Feo-Plit identification protocol

» Proof of knowledge of an isogeny ¢ between two given
curves Ey and E;

¢

Eo — &
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Jao-De Feo-Plit identification protocol

» Proof of knowledge of an isogeny ¢ between two given
curves Ey and E;

e F

(4 Y’

/
Ey — B
» 3-round protocol :

» Prover commits with E; and Ej
» Verifier challenges Prover with one bit b
» Prover reveals ¢ and ¢/ if b=0, and ¢’ if b=1

Christophe Petit - Bordeaux - May 2017



Public Key Encryption and Signatures

» Public Key Encryption ~ digital lock : everybody can
lock/encrypt but one needs private key to unlock/decrypt

» Diffie-Hellman-like key exchange protocol leads to
ElGamal-like public key encryption
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Public Key Encryption and Signatures

Public Key Encryption ~ digital lock : everybody can
lock/encrypt but one needs private key to unlock/decrypt

Diffie-Hellman-like key exchange protocol leads to
ElGamal-like public key encryption

Digital signatures are analog to real signatures

Identification protocols lead to digital signatures
using the Fiat-Shamir transform (or any alternative)
In [Galbraith-P-Silva 2017] we build an alternative
identification protocol and signature scheme

Christophe Petit - Bordeaux - May 2017



Outline

Hard and Easy Isogeny Problems
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Isogeny from kernel

» Given G = ker ¢ can compute ¢ with Vélu's formulae

¢(P)—(XP+ > (xere—xq), vt Y (YP+Q—}’Q))

QeG\{0} QeG\{0}

using O(#G) operations
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Isogeny from kernel

» Given G = ker ¢ can compute ¢ with Vélu's formulae
o(P) = (XP + Y (Pre—xq), yet Y. (Yrio— yo))
QReG\{0} QReG\{0}
using O(#G) operations

» If #G is composite then better to write ¢ as a
composition of prime degree isogenies

» If #G =[] (7 write G =[] G; with #G; = (7

Christophe Petit - Bordeaux - May 2017



Endomorphism ring computation

» Given an elliptic curve E defined over a finite field K,
compute the endomorphism ring of E
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Endomorphism ring computation

v

Given an elliptic curve E defined over a finite field K,
compute the endomorphism ring of E

v

We focus on the supersingular case so End(E) is
a maximal order in the quaternion algebra B,

v

Output = some efficient representation of basis elements

Problem considered by David Kohel in his PhD thesis
(Berkeley 1996)

v
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Kohel's algorithm for supersingular curves

» Fix a small /. Given a curve E, compute all its neighbors
in isogeny graph. Compute all neighbors of neighbors, etc,
until a loop is found, corresponding to an endomorphism

> Complexity O(,/p)
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Isogeny computation

» Given elliptic curves Ey, E; defined over a finite field K,
compute an isogeny ¢ : Eg — E;

Christophe Petit - Bordeaux - May 2017



Isogeny computation

Given elliptic curves Eg, E; defined over a finite field K,
compute an isogeny ¢ : Eg — E;

For the problem to be hard then deg ¢ must be large,
so ¢ cannot be returned as a rational map

Same hardness as endomorphism ring computation,

at least heuristically

May impose some conditions on the degree, for example
deg ¢ = (¢ for some e, with same hardness heuristically
Can be solved in O(,/p) with two trees from Ey and E;
in the isogeny graph

Christophe Petit - Bordeaux - May 2017



Deuring correspondence

» Deuring correspondence (1931) : bijection from
supersingular curves over F,, (up to Galois conjugacy)
to maximal orders in the quaternion algebra B, .,

(up to conjugation)

E — O ~ End(E)
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Deuring correspondence

» Deuring correspondence (1931) : bijection from
supersingular curves over F,, (up to Galois conjugacy)
to maximal orders in the quaternion algebra B, .,

(up to conjugation)

E — O =~ End(E)
» Under this correspondence translate isogeny ¢ : E; — E

into ideal /, both left ideal of O; and right ideal of O,
with degree ¢ = norm of /

Christophe Petit - Bordeaux - May 2017



Quaternion isogeny computation

» Input : two maximal orders Oy and O; in B, o

» Output : a Op-left ideal J = Iq with ¢-power norm, where
I'is a Op-left ideal and a O;-right ideal, and g € B}

» Following Deuring's correspondence this corresponds to
computing an isogeny ¢ : Eg — E; with power of ¢ degree
where End(Eq) =~ Op and End(E;) =~ Oy
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Quaternion isogeny computation

Input : two maximal orders Oy and O; in B, o

Output : a Og-left ideal J = Iq with ¢-power norm, where
I'is a Op-left ideal and a O;-right ideal, and g € B}

Following Deuring's correspondence this corresponds to
computing an isogeny ¢ : Eg — E; with power of ¢ degree
where End(Eq) =~ Op and End(E;) =~ Oy

ANTS 2014 heuristic algorithm (Kohel-Lauter-P-Tignol)
solves the problem with e = log, n(/) ~ L log p

Can be adapted to powersmooth norms

Christophe Petit - Bordeaux - May 2017



Explicit Deuring correspondence

» Given supersingular invariant, return corresponding order

= Endomorphism ring computation problem
— Believed to be hard
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Explicit Deuring correspondence

» Given supersingular invariant, return corresponding order

= Endomorphism ring computation problem
— Believed to be hard

» Given a maximal order, compute corresponding invariant

= Inverse endomorphism ring computation problem
— Heuristic polynomial time algorithm
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Explicit Deuring correspondence

» Given supersingular invariant, return corresponding order

= Endomorphism ring computation problem
— Believed to be hard

» Given a maximal order, compute corresponding invariant

= Inverse endomorphism ring computation problem
— Heuristic polynomial time algorithm

» Candidate one-way function !
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Special isogeny problems

» In Jao-De Feo-Pliit protocols special problems are used
1. A special prime p is chosen so that p = N1N>, +1
with N1 ~ N2 ~ \/ﬁ
2. There are ~ p/12 supersingular invariants but only
Ny =~ /p possible choices for E;
3. Extra information provided : compute ¢ : Eg — E;
of degree Ny knowing ¢(P) for all P € Ey[Ns]

» Point 2 improves tree-based attacks to O(p'/#)
» We now focus on Point 3

Christophe Petit - Bordeaux - May 2017



Outline

Computing Isogenies using Torsion Point Images
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Motivation

» Attack on Jao-De Feo-Plit protocol : compute an isogeny
o1 Eo — E; of degree N; given action of ¢; on Ey[/N;]

» How useful is this additional information ?
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Motivation

» Attack on Jao-De Feo-Plit protocol : compute an isogeny
o1 Eo — E; of degree N; given action of ¢; on Ey[/N;]

» How useful is this additional information ?
» If gcd(Ny, o) # 1 can recover (part of) ¢
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Motivation

» Attack on Jao-De Feo-Plit protocol : compute an isogeny
o1 Eo — E; of degree N; given action of ¢; on Ey[/N;]

» How useful is this additional information ?

» If gcd(Ny, o) # 1 can recover (part of) ¢

» Active attacks : replace ¢1(P2), ¢1(Q2) by well-chosen
points so that (part of) the secret is leaked in shared key
[Galbraith-P-Shani-Ti 2016 + others]
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Motivation

» Attack on Jao-De Feo-Plit protocol : compute an isogeny
o1 Eo — E; of degree N; given action of ¢; on Ey[/N;]

» How useful is this additional information ?
» If gcd(Ny, o) # 1 can recover (part of) ¢
» Active attacks : replace ¢1(P2), ¢1(Q2) by well-chosen
points so that (part of) the secret is leaked in shared key
[Galbraith-P-Shani-Ti 2016 + others]
» What about passive attacks (eavesdropping only) ?
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Warm-up : computing endomorphisms
with auxilliary information

» Let p be a prime and let E be a supersingular elliptic
curve defined over [F .. Let ¢ be a non scalar
endomorphism of E with smooth order N;. Let N, be a
smooth integer with gcd(N;, V) =1, and let P, Q be a
basis of E[N5].

» Let R be a subring of End(E) that is either easy to
compute, or given (for example, scalar multiplications).

» Given E, P, Q, ¢(P), #(Q), deg ¢, R, compute ¢.
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Warm-up : computing endomorphisms
with auxilliary information

Let p be a prime and let E be a supersingular elliptic
curve defined over [F .. Let ¢ be a non scalar
endomorphism of E with smooth order N;. Let N, be a
smooth integer with gcd(N;, V) =1, and let P, Q be a
basis of E[N5].

Let R be a subring of End(E) that is either easy to
compute, or given (for example, scalar multiplications).

Given E, P, Q, #(P), ¢(Q), deg ¢, R, compute ¢.

Best previous algorithm : meet-in-the-middle in O(v/Ny)
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Algorithm sketch (with R = Z)

» We knoquzS on the N torsion.
Deduce ¢ on the N, torsion and Tr(¢) if Ny > 2/Nj.
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Algorithm sketch (with R = Z)

» We know ¢ on the N, torsion.

Deduce ¢ on the N torsion and Tr(¢) if Ny > 2v/Nj.
» Consider ¢ := a¢p + b for a, b € Z.

Can evaluate v on the N, torsion.
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Algorithm sketch (with R = Z)

» We know ¢ on the N, torsion.

Deduce ¢ on the N torsion and Tr(¢) if Ny > 2v/Nj.
» Consider ¢ := a¢p + b for a, b € Z.

Can evaluate v on the N, torsion.
» Find a, b € Z such that

degv) = a®deg ¢ + b> + abTrp = N, N,
with Nj small and smooth. Write ¢ = ;¢ .
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Algorithm sketch (with R = Z)

» We know ¢ on the N, torsion.

Deduce ¢ on the N torsion and Tr(¢) if Ny > 2v/Nj.
» Consider ¢ := a¢p + b for a, b € Z.

Can evaluate v on the N, torsion.
» Find a, b € Z such that

degv) = a®deg ¢ + b> + abTrp = N, N,

with Nj small and smooth. Write ¢ = ;¢ .
» ldentify ker ¢y, from ¢(E[N,]) and deduce ), .
» Find ¢p; with a meet-in-the-middle strategy.
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Algorithm sketch (with R = Z)

» We know ¢ on the N, torsion.

Deduce ¢ on the N torsion and Tr(¢) if Ny > 2v/Nj.
» Consider ¢ := a¢p + b for a, b € Z.

Can evaluate v on the N, torsion.
» Find a, b € Z such that

degv) = a®deg ¢ + b> + abTrp = N, N,

with Nj small and smooth. Write ¢ = ;¢ .
» ldentify ker ¢y, from ¢(E[N,]) and deduce ), .
» Find ¢p; with a meet-in-the-middle strategy.

» Find ker ¢ by evaluating (¢ — b)/a on the N; torsion,
and deduce ¢.

Christophe Petit - Bordeaux - May 2017



Finding (a, b) and Complexity

» We have deg®) = a®deg ¢ + b?> + abTr¢
= (b+ a%f + a° (deggzﬁ — (%)2>
» We want deg i) = N,/Nj and Nj small and smooth
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Finding (a, b) and Complexity

v

We have deg1) = a®deg ¢ + b? + abTr¢
= (b+ a%f + a° (deggzﬁ — (%)2>
We want deg ) = N, N; and Nj small and smooth

v

v

Solutions to deg ¢ = 0 mod N, form a dimension 2 lattice

v

We compute a reduced basis, then search for a small
linear combination of short vectors until Nj smooth
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Finding (a, b) and Complexity

» We have deg®) = a®deg ¢ + b?> + abTr¢
= (b+ a%f + a° (deggzﬁ — (%)2>
» We want deg i) = N,/Nj and Nj small and smooth

v

Solutions to deg ¢ = 0 mod N, form a dimension 2 lattice

v

We compute a reduced basis, then search for a small
linear combination of short vectors until Nj smooth

v

Heuristic analysis shows we can expect Nj ~ /Nj.
Revealing ¢(E[N>]) leads to a near square root speedup.
(Some parameter restrictions apply.)

Christophe Petit - Bordeaux - May 2017



Open problem : subfield curves

» If E is defined over F, we can take R = Z|[r]
» Let ¢/ = ¢ — Tr¢ and consider

Y =(a¢ + b)m,+ c¢' +d
» Let A =degd — (Z2)*. We want
deg ) = (a*A+b%)p+(c*A+d?)+(ad—bc)Tr(¢'n,) = Nj Ny

with Nj small and smooth

IVERSITY OF
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Open problem : subfield curves

» If E is defined over F, we can take R = Z|[r]
» Let ¢/ = ¢ — Tr¢ and consider

Y = (a¢' + b)m, + c¢' + d
» Let A = deg¢ — (%)2 We want
deg) = (a*A+b%)p+(c2A+d?)+(ad—bc)Tr(¢'m,) = Nj N,
with Nj small and smooth

» Heuristic analysis : when N, ~ N;p we should be able to
get Nj = O(1),
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Christophe Petit - Bordeaux - May 2017



Open problem : subfield curves

» If E is defined over F, we can take R = Z|[r]
» Let ¢/ = ¢ — Tr¢ and consider

Y = (a¢' + b)m, + c¢' + d
» Let A = deg¢ — (%)2 We want
deg) = (a*A+b%)p+(c2A+d?)+(ad—bc)Tr(¢'m,) = Nj N,
with Nj small and smooth

» Heuristic analysis : when N, ~ N;p we should be able to
get Nj = O(1), but | cannot solve the above equation
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Computing isogenies with auxilliary information

» Let p be a prime. Let Ny, N, € Z coprime. Let Ey be a
supersingular elliptic curve over [F .. Let ¢1 : Eg — E; be
an isogeny of degree N;.

» Let Ry, Ry be subrings of End(Ep), End(E;) respectively.
Assume Ry contains more than scalar multiplications.

» Given N;, E;, Ry, Ry and the image of ¢; on the whole
N, torsion, compute ¢;.
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Computing isogenies with auxilliary information

» Let p be a prime. Let Ny, N, € Z coprime. Let Ey be a
supersingular elliptic curve over [F .. Let ¢1 : Eg — E; be
an isogeny of degree N;.

» Let Ry, Ry be subrings of End(Ep), End(E;) respectively.
Assume Ry contains more than scalar multiplications.

» Given N;, E;, Ry, Ry and the image of ¢; on the whole
N, torsion, compute ¢;.

> Best previous algorithm : meet-in-the-middle in O(y/NV;)
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General idea

v

For 6 € End(Ey) consider ¢ = ¢10¢ € End(E;)

Evaluate ¢ on the N, torsion

v

v

Apply techniques from above on ¢
Compute ker ¢y = ker ¢ N Ey[Ny]
Deduce qgl and ¢

v

v
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Remarks

» Several authors have suggested to use j(Ey) = 1728 for
efficiency reasons. In this case End(Ey) is entirely known
and moreover it contains a degree 1 non scalar element.
Both aspects are useful in attacks.

» The paper develops two attacks but we expect variants
and improvements to come.
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Impact on Key Agreement Protocol

» For j(Eg) = 1728 and when N; ~ p? and N, ~ Nj
this approach leads to polynomial time key recovery
(heuristic analysis)

» Assuming only that End(Ep) has a small element, then if
log N, ~ (log? Ny), a variant of the above strategy also
leads to polynomial time key recovery (heuristic analysis)

» Parameters suggested by De Feo-Jao-Plit Ny =~ N, ~ /p
are not affected so far

Christophe Petit - Bordeaux - May 2017




Outline

Conclusion
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Conclusion

» Revealing images of torsion points helps the resolution
of (at least some) isogeny problems
» Endomorphism ring computation & pure isogeny problems
are natural problems with some history but
» More classical and quantum cryptanalysis needed
» Beware of variants
» We can build some crypto protocols on isogeny problems
(key exchange, public key encryption, signatures) with
reasonable efficiency. Other protocols ?

Lo Christophe Petit - Bordeaux - May 2017
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Thanks'!

» Questions?
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