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This vertex represents an elliptic curve E0 over a finite field F

Another elliptic curve over F

This edge is an isogeny of 
degree 𝓵, a prime number

E0

E1

An isogeny is a morphism of finite 

kernel between two elliptic curves. 

The degree of an isogeny is the 

size of the kernel (our isogenies 

are separable…)
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Neighbours of E0 have more neighbours
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E0

Once all the possible neighbours have been reached, we obtain the connected graph of 𝓵-isogenies of E0
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E0

Disjoint isomorphic copies of a tree 

rooted on the cycle

This one is a typical example!

Un cycle
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Level 0, surface

Level 1

Level 2, floor(sometimes “isogeny tutu")
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ISOGENY GRAPHS OF ORDINARY ELLIPTIC CURVES

Why is this useful?
By inspecting solely the structure of the graph, one can infer 
that E0 is at “level 1” in 𝓵… which tells a lot about the 
endomorphism ring of E0!



APPLICATIONS

▸ Computing the endomorphism ring of an elliptic curve 
[Kohel, 1996], 

▸ Counting points [Fouquet et Morain, 2002], 

▸ Random self-reducibility of the discrete logarithm problem 
[Jao et al., 2005] (worst case to average case reduction) 

▸ Accelerating the CM method [Sutherland 2012], 

▸ Computing modular polynomials [Bröker et al., 2012]
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▸ These applications motivate the search for a generalisation 
to other abelian varieties…



GENERALISING TO ORDINARY ABELIAN VARIETIES…

Maybe we shouldn’t focus on (𝓵,𝓵)-isogenies? 
Maybe we do not look for the correct 
structures? 
Should we focus on subgraphs?
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ENDOMORPHISM RING AND ALGEBRA

▸ Let 𝓐 be an ordinary abelian variety of 
dimension g over a finite field F = 𝔽q.

▸ The endomorphisms of 𝓐 form a ring 
End(𝓐).

▸ The algebra K = End(𝓐) ⊗ ℚ is a number 
field of degree 2g (a CM-field).

▸ End(𝓐) is isomorphic to an order 𝓞 of K 
(i.e., a lattice of dimension 2g in K, that is 
also a subring).

K ⊃ 𝓞 ≅ End(𝓐)

K0

ℚ

2

g



THE CASE OF ELLIPTIC CURVES

▸ If 𝓐 = E is an elliptic curve, the 
dimension is g = 1. 

▸ K has a maximal order 𝓞K, the ring of 
integers of K. 

▸ Any order of K is of the form 
𝓞 = ℤ + f𝓞K, 

 for a positive integer f, the conductor.

K ⊃ 𝓞 ≅ End(E)

K0 = ℚ

2



THE CASE OF ELLIPTIC CURVES

End ≅ ℤ + f𝓞K 

End ≅ ℤ + ℓf𝓞K 

End ≅ ℤ + ℓ2f𝓞K 

The “levels” of the volcano of ℓ-isogenies tell how 
many times ℓ divises the conductor. Here, (f,ℓ) = 1.
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End ≅ ℤ + f𝓞K 

End ≅ ℤ + ℓf𝓞K 

End ≅ ℤ + ℓ2f𝓞K 

Only an ℓ-isogeny can change the valuation at ℓ of 
the conductor.

Descending 
𝓵-isogeny

Ascending 
𝓵-isogeny

Horizontal 
𝓵-isogeny
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the volcanic structures for elliptic curves. 

▸ Analog in dimension g > 1? For any field K0 and quadratic 
extension K/K0, we prove the following classification

Any order 𝓞 of K containing 𝓞K0 is of the form 
𝓞 = 𝓞K0 + 𝔣𝓞K  

for an ideal 𝔣 of 𝓞K0, the conductor of 𝓞.

We actually look at this result “localy” at a prime 𝓵, 
i.e., for the étale algebra K ⊗ ℚ𝓵 .
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▸ This is exactly 𝓞 = ℤ + f𝓞K when K0 = ℚ!

▸ When 𝓞 contains 𝓞K0, we say that 𝓞 has maximal real 
multiplication (RM).

▸ For K0 = ℚ, any order has maximal RM since 𝓞K0 = ℤ.

Any order 𝓞 of K containing 𝓞K0 is of the form 
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▸ For an elliptic curve, the conductor is an integer f, which 
decomposes as a product of prime numbers: we then look 
at ℓ-isogenies where ℓ is a prime number

▸ For g > 1 and maximal RM, the conductor is an ideal 𝔣 of 
𝓞K0, and decomposes into prime ideals…

▸ Notion of 𝖑-isogenies, where 𝖑 is a prime ideal of 𝓞K0?

An 𝖑-isogeny from 𝓐 is an isogeny whose kernel is a cyclic 
sub-𝓞K0-module of 𝓐[𝖑].

𝖑

Only an 𝖑-isogeny can change the valuation at 𝖑 of the conductor.
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𝓞K0 above ℓ, is the graph of 𝖑-isogenies a volcano?
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VOLCANOES AGAIN?

If 𝖑 is not principal? The graph is oriented!

End ≅ 𝓞K0 + 𝔣𝓞K

End ≅ 𝓞K0 + 𝖑𝔣𝓞K

End ≅ 𝓞K0 + 𝖑2𝔣𝓞K

End ≅ 𝓞K0 + 𝖑3𝔣𝓞K



VOLCANOES AGAIN?

If 𝓞K has complex units ? Multiplicities appear

End ≅ 𝓞K0 + 𝔣𝓞K

End ≅ 𝓞K0 + 𝖑𝔣𝓞K

End ≅ 𝓞K0 + 𝖑2𝔣𝓞K

5

For instance, K = ℚ(ζ5), K0 = ℚ(ζ5 + ζ5  ), and 𝖑 = 2𝓞K0.-1



(ℓ,ℓ)-ISOGENIES
IN DIMENSION 2



(ℓ,ℓ)-ISOGENIES

▸ Let 𝓐 be a principally polarised, ordinary abelian surface. 

▸ An (ℓ,ℓ)-isogeny is an isogeny 𝓐 → 𝓑 whose kernel is a 
maximal isotropic subgroup of 𝓐[ℓ] for the Weil pairing. 

▸ (ℓ,ℓ)-isogenies are easier to compute! Much more efficient 
than 𝖑-isogenies…
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(ℓ,ℓ)-ISOGENIES

We show that (ℓ,ℓ)-isogenies preserving the maximal RM are 
exactly:

▸ The 𝖑-isogenies if ℓ is inert in K0 (i.e., 𝖑 = ℓ𝓞K0)

▸ The compositions of an 𝖑1-isogeny with an 𝖑2-isogeny if ℓ 
splits or ramifies as ℓ𝓞K0 = 𝖑1𝖑2.
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WHERE TO GO FROM THERE?

▸ We described the structure of graphs of (ℓ,ℓ)-isogenies 
preserving the maximal RM. 

▸ It is also interesting to look at (ℓ,ℓ)-isogenies changing the 
RM. We can describe this graph locally. 

▸ In particular, if the RM is not maximal, we show that there is 
an (ℓ,ℓ)-isogeny increasing it. 

▸ A first application: these results allow to describe an 
algorithm finding a path of (ℓ,ℓ)-isogenies to a variety with 
maximal endomorphism ring.



ℓ-ADIC LATTICES AND 
COMPLEX 
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Kernels of isogeniesLattices in an 𝓵-adic vector space

▸ There is a natural isomorphism f : V/T ≅ 𝓐[ℓ∞].

L               ⟼               f(L/T)
f-1(G) + T        ⟻                  G
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▸ End(𝓐) acts on T. Actually, End(𝓐) ⊗ ℤℓ acts on T.

▸ Kℓ = End(𝓐) ⊗ ℚℓ acts on V (we have Kℓ = K ⊗ ℚℓ where K is 
the endomorphism algebra of 𝓐, a CM-field)

▸ Given a lattice L in V containing T, the set of elements of Kℓ 
preserving L is an order in Kℓ, denoted 𝓞(L).
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▸ We can study isogenies and their relation to 
endomorphism rings by looking at lattices in the ℓ-adic 
vector space V.

COMPLEX MULTIPLICATION ON THE TATE MODULE

{ lattices in V containing T } ⟷ { finite subgroups of 𝓐[ℓ∞] }

L               ⟷          G

𝓞(L)               ≅     End(𝓐/G) ⊗ ℤℓ

Kernels of isogeniesLattices in an 𝓵-adic vector space

isogeny 𝓐 → 𝓐/G



ℓ-ADIC LATTICES 
AND 𝖑-ISOGENIES



LATTICES AND   -ISOGENIES

{ lattices in V containing T } ⟷ { finite subgroups of 𝓐[ℓ∞] }

𝖑



LATTICES AND   -ISOGENIES

{ lattices in V containing T } ⟷ { finite subgroups of 𝓐[ℓ∞] }

⊂

{ kernels of 𝖑-isogenies }

𝖑



LATTICES AND   -ISOGENIES

{ lattices in V containing T } ⟷ { finite subgroups of 𝓐[ℓ∞] }

⊂

{ kernels of 𝖑-isogenies }⟷?

𝖑



LATTICES AND   -ISOGENIES

{ lattices in V containing T } ⟷ { finite subgroups of 𝓐[ℓ∞] }

⊂

{ kernels of 𝖑-isogenies }⟷?
{ cyclic sub-𝓞K0-modules of 𝓐[𝖑] }

=

𝖑



LATTICES AND   -ISOGENIES

{ lattices in V containing T } ⟷ { finite subgroups of 𝓐[ℓ∞] }

⊂

{ kernels of 𝖑-isogenies }⟷?
{ cyclic sub-𝓞K0-modules of 𝓐[𝖑] }

=

{ cyclic sub-𝓞K0/𝖑-modules of 𝓐[𝖑] }
=

𝖑



LATTICES AND   -ISOGENIES

{ lattices in V containing T } ⟷ { finite subgroups of 𝓐[ℓ∞] }

⊂

{ kernels of 𝖑-isogenies }⟷?
{ cyclic sub-𝓞K0-modules of 𝓐[𝖑] }

=

{ cyclic sub-𝓞K0/𝖑-modules of 𝓐[𝖑] }
=

F = 𝓞K0/𝖑 is a finite field

=
{ rank 1 sub-F-vector spaces of 𝓐[𝖑] }

𝖑



{ lattices in V containing T } ⟷ { finite subgroups of 𝓐[ℓ∞] }

⊂

{ kernels of 𝖑-isogenies }⟷

{ cyclic sub-𝓞K0-modules of 𝓐[𝖑] }

{ cyclic sub-𝓞K0/𝖑-modules of 𝓐[𝖑] }

F = 𝓞K0/𝖑 is a finite field

=

=

=
{ rank 1 sub-F-vector spaces of 𝓐[𝖑] }

⊂

}lattices L such that T ⊂ L 
and L/T is a sub-F-vector 
space of rank 1 of 𝖑-1T/T{

LATTICES AND   -ISOGENIES𝖑



{ lattices in V containing T } ⟷ { finite subgroups of 𝓐[ℓ∞] }

⊂

{ kernels of 𝖑-isogenies }⟷

{ cyclic sub-𝓞K0-modules of 𝓐[𝖑] }

{ cyclic sub-𝓞K0/𝖑-modules of 𝓐[𝖑] }

F = 𝓞K0/𝖑 is a finite field

=

=

=
{ rank 1 sub-F-vector spaces of 𝓐[𝖑] }

⊂

}lattices L such that T ⊂ L 
and L/T is a sub-F-vector 
space of rank 1 of 𝖑-1T/T{

⟷

ℙ1(T/𝖑T)

LATTICES AND   -ISOGENIES𝖑



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(T/𝖑T)



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(T/𝖑T)

▸ Suppose 𝓞 = 𝓞(T) has maximal RM (i.e., 𝓞K0 ⊗ ℤℓ ⊂ 𝓞). It is 
Gorenstein so T is a rank 1 free 𝓞-module.



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(T/𝖑T)

ℙ1(𝓞/𝖑𝓞)
⟷

▸ Suppose 𝓞 = 𝓞(T) has maximal RM (i.e., 𝓞K0 ⊗ ℤℓ ⊂ 𝓞). It is 
Gorenstein so T is a rank 1 free 𝓞-module.



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(T/𝖑T)

ℙ1(𝓞/𝖑𝓞)
⟷

▸ Suppose 𝓞 = 𝓞(T) has maximal RM (i.e., 𝓞K0 ⊗ ℤℓ ⊂ 𝓞). It is 
Gorenstein so T is a rank 1 free 𝓞-module.

▸ 𝓞× = (End(𝓐) ⊗ ℤℓ)× acts on ℙ1(𝓞/𝖑𝓞), and elements that 
are not fixed by this action are descending 𝖑-isogenies.



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(𝓞/𝖑𝓞)



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(𝓞/𝖑𝓞)

▸ Let 𝔣 be the conductor of 𝓞. Then, 𝓞 = 𝓞K0 ⊗ ℤℓ + 𝔣(𝓞K ⊗ ℤℓ).



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(𝓞/𝖑𝓞)

▸ Let 𝔣 be the conductor of 𝓞. Then, 𝓞 = 𝓞K0 ⊗ ℤℓ + 𝔣(𝓞K ⊗ ℤℓ).

▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(𝓞/𝖑𝓞)

▸ Let 𝔣 be the conductor of 𝓞. Then, 𝓞 = 𝓞K0 ⊗ ℤℓ + 𝔣(𝓞K ⊗ ℤℓ).

▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞,



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(𝓞/𝖑𝓞)

▸ Let 𝔣 be the conductor of 𝓞. Then, 𝓞 = 𝓞K0 ⊗ ℤℓ + 𝔣(𝓞K ⊗ ℤℓ).

▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞,

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2,



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(𝓞/𝖑𝓞)

▸ Let 𝔣 be the conductor of 𝓞. Then, 𝓞 = 𝓞K0 ⊗ ℤℓ + 𝔣(𝓞K ⊗ ℤℓ).

▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞,

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2,

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(𝓞/𝖑𝓞)

▸ Let 𝔣 be the conductor of 𝓞. Then, 𝓞 = 𝓞K0 ⊗ ℤℓ + 𝔣(𝓞K ⊗ ℤℓ).

▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞,

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2,

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.

All the other (non-fixed) elements give descending isogenies



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(𝓞/𝖑𝓞)

▸ Let 𝔣 be the conductor of 𝓞. Then, 𝓞 = 𝓞K0 ⊗ ℤℓ + 𝔣(𝓞K ⊗ ℤℓ).

▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞,

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2,

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.

the surface

All the other (non-fixed) elements give descending isogenies



FINDING FIXED POINTS

{ kernels of 𝖑-isogenies }⟷ℙ1(𝓞/𝖑𝓞)

▸ Let 𝔣 be the conductor of 𝓞. Then, 𝓞 = 𝓞K0 ⊗ ℤℓ + 𝔣(𝓞K ⊗ ℤℓ).

▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞,

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2,

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.

Is this isogeny ascending?

the surface

All the other (non-fixed) elements give descending isogenies



FINDING FIXED POINTS
▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞, 

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2, 

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.

the surface



FINDING FIXED POINTS
▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞, 

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2, 

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.

the surface

}lattices L such that T ⊂ L 
and L/T is a sub-F-vector 
space of rank 1 of 𝖑-1T/T{⟷ℙ1(𝓞/𝖑𝓞)



FINDING FIXED POINTS
▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞, 

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2, 

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.

the surface

}lattices L such that T ⊂ L 
and L/T is a sub-F-vector 
space of rank 1 of 𝖑-1T/T{⟷ℙ1(𝓞/𝖑𝓞)

𝖑𝓞’/𝖑𝓞



FINDING FIXED POINTS
▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞, 

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2, 

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.

the surface

}lattices L such that T ⊂ L 
and L/T is a sub-F-vector 
space of rank 1 of 𝖑-1T/T{⟷ℙ1(𝓞/𝖑𝓞)

𝖑𝓞’/𝖑𝓞 ⟷ 𝖑𝓞’T



FINDING FIXED POINTS
▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞, 

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2, 

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.

the surface

}lattices L such that T ⊂ L 
and L/T is a sub-F-vector 
space of rank 1 of 𝖑-1T/T{⟷ℙ1(𝓞/𝖑𝓞)

𝖑𝓞’/𝖑𝓞 ⟷ 𝖑𝓞’T
𝓞(𝖑𝓞’T) = 𝓞’



FINDING FIXED POINTS
▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞, 

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2, 

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.

the surface

}lattices L such that T ⊂ L 
and L/T is a sub-F-vector 
space of rank 1 of 𝖑-1T/T{⟷ℙ1(𝓞/𝖑𝓞)

𝖑𝓞’/𝖑𝓞

⟷ kernels of 
𝖑-isogenies{ }

⟷ 𝖑𝓞’T
𝓞(𝖑𝓞’T) = 𝓞’



FINDING FIXED POINTS
▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞, 

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2, 

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.

the surface

}lattices L such that T ⊂ L 
and L/T is a sub-F-vector 
space of rank 1 of 𝖑-1T/T{⟷ℙ1(𝓞/𝖑𝓞)

𝖑𝓞’/𝖑𝓞

⟷ kernels of 
𝖑-isogenies{ }

⟷ 𝖑𝓞’T G
𝓞(𝖑𝓞’T) = 𝓞’

⟷



FINDING FIXED POINTS
▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞, 

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2, 

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.

the surface

}lattices L such that T ⊂ L 
and L/T is a sub-F-vector 
space of rank 1 of 𝖑-1T/T{⟷ℙ1(𝓞/𝖑𝓞)

𝖑𝓞’/𝖑𝓞

⟷ kernels of 
𝖑-isogenies{ }

⟷ 𝖑𝓞’T G
𝓞(𝖑𝓞’T) = 𝓞’ End(𝓐/G) ⊗ ℤℓ ≅ 𝓞’⟹

⟷



FINDING FIXED POINTS
▸ The action of 𝓞× on ℙ1(𝓞/𝖑𝓞) has the following fixed points:

• Ø                         if 𝖑 ∤ 𝔣 and 𝖑 is inert in 𝓞, 

• {𝕷1/𝖑𝓞, 𝕷2/𝖑𝓞}  if 𝖑 ∤ 𝔣 and 𝖑 splits/ramifies as 𝖑𝓞= 𝕷1𝕷2, 

• {𝖑𝓞’/𝖑𝓞}             if 𝖑 ∣ 𝔣, with 𝓞’ the order of conductor 𝖑-1𝔣.

the surface

}lattices L such that T ⊂ L 
and L/T is a sub-F-vector 
space of rank 1 of 𝖑-1T/T{⟷ℙ1(𝓞/𝖑𝓞)

𝖑𝓞’/𝖑𝓞

⟷ kernels of 
𝖑-isogenies{ }

⟷ 𝖑𝓞’T G
𝓞(𝖑𝓞’T) = 𝓞’ End(𝓐/G) ⊗ ℤℓ ≅ 𝓞’⟹

the corresponding 
isogeny is ascending

⟷



VOLCANOES ALREADY?

For any vertex, we know how many outgoing edges are ascending, 
descending or horizontal… But this does not imply “volcano”

Is this enough?



VOLCANOES ALREADY?

For any vertex, we know how many outgoing edges are ascending, 
descending or horizontal… But this does not imply “volcano”

Is this enough?

End ≅ 𝓞K0 + 𝔣𝓞K

End ≅ 𝓞K0 + 𝖑𝔣𝓞K

End ≅ 𝓞K0 + 𝖑2𝔣𝓞K



VOLCANOES ALREADY?

Why not this?

For any vertex, we know how many outgoing edges are ascending, 
descending or horizontal… But this does not imply “volcano”

Is this enough?



VOLCANOES ALREADY?

For any vertex, we know how many outgoing edges are ascending, 
descending or horizontal… But this does not imply “volcano”

Is this enough?

Or this?



VOLCANOES ALREADY?

What about this?

For any vertex, we know how many outgoing edges are ascending, 
descending or horizontal… But this does not imply “volcano”

Is this enough?
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MULTIPLICITIES

▸ Suppose there is a descending 𝖑-isogeny 𝓐 ⟶ 𝓑.

▸ Then, there are [End(𝓐)× : End(𝓑)×] distinct kernels of        
𝖑-isogeny 𝓐 ⟶ 𝓑.

𝓐

𝓑

[End(𝓐)× : End(𝓑)×]

▸ The index [End(𝓐)× : End(𝓑)×] is always 1 if all the units of 
K are totally real (it is the case of any quartic K ≠ ℚ(ζ5))

1
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COUNTING VERTICES AND CONCLUDING

▸ Last ingredient: we can count the number of vertices on 
each level using the class number formula.

▸ Putting all this together, we obtain a precise description of 
the isogeny graphs.

▸ They are volcanoes exactly when K has no complex units 
(no multiplicities on the edges) and 𝖑 is principal (the edges 
are undirected).
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