Kummer theory for finite fields

Jean-Marc Couveignes

Institut de Mathématiques de Bordeaux
Workshop FAST, September 2017

The linear sieve

Algorithm for computing discrete logarithms in \mathbb{F}_{q} with $q=p^{d}$. $\mathbb{F}_{q}=\mathbb{F}_{p}[X] / A(X)$ with $A(X) \in \mathbb{F}_{p}[X]$
$A(X)$ unitary, irreducible, degree d.
Set $x=X \bmod A(X)$.
For every $0 \leq n \leq d-1$ set

$$
L_{n}=\mathbb{F}_{p} \oplus x \mathbb{F}_{p} \oplus \cdots \oplus x^{n} \mathbb{F}_{p} \subset \mathbb{F}_{q}
$$

So $L_{0}=\mathbb{F}_{p} \subset L_{1} \subset \ldots \subset L_{d-1}=\mathbb{F}_{q}$ and
$L_{a} \times L_{b} \subset L_{a+b}$ if $a+b \leq n-1$.
Fix κ.
Look for multiplicative relations between elements in L_{κ}.
For example if $\kappa=1$:

$$
\begin{equation*}
\prod_{1 \leq i \leq I}\left(a_{i}+b_{i} x\right)^{e_{i}}=1 \in \mathbb{F}_{q} \tag{1}
\end{equation*}
$$

with a_{i} and b_{i} in \mathbb{F}_{p}.

Finding relations

Once found enough relations we have a basis of the \mathbb{Z}-module of relations between elements in L_{κ}.
How do we find relations like 1 ?
Assume again $\kappa=1$.
Pick random triples (a_{i}, b_{i}, e_{i}) and compute the residue modulo $A(X)$ of $\prod_{i}\left(a_{i}+b_{i} X\right)^{e_{i}}$:

$$
r(X) \equiv \prod_{i}\left(a_{i}+b_{i} X\right)^{e_{i}} \bmod A(X)
$$

with $\operatorname{deg}(r(X)) \leq d-1$.
Hope $r(X)$ splits as $r(X)=\prod_{j}\left(u_{j}+v_{j} X\right)^{f_{j}}$.
We get the relation

$$
\prod_{i}\left(a_{i}+b_{i} x\right)^{e_{i}} \prod_{j}\left(u_{j}+v_{j} x\right)^{-f_{j}}=1
$$

L_{κ} is called the smoothness base.

A remark by Joux and Lercier

Recall $x=X \bmod A(X)$.
Assume there is an automorphism \mathfrak{a} of \mathbb{F}_{q} such that $\mathfrak{a}(x)=u x+v$ avec $u, v \in \mathbb{F}_{p}$,
Letting \mathfrak{a} act on equation 1 we obtain another relation of the same type :

$$
\begin{equation*}
\prod_{1 \leq i \leq I}\left(a_{i}+b_{i}(u x+v)\right)^{e_{i}}=1 \in \mathbb{F}_{q} \tag{2}
\end{equation*}
$$

Indeed \mathfrak{a} acts not only on equations but also on factors $a_{i}+b_{i} x$. Assuming $\mathfrak{a}=\phi^{\alpha}$

$$
\begin{equation*}
\mathfrak{a}(x)=x^{p^{\alpha}}=u x+v \in \mathbb{F}_{q} \tag{3}
\end{equation*}
$$

Remove $u x+v$ out of the smoothness base and replace it in every relation by $x^{p^{\alpha}}$.
Divide the size of the smoothness base by the order of the group generated by \mathfrak{a} (at most d).

Degree maps

Strategy : find smoothness bases that are Galois invariant.
In the above case, define the degree of $z=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$ to be k if $0 \leq k<d$ and $a_{k} \neq 0$.
Smallest k s.t. $z \in L_{k}$.

- $\operatorname{deg}(z \times t) \leq \operatorname{deg}(z)+\operatorname{deg}(t)$,
- there are p^{n} elements with degree $<n$ for $n \leq d$,
- there is an algorithm that factors certain elements in $L_{d-1}=\mathbb{F}_{q}$ as products of elements with smaller degree. There is a significant proportion of such smooth elements.

We look for such degree functions that are Galois invariant.

An example

This example is given by Joux et Lercier :
Take $p=43$ and $d=6$ so $q=43^{6}$ and let $A(X)=X^{6}-3$ which is irreducible in $\mathbb{F}_{43}[X]$.
So $\mathbb{F}_{q}=\mathbb{F}_{43}[X] / X^{6}-3$.
Since $p=43$ is congruent to 1 modulo $d=6$ we have

$$
\phi(x)=x^{43}=\left(x^{6}\right)^{7} \times x=3^{7} x=\zeta_{6} x
$$

with $\zeta_{6}=3^{7}=37 \bmod 43$.
This is Kummer theory. Similar examples are produced by Artin-Schreier theory. What are the limitations of these constructions?

Kummer theory

Classify cyclic degree d extensions of K with characteristic p prime to d containing a primitive d-th root of unity.
Embed K in a Galois closure $\overline{\mathrm{K}}$.
Let H be a subgroup of \mathbf{K}^{*} containing $\left(\mathbf{K}^{*}\right)^{d}$.
Set $\mathbf{L}=K\left(H^{\frac{1}{d}}\right)$.
One associates to every \mathfrak{a} in $\operatorname{Gal}\left(\mathbb{K}\left(H^{\frac{1}{d}}\right) / \mathbf{K}\right)$ an homomorphism $\kappa(\mathfrak{a})$ from $H /\left(\mathbf{K}^{*}\right)^{d}$ to μ_{d}

$$
\kappa(\mathfrak{a}): \theta \mapsto \frac{\mathfrak{a}\left(\theta^{\frac{1}{d}}\right)}{\theta^{\frac{1}{d}}}
$$

The map $\mathfrak{a} \mapsto \kappa(\mathfrak{a})$ is an isomorphism from $\operatorname{Gal}\left(\mathrm{K}\left(H^{\frac{1}{d}}\right) / \mathrm{K}\right)$ to $\operatorname{Hom}\left(H /\left(\mathbf{K}^{*}\right)^{d}, \mu_{d}\right)$.
Classifies abelian extensions of K with exponent dividing d.

Kummer theory of finite fields

If $\mathrm{K}=\mathbb{F}_{q}$ then any subgroup H of K^{*} is cyclic. We must assume $d \mid q-1$ and set $q-1=m d$.
We take $H=\mathbf{K}^{*}$ so $\mathrm{K}^{*} /\left(\mathrm{K}^{*}\right)^{d}$ is cyclic with order d corresponding to the unique degree d extension of K :
Let r be a generator of \mathbf{K}^{*} and

$$
s=r^{\frac{1}{d}}
$$

Set $\mathbf{L}=\mathrm{K}(s)$. The Galois group is generated by the Frobenius ϕ and $\phi(s)=s^{q}$ so

$$
\kappa(\phi)(r)=\frac{\phi(s)}{s}=s^{q-1}=\zeta=r^{m}
$$

The map $r \mapsto \zeta$ from $\mathbf{K}^{*} /\left(\mathbf{K}^{*}\right)^{d}$ to μ_{d} is exponentiation by m.

Artin-Schreier theory

Classifies degree p extensions of K . Here the map $X \mapsto X^{d}$ is replaced by $X \mapsto X^{p}-X=\wp(X)$.
One adds to K the roots of $X^{p}-X=a$.
Let H be a subgroup of $(\mathbf{K},+)$ containing $\wp(\mathbf{K})$ and set $\mathbf{L}=\mathbf{K}\left(\wp^{-1}(H)\right)$.
To every \mathfrak{a} in $\operatorname{Gal}(\mathbf{L} / \mathbf{K})$ one associates an homomorphism $\kappa(\mathfrak{a})$ from $H / \wp(\mathrm{K})$ to $\left(\mathbb{F}_{p},+\right)$:

$$
\kappa(\mathfrak{a}): \theta \mapsto \mathfrak{a}\left(\wp^{-1}(\theta)\right)-\wp^{-1}(\theta) .
$$

The map $\mathfrak{a} \mapsto \kappa(\mathfrak{a})$ is an isomorphism from the Galois group $\operatorname{Gal}(\mathrm{L} / \mathrm{K})$ to $\operatorname{Hom}\left(H / \wp(\mathbf{K}), \mathbb{F}_{p}\right)$.

Artin-Schreier for finite fields

Assume $\mathrm{K}=\mathbb{F}_{q}$ with $q=p^{f}$.
The kernel of $\wp: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is \mathbb{F}_{p} and the quotient $\mathbb{F}_{q} / \wp\left(\mathbb{F}_{q}\right)$ has order p.
The unique extension \mathbf{L} of degree p of \mathbb{F}_{q} is generated by $b=\wp^{-1}(a)$ with $a \in \mathbb{F}_{q}-\wp\left(\mathbb{F}_{q}\right)$.
$\phi(b)-b$ is in \mathbb{F}_{p} and the map $a \mapsto \phi(b)-b$ is an isomorphism from $\mathrm{K} / \wp(\mathrm{K})$ to \mathbb{F}_{p}.
More explicitly $\phi(b)=b^{q}$ and
$\phi(b)-b=b^{q}-b=\left(b^{p}\right)^{p^{f-1}}-b=(b+a)^{p^{f-1}}-b$ since
$\wp(b)=b^{p}-b=a$.
So $b^{p^{f}}-b=b^{p^{f-1}}-b+a^{p^{f-1}}$ and iterating we obtain

$$
\phi(b)-b=b^{p^{f}}-b=a+a^{p}+a^{p^{2}}+\cdots+a^{p^{f-1}} .
$$

So the isomorphism from $\mathrm{K} / \wp(\mathrm{K})$ to \mathbb{F}_{p} is the absolute trace.

Invariant flags of linear spaces

Kummer: $\mathbf{L}=\mathbf{K}[x]$ with $x^{d}=r$
$L_{k}=\mathbf{K} \oplus \mathbf{K} x \oplus \cdots \oplus \mathbf{K} x^{k}$ is Galois invariant since $\mathfrak{a}(x)=\zeta x$ and $\zeta \in \mathrm{K}$.
We have a Galois invariant flag
$\mathrm{K}=L_{0} \subset L_{1} \subset \cdots \subset L_{d-1}=\mathbf{L}$
of vector spaces.
Artin-Schreier: $\mathbf{L}=\mathrm{K}[x]$ with $x^{p}-x=a$ and $\mathfrak{a}(x)=x+c$ with
$c \in \mathrm{~K}$ so $\mathfrak{a}\left(x^{k}\right)=(x+c)^{k} \in L_{k}$.
This time the Galois action is triangular rather than diagonal. Same phenomenon for Witt-Artin-Schreier extensions.
In both cases we have a Galois invariant degree function.

Invariant flags of linear spaces

Which cyclic extensions L/K allow such a Galois invariant flag of vector spaces?
Let C be the (cyclic) Galois group and d its order.
Assume d is prime to p. Let ϕ be a generator of C. Let $\left(w, \phi(w), \phi^{2}(w), \ldots, \phi^{d-1}(w)\right)$ be a normal K-base of \mathbf{L}.
For every irreducible factor $f \in \mathbf{K}[X]$ of $X^{d}-1$, call $V_{f} \subset \mathbf{L}$ the associated characteristic subspace in \mathbf{L}.
Every Galois invariant K-linear space in \mathbf{L} is a direct sum of such characteristic spaces.
If a complete Galois invariant flag exists

$$
\mathbf{K}=L_{0} \subset L_{1} \subset \cdots \subset L_{d-1}=\mathbf{L}
$$

with L_{k} of dimension k, then every f must have degree 1 . So $X^{d}-1$ splits on K and we are in the Kummer case.

Specializing isogenies between algebraic groups

Le G / K be a commutative algebraic group over a perfect field and $T \subset \mathrm{G}(\mathrm{K})$ a finite subgroup and

$$
I: \mathbf{G} \rightarrow \mathbf{H}
$$

the quotient by T.
Set $d=\# T=\operatorname{deg}(I)$.
Assume there is a K -rational point a in H such that $I^{-1}(a)$ is irreducible.
Any $b \in \mathbf{G}\left(\overline{\mathbb{F}}_{p}\right)$ such that $I(b)=a$ defines a degree d cyclic extension $\mathbf{L}=\mathbf{K}(b)$ of \mathbf{K}. Indeed we have a non-degenerate pairing

$$
<,>: H(\mathrm{~K}) / I(G(\mathrm{~K})) \times \operatorname{Gal}\left(I^{-1}(H(\mathrm{~K}))\right) \rightarrow T
$$

If $a \in H(\mathrm{~K})$ take $b \in I^{-1}(a)$ and set $\langle a, \mathfrak{a}\rangle=\mathfrak{a}(b)-b$.

Geometric automorphisms

Automorphisms of $\mathrm{K}(b) / \mathrm{K}$ admit a geometric description. They act by translation.
Let ϕ be a generator of $\operatorname{Gal}(\mathbf{K}(b) / \mathbf{K})$. There is a $t \in T$ such that

$$
\phi(b)=b \oplus_{\mathbf{G}} t
$$

Kummer: $\mathbf{G}=\mathbf{H}=\mathbf{G}_{\mathrm{m}}$ and $I=[d]$.
See $\mathbf{G} \subset \mathbb{A}^{1}$ with z-coordinate and $z\left(0_{\mathbf{G}}\right)=1$ and $z\left(P_{1} \oplus \mathbf{G}_{\mathrm{m}} P_{2}\right)=z\left(P_{1}\right) \times z\left(P_{2}\right), z(I(P))=z(P)^{d}, z(t)=\zeta$, $z\left(b \oplus_{\mathbf{G}_{\mathrm{m}}} t\right)=\zeta \times z(b)$.
Artin-Schreier: $\mathbf{G}=\mathbf{H}=\mathbf{G}_{\mathrm{a}}$ and $I=\wp$
See $\mathbf{G}_{\mathrm{a}}=\mathbb{A}^{1}$ with z-coordinate $z\left(0_{\mathbf{G}}\right)=0$ and
$z\left(P_{1} \oplus_{\mathbf{G}_{\mathrm{a}}} P_{2}\right)=z\left(P_{1}\right)+z\left(P_{2}\right), z(\wp(P))=z(P)^{p}-z(P)$,
$z\left(P \oplus_{\mathbf{G}_{a}} t\right)=z(P)+c$ where $c=z(t) \in \mathbb{F}_{p}$.

A different example

We first take \mathbf{G} to be the Lucas torus. Assume p is odd.
Let D be a non-zero element in K.
Let \mathbb{P}^{1} be the projective line with homogeneous coordinates $[U, V$] and affine coordinate $u=\frac{U}{V}$.
$\mathbf{G} \subset \mathbb{P}^{1}$ is the open subset with inequation

$$
U^{2}-D V^{2} \neq 0
$$

$u\left(0_{\mathbf{G}}\right)=\infty$ and $u\left(P_{1} \oplus_{\mathbf{G}} P_{2}\right)=\frac{u\left(P_{1}\right) u\left(P_{2}\right)+D}{u\left(P_{1}\right)+u\left(P_{2}\right)}$ and $u\left(\ominus_{\mathbf{G}} P_{1}\right)=-u\left(P_{1}\right)$.
Assume $\mathrm{K}=\mathbb{F}_{q}$ and D is not a square in \mathbb{F}_{q}.
$\# \mathbf{G}\left(\mathbb{F}_{q}\right)=q+1$ and $u \in \mathbb{F}_{q} \cup\{\infty\}$.
The Frobenius endomorphism $\phi:[U, V] \mapsto\left[U^{q}, V^{q}\right]$ is nothing but multiplication by $-q$.
Indeed

$$
(U+V \sqrt{D})^{q}=U^{q}-\sqrt{D} V^{q}
$$

because D is not a square \mathbb{F}_{q}.

Using the Lucas Torus

If d divides $q+1$ then $\mathrm{G}[d]$ is $\mathbb{F}_{q^{-}}$-rational.
Set $q+1=m d$ and consider the isogeny $I=[d]: \mathbf{G} \rightarrow \mathbf{G}$.
The quotient $\mathbf{G}\left(\mathbb{F}_{q}\right) / I\left(\mathbf{G}\left(\mathbb{F}_{q}\right)\right)=\mathbf{G}\left(\mathbb{F}_{q}\right) / \mathbf{G}\left(\mathbb{F}_{q}\right)^{d}$ is cyclic of order
d. Let r be a generator of $\mathrm{G}\left(\mathbb{F}_{q}\right)$ and choose $s \in I^{-1}(r)$.
Let $\mathrm{L}=\mathrm{K}(s)=\mathrm{K}(u(s))$ a degree d extension of K .
For any $\mathfrak{a} \in \operatorname{Gal}(\mathbf{L} / \mathbf{K})$, the difference $\mathfrak{a}(s) \ominus_{\mathbf{G}} s$ lies in $\mathbf{G}[d]$ and the pairing

$$
<\mathfrak{a}, r>\mapsto \mathfrak{a}(s) \ominus_{\mathbf{G}} s
$$

induces an isomorphism from $\operatorname{Gal}(\mathrm{L} / \mathrm{K})$ to
$\operatorname{Hom}\left(\mathbf{G}(\mathrm{K}) /(\mathrm{G}(\mathrm{K}))^{d}, \mathrm{G}[d]\right)$.
Here $\operatorname{Gal}(\mathbf{L} / \mathbf{K})$ is generated by ϕ and $<\phi, r>$ is $\phi(s) \ominus_{\mathbf{G}} s$.
Remember that $\phi(s)=[-q]$ so

$$
(\phi, r)=[-q-1] s=[-m] r .
$$

Lucas polynomials

Call σ the u-coordinate of s and τ the one of t then

$$
\phi(\sigma)=\frac{\tau \sigma+D}{\sigma+\tau}
$$

and the Frobenius acts like a linear rational transform. Let $A(X)=\prod_{s \in I^{-1}(r)}(X-u(s))$ be the minimal polynomial of $u(s)$ and set $\mathrm{L}=\mathrm{K}[X] / A(X)$.
One has $(U+\sqrt{D} V)^{d}=\sum_{0 \leq 2 k \leq d}\binom{d}{2 k} U^{d-2 k} V^{2 k} D^{k}+$
$\sqrt{D} \sum_{1 \leq 2 k+1 \leq d}\binom{d}{2 k+1} U^{d-2 k-1} V^{2 k+1} D^{k}$.
So $u([k] P)=\frac{\sum_{0 \leq 2 k \leq d} u(P)^{d-2 k}\binom{d}{2 k} D^{k}}{\sum_{1 \leq 2 k+1 \leq d} u(P)^{d-2 k-1}\binom{d}{2 k+1} D^{k}}$

A non-linear flag

$$
A(X)=\sum_{0 \leq 2 k \leq d} X^{d-2 k}\binom{d}{2 k} D^{k}-u(r) \sum_{1 \leq 2 k+1 \leq d} X^{d-2 k-1}\binom{d}{2 k+1} D^{k}
$$

Set $x=X \bmod A(X)$. The Galois group acts on x by linear rational transforms so it is sensible to define for every $k<d$

$$
P_{k}=\left\{\left.\frac{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}}{b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{k} x^{k}} \right\rvert\,\left(a_{0}, a_{1}, \ldots, a_{k}, b_{0}, b_{1}, \ldots, b_{k}\right) \in \mathbf{K}^{2 k+2}\right\}
$$

One has

$$
\mathbf{K}=P_{0} \subset P_{1} \subset \cdots \subset P_{d-1}=\mathbf{L}
$$

and the the P_{k} are Galois invariant.
Further

$$
P_{k} \times P_{l} \subset P_{k+l}
$$

if $k+l \leq d-1$.

An example

Take $p=q=13$ and $d=7$ so $m=2$. Check $D=2$ is not a square in \mathbb{F}_{13}.
Find $r=U+\sqrt{2} V$ such that r has order $p+1=14$ in $\mathbb{F}_{13}(\sqrt{2})^{*} / \mathbb{F}_{13}^{*}$.
For example $U=3$ et $V=2$ are fine.
The u-coordinate of $3+2 \sqrt{2}$ is $u(r)=\frac{3}{2}=8$.

$$
A(X)=X^{7}+3 X^{5}+10 X^{3}+4 X-8\left(7 X^{6}+5 X^{4}+6 X^{2}+8\right)
$$

Set $t=[-m] r=[-2] r$ so $u(t)=4$. Since Frobenius acts like translation by t :

$$
X^{p}=\frac{4 X+2}{X+4} \bmod A(X)
$$

Références

嗇 N．Bourbaki．
Algèbre，chapitre V．
Masson， 1981.
目 A．Joux and R．Lercier．
The function field sieve in the medium prime case．
Lecture Notes in Comput．Sci．， 4004 ：254－270， 2006.
國 S．Lang．
Algebra．
Addison－Wesley， 1984.
（e）G．Malle and B．H．Matzat．
Inverse Galois Theory．
Springer， 1999.
嗇 A．M．Odlyzko．
Discrete logarithms ：The past and the future．
Designs，Codes，and Cryptography， 19 ：129－145， 2000.

Using elliptic curves

This time we take $\mathbf{G}=E / \mathbb{F}_{q}$ an ordinary elliptic curve.
Let \mathfrak{i} be a degree d ideal of $\operatorname{End}(E)$ dividing $\phi-1$.
Assume \mathfrak{i} is invertible and $\operatorname{End}(E) / \mathfrak{i}$ is cyclic.
Set $T=\operatorname{Ker} \mathfrak{i} \subset E\left(\mathbb{F}_{q}\right)$ and $I: E \rightarrow F=E / T$.
The quotient $F\left(\mathbb{F}_{q}\right) / I\left(E\left(\mathbb{F}_{q}\right)\right)$ is isomorphic to T.
Choose a in $F\left(\mathbb{F}_{q}\right)$ such that a $\bmod I\left(E\left(\mathbb{F}_{q}\right)\right)$ is a generator.
Choose $b \in I^{-1}(a)$ and set $\mathbf{L}=\mathbf{K}(b)$ a degree d extension.
Clearly $\phi(b)=b \oplus_{\mathbf{G}} t$ for some $t \in T$.
For any integer $k \geq 0$ call \mathcal{F}_{k} the set of functions in $\mathbb{F}_{q}(E)$ with degree $\leq k$ having no pole at b.

$$
P_{k}=\left\{f(b) \mid f \in \mathcal{F}_{k}\right\} .
$$

Clearly $\mathrm{K}=P_{0}=P_{1} \subset P_{2} \subset \cdots \subset P_{d}=\mathbf{L}$ and

$$
P_{k} \times P_{l} \subset P_{k+l}
$$

Since \mathcal{F}_{k} is invariant by T, also P_{k} is invariant by $\operatorname{Gal}(\mathbf{L} / \mathrm{K})$ because $\phi(f(b))=f(\phi(b))=f\left(b \oplus_{\mathbf{G}} t\right)$.

