Kummer theory for finite fields

Jean-Marc Couveignes

Institut de Mathématiques de Bordeaux

Workshop FAST, September 2017

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The linear sieve

Algorithm for computing discrete logarithms in \mathbb{F}_q with $q = p^d$. $\mathbb{F}_q = \mathbb{F}_p[X]/A(X)$ with $A(X) \in \mathbb{F}_p[X]$ A(X) unitary, irreducible, degree d. Set $x = X \mod A(X)$. For every $0 \le n \le d - 1$ set

$$L_n = \mathbb{F}_p \oplus x \mathbb{F}_p \oplus \cdots \oplus x^n \mathbb{F}_p \subset \mathbb{F}_q.$$

So $L_0 = \mathbb{F}_p \subset L_1 \subset \ldots \subset L_{d-1} = \mathbb{F}_q$ and $L_a \times L_b \subset L_{a+b}$ if $a + b \leq n - 1$. Fix κ .

Look for multiplicative relations between elements in L_{κ} . For example if $\kappa = 1$:

$$\prod_{1 \le i \le I} (a_i + b_i x)^{e_i} = 1 \in \mathbb{F}_q$$
(1)

with a_i and b_i in \mathbb{F}_p .

Finding relations

Once found enough relations we have a basis of the \mathbb{Z} -module of relations between elements in L_{κ} . How do we find relations like 1? Assume again $\kappa = 1$. Pick random triples (a_i, b_i, e_i) and compute the residue modulo A(X) of $\prod_i (a_i + b_i X)^{e_i}$:

$$r(X) \equiv \prod_{i} (a_i + b_i X)^{e_i} \mod A(X)$$

with deg $(r(X)) \le d - 1$. Hope r(X) splits as $r(X) = \prod_j (u_j + v_j X)^{f_j}$. We get the relation

$$\prod_i (a_i + b_i x)^{e_i} \prod_j (u_j + v_j x)^{-f_j} = 1.$$

 L_{κ} is called the smoothness base.

A remark by Joux and Lercier

Recall $x = X \mod A(X)$.

Assume there is an automorphism \mathfrak{a} of \mathbb{F}_q such that $\mathfrak{a}(x) = ux + v$ avec $u, v \in \mathbb{F}_p$,

Letting \mathfrak{a} act on equation 1 we obtain another relation of the same type :

$$\prod_{1\leq i\leq I} (a_i+b_i(ux+v))^{e_i}=1\in \mathbb{F}_q.$$
(2)

Indeed a acts not only on equations but also on factors $a_i + b_i x$. Assuming $\mathfrak{a} = \phi^{\alpha}$

$$\mathfrak{a}(x) = x^{p^{\alpha}} = ux + v \in \mathbb{F}_q \tag{3}$$

Remove ux + v out of the smoothness base and replace it in every relation by $x^{p^{\alpha}}$. Divide the size of the smoothness base by the order of the group generated by \mathfrak{a} (at most d).

Degree maps

Strategy : find smoothness bases that are Galois invariant. In the above case, define the degree of $z = a_0 + a_1x + \cdots + a_kx^k$ to be k if $0 \le k < d$ and $a_k \ne 0$. Smallest k s.t. $z \in L_k$.

- $\deg(z \times t) \leq \deg(z) + \deg(t)$,
- there are p^n elements with degree < n for $n \le d$,
- there is an algorithm that factors certain elements in $L_{d-1} = \mathbb{F}_q$ as products of elements with smaller degree. There is a significant proportion of such smooth elements.

(日) (伊) (日) (日) (日) (0) (0)

We look for such degree functions that are Galois invariant.

An example

This example is given by Joux et Lercier : Take p = 43 and d = 6 so $q = 43^6$ and let $A(X) = X^6 - 3$ which is irreducible in $\mathbb{F}_{43}[X]$. So $\mathbb{F}_q = \mathbb{F}_{43}[X]/X^6 - 3$. Since p = 43 is congruent to 1 modulo d = 6 we have

$$\phi(x) = x^{43} = (x^6)^7 \times x = 3^7 x = \zeta_6 x$$

うして ふゆう ふほう ふほう うらつ

with $\zeta_6 = 3^7 = 37 \mod 43$.

This is Kummer theory. Similar examples are produced by Artin-Schreier theory. What are the limitations of these constructions?

Kummer theory

Classify cyclic degree d extensions of K with characteristic p prime to *d* containing a primitive *d*-th root of unity. Embed K in a Galois closure \bar{K} . Let H be a subgroup of K^* containing $(K^*)^d$. Set $\mathbf{L} = \mathbf{K}(H^{\frac{1}{d}})$. One associates to every \mathfrak{a} in $\operatorname{Gal}(\mathsf{K}(H^{\frac{1}{d}})/\mathsf{K})$ an homomorphism $\kappa(\mathfrak{a})$ from $H/(\mathbf{K}^*)^d$ to μ_d

$$\kappa(\mathfrak{a}): heta\mapstorac{\mathfrak{a}(heta^{rac{1}{d}})}{ heta^{rac{1}{d}}}$$

The map $\mathfrak{a} \mapsto \kappa(\mathfrak{a})$ is an isomorphism from $\operatorname{Gal}(\mathsf{K}(H^{\frac{1}{d}})/\mathsf{K})$ to Hom $(H/(\mathbf{K}^*)^d, \mu_d)$.

Classifies abelian extensions of K with exponent dividing d.

Kummer theory of finite fields

If $\mathbf{K} = \mathbb{F}_q$ then any subgroup H of \mathbf{K}^* is cyclic. We must assume d|q-1 and set q-1 = md. We take $H = \mathbf{K}^*$ so $\mathbf{K}^*/(\mathbf{K}^*)^d$ is cyclic with order d corresponding to the unique degree d extension of \mathbf{K} : Let r be a generator of \mathbf{K}^* and

$$s = r^{\frac{1}{d}}$$

Set L = K(s). The Galois group is generated by the Frobenius ϕ and $\phi(s) = s^q$ so

$$\kappa(\phi)(r) = \frac{\phi(s)}{s} = s^{q-1} = \zeta = r^m$$

The map $r \mapsto \zeta$ from $\mathbf{K}^*/(\mathbf{K}^*)^d$ to μ_d is exponentiation by m.

Artin-Schreier theory

Classifies degree p extensions of K. Here the map $X \mapsto X^d$ is replaced by $X \mapsto X^p - X = \wp(X)$. One adds to K the roots of $X^p - X = a$. Let H be a subgroup of (K, +) containing $\wp(K)$ and set $L = K(\wp^{-1}(H))$. To every \mathfrak{a} in Gal(L/K) one associates an homomorphism $\kappa(\mathfrak{a})$ from $H/\wp(K)$ to $(\mathbb{F}_p, +)$:

$$\kappa(\mathfrak{a}): \theta \mapsto \mathfrak{a}(\wp^{-1}(\theta)) - \wp^{-1}(\theta).$$

うして ふゆう ふほう ふほう うらつ

The map $\mathfrak{a} \mapsto \kappa(\mathfrak{a})$ is an isomorphism from the Galois group $\operatorname{Gal}(\mathbf{L}/\mathbf{K})$ to $\operatorname{Hom}(H/\wp(\mathbf{K}), \mathbb{F}_p)$.

Artin-Schreier for finite fields

Assume $\mathbf{K} = \mathbb{F}_q$ with $q = p^f$. The kernel of $\wp : \mathbb{F}_q \to \mathbb{F}_q$ is \mathbb{F}_p and the quotient $\mathbb{F}_q / \wp(\mathbb{F}_q)$ has order p. The unique extension **L** of degree p of \mathbb{F}_q is generated by $b = \wp^{-1}(a)$ with $a \in \mathbb{F}_q - \wp(\mathbb{F}_q)$. $\phi(b) - b$ is in \mathbb{F}_p and the map $a \mapsto \phi(b) - b$ is an isomorphism from $\mathbf{K}/\wp(\mathbf{K})$ to \mathbb{F}_p . More explicitly $\phi(b) = b^q$ and $\phi(b) - b = b^q - b = (b^p)^{p^{f-1}} - b = (b+a)^{p^{f-1}} - b$ since $\wp(b) = b^p - b = a.$ So $b^{p^f} - b = b^{p^{f-1}} - b + a^{p^{f-1}}$ and iterating we obtain

$$\phi(b) - b = b^{p^t} - b = a + a^p + a^{p^2} + \dots + a^{p^{t-1}}$$

So the isomorphism from $K/\wp(K)$ to \mathbb{F}_p is the absolute trace.

Invariant flags of linear spaces

Kummer : $\mathbf{L} = \mathbf{K}[x]$ with $x^d = r$ $L_k = \mathbf{K} \oplus \mathbf{K}x \oplus \cdots \oplus \mathbf{K}x^k$ is Galois invariant since $\mathfrak{a}(x) = \zeta x$ and $\zeta \in \mathbf{K}$. We have a Galois invariant flag $\mathbf{K} = L_0 \subset L_1 \subset \cdots \subset L_{d-1} = \mathbf{L}$

of vector spaces.

Artin-Schreier : $\mathbf{L} = \mathbf{K}[x]$ with $x^p - x = a$ and $\mathfrak{a}(x) = x + c$ with $c \in \mathbf{K}$ so $\mathfrak{a}(x^k) = (x + c)^k \in L_k$.

This time the Galois action is triangular rather than diagonal. Same phenomenon for Witt-Artin-Schreier extensions.

In both cases we have a Galois invariant degree function.

Invariant flags of linear spaces

Which cyclic extensions L/K allow such a Galois invariant flag of vector spaces ?

Let C be the (cyclic) Galois group and d its order.

Assume *d* is prime to *p*. Let ϕ be a generator of *C*.

Let $(w, \phi(w), \phi^2(w), \dots, \phi^{d-1}(w))$ be a normal K-base of L.

For every irreducible factor $f \in \mathbf{K}[X]$ of $X^d - 1$, call $V_f \subset \mathbf{L}$ the associated characteristic subspace in \mathbf{L} .

Every Galois invariant K-linear space in L is a direct sum of such characteristic spaces.

If a complete Galois invariant flag exists

$$\mathsf{K} = \mathsf{L}_0 \subset \mathsf{L}_1 \subset \cdots \subset \mathsf{L}_{d-1} = \mathsf{L}$$

with L_k of dimension k, then every f must have degree 1. So $X^d - 1$ splits on K and we are in the Kummer case.

Specializing isogenies between algebraic groups

Le G/K be a commutative algebraic group over a perfect field and $\mathcal{T}\subset G(K)$ a finite subgroup and

$$I: \mathbf{G} \to \mathbf{H}$$

the quotient by T.

Set $d = \#T = \deg(I)$.

Assume there is a K-rational point *a* in **H** such that $I^{-1}(a)$ is irreducible.

Any $b \in G(\overline{\mathbb{F}}_p)$ such that I(b) = a defines a degree d cyclic extension L = K(b) of K. Indeed we have a non-degenerate pairing

 $<,>: H(\mathsf{K})/I(G(\mathsf{K})) \times \operatorname{Gal}(I^{-1}(H(\mathsf{K}))) \to T$

If $a \in H(\mathsf{K})$ take $b \in I^{-1}(a)$ and set $< a, \mathfrak{a} >= \mathfrak{a}(b) - b$.

Geometric automorphisms

Automorphisms of K(b)/K admit a geometric description. They act by translation.

Let ϕ be a generator of $\operatorname{Gal}(\mathsf{K}(b)/\mathsf{K})$. There is a $t \in \mathcal{T}$ such that

$$\phi(b)=b\oplus_{\mathbf{G}} t.$$

Kummer : $\mathbf{G} = \mathbf{H} = \mathbf{G}_{\mathrm{m}}$ and I = [d]. See $\mathbf{G} \subset \mathbb{A}^1$ with z-coordinate and $z(0_{\mathbf{G}}) = 1$ and $z(P_1 \oplus_{\mathbf{G}_{\mathrm{m}}} P_2) = z(P_1) \times z(P_2), \ z(I(P)) = z(P)^d, \ z(t) = \zeta,$ $z(b \oplus_{\mathbf{G}_{\mathrm{m}}} t) = \zeta \times z(b).$

Artin-Schreier : $\mathbf{G} = \mathbf{H} = \mathbf{G}_{a}$ and $I = \wp$ See $\mathbf{G}_{a} = \mathbb{A}^{1}$ with z-coordinate $z(0_{\mathbf{G}}) = 0$ and $z(P_{1} \oplus_{\mathbf{G}_{a}} P_{2}) = z(P_{1}) + z(P_{2}), \ z(\wp(P)) = z(P)^{p} - z(P),$ $z(P \oplus_{\mathbf{G}_{a}} t) = z(P) + c$ where $c = z(t) \in \mathbb{F}_{p}$.

A different example

We first take **G** to be the Lucas torus. Assume *p* is odd. Let *D* be a non-zero element in **K**. Let \mathbb{P}^1 be the projective line with homogeneous coordinates [U, V]and affine coordinate $u = \frac{U}{V}$. $\mathbf{G} \subset \mathbb{P}^1$ is the open subset with inequation

$$U^2 - DV^2 \neq 0.$$

$$\begin{split} u(0_{\mathbf{G}}) &= \infty \text{ and } u(P_1 \oplus_{\mathbf{G}} P_2) = \frac{u(P_1)u(P_2) + D}{u(P_1) + u(P_2)} \text{ and} \\ u(\oplus_{\mathbf{G}} P_1) &= -u(P_1). \\ \text{Assume } \mathbf{K} &= \mathbb{F}_q \text{ and } D \text{ is not a square in } \mathbb{F}_q. \\ \#\mathbf{G}(\mathbb{F}_q) &= q + 1 \text{ and } u \in \mathbb{F}_q \cup \{\infty\}. \\ \text{The Frobenius endomorphism } \phi : [U, V] \mapsto [U^q, V^q] \text{ is nothing but} \\ \text{multiplication by } -q. \\ \text{Indeed} \end{split}$$

$$(U+V\sqrt{D})^q = U^q - \sqrt{D}V^q$$

because D is not a square \mathbb{F}_q .

Using the Lucas Torus

If *d* divides q + 1 then $\mathbf{G}[d]$ is \mathbb{F}_q -rational. Set q + 1 = md and consider the isogeny $I = [d] : \mathbf{G} \to \mathbf{G}$. The quotient $\mathbf{G}(\mathbb{F}_q)/I(\mathbf{G}(\mathbb{F}_q)) = \mathbf{G}(\mathbb{F}_q)/\mathbf{G}(\mathbb{F}_q)^d$ is cyclic of order *d*. Let *r* be a generator of $\mathbf{G}(\mathbb{F}_q)$ and choose $s \in I^{-1}(r)$. Let $\mathbf{L} = \mathbf{K}(s) = \mathbf{K}(u(s))$ a degree *d* extension of \mathbf{K} . For any $\mathfrak{a} \in \operatorname{Gal}(\mathbf{L}/\mathbf{K})$, the difference $\mathfrak{a}(s) \ominus_{\mathbf{G}} s$ lies in $\mathbf{G}[d]$ and the pairing

$$< \mathfrak{a}, r > \mapsto \mathfrak{a}(s) \ominus_{\mathbf{G}} s$$

induces an isomorphism from $\operatorname{Gal}(\mathsf{L}/\mathsf{K})$ to $\operatorname{Hom}(\mathsf{G}(\mathsf{K})/(\mathsf{G}(\mathsf{K}))^d, \mathsf{G}[d]).$ Here $\operatorname{Gal}(\mathsf{L}/\mathsf{K})$ is generated by ϕ and $<\phi, r > \text{is } \phi(s) \ominus_{\mathsf{G}} s.$ Remember that $\phi(s) = [-q]$ so

$$(\phi, r) = [-q - 1]s = [-m]r.$$

Lucas polynomials

Call σ the *u*-coordinate of *s* and τ the one of *t* then

$$\phi(\sigma) = \frac{\tau \sigma + D}{\sigma + \tau}$$

and the Frobenius acts like a linear rational transform. Let $A(X) = \prod_{s \in I^{-1}(r)} (X - u(s))$ be the minimal polynomial of u(s) and set $\mathbf{L} = \mathbf{K}[X] / A(X)$. One has $(U + \sqrt{D}V)^d = \sum_{0 \le 2k \le d} \begin{pmatrix} d \\ 2k \end{pmatrix} U^{d-2k} V^{2k} D^k +$ $\sqrt{D}\sum_{1\leq 2k+1\leq d} \begin{pmatrix} d\\ 2k+1 \end{pmatrix} U^{d-2k-1}V^{2k+1}D^k.$ So $u([k]P) = \frac{\sum_{0 \le 2k \le d} u(P)^{d-2k} \begin{pmatrix} d \\ 2k \end{pmatrix} D^k}{\sum_{1 \le 2k+1 \le d} u(P)^{d-2k-1} \begin{pmatrix} d \\ 2k+1 \end{pmatrix} D^k}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A non-linear flag

$$A(X) = \sum_{0 \leq 2k \leq d} X^{d-2k} \begin{pmatrix} d \\ 2k \end{pmatrix} D^k - u(r) \sum_{1 \leq 2k+1 \leq d} X^{d-2k-1} \begin{pmatrix} d \\ 2k+1 \end{pmatrix} D^k.$$

Set $x = X \mod A(X)$. The Galois group acts on x by linear rational transforms so it is sensible to define for every k < d

$$P_{k} = \{\frac{a_{0} + a_{1}x + a_{2}x^{2} + \dots + a_{k}x^{k}}{b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{k}x^{k}}|(a_{0}, a_{1}, \dots, a_{k}, b_{0}, b_{1}, \dots, b_{k}) \in \mathsf{K}^{2k+2}\}.$$

One has

$$\mathbf{K} = P_0 \subset P_1 \subset \cdots \subset P_{d-1} = \mathbf{L}$$

and the the P_k are Galois invariant. Further

$$P_k \times P_l \subset P_{k+l}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

if $k+l \leq d-1$.

An example

Take p = q = 13 and d = 7 so m = 2. Check D = 2 is not a square in \mathbb{F}_{13} . Find $r = U + \sqrt{2}V$ such that r has order p + 1 = 14 in $\mathbb{F}_{13}(\sqrt{2})^*/\mathbb{F}_{13}^*$. For example U = 3 et V = 2 are fine. The *u*-coordinate of $3 + 2\sqrt{2}$ is $u(r) = \frac{3}{2} = 8$.

$$A(X) = X^7 + 3X^5 + 10X^3 + 4X - 8(7X^6 + 5X^4 + 6X^2 + 8).$$

Set t = [-m]r = [-2]r so u(t) = 4. Since Frobenius acts like translation by t:

$$X^p = \frac{4X+2}{X+4} \mod A(X).$$

Références

N. Bourbaki. Algèbre, chapitre V. Masson, 1981.

A. Joux and R. Lercier.

The function field sieve in the medium prime case. Lecture Notes in Comput. Sci., 4004 :254–270, 2006.

S. Lang.

Algebra. Addison-Wesley, 1984.

- G. Malle and B.H. Matzat. Inverse Galois Theory. Springer, 1999.

A. M. Odlyzko.

Discrete logarithms : The past and the future. Designs, Codes, and Cryptography, 19:129–145, 2000.

(ロ) (型) (E) (E) (E) (O)

Using elliptic curves

This time we take $\mathbf{G} = E/\mathbb{F}_q$ an ordinary elliptic curve. Let i be a degree *d* ideal of $\operatorname{End}(E)$ dividing $\phi - 1$. Assume i is invertible and $\operatorname{End}(E)/i$ is cyclic. Set $T = \operatorname{Ker} i \subset E(\mathbb{F}_q)$ and $I : E \to F = E/T$. The quotient $F(\mathbb{F}_q)/I(E(\mathbb{F}_q))$ is isomorphic to *T*. Choose *a* in $F(\mathbb{F}_q)$ such that *a* mod $I(E(\mathbb{F}_q))$ is a generator. Choose $b \in I^{-1}(a)$ and set $\mathbf{L} = \mathbf{K}(b)$ a degree *d* extension. Clearly $\phi(b) = b \oplus_{\mathbf{G}} t$ for some $t \in T$. For any integer $k \ge 0$ call \mathcal{F}_k the set of functions in $\mathbb{F}_q(E)$ with degree $\le k$ having no pole at *b*.

$$P_k = \{f(b) | f \in \mathcal{F}_k\}.$$

Clearly $\mathbf{K} = P_0 = P_1 \subset P_2 \subset \cdots \subset P_d = \mathbf{L}$ and

$$P_k \times P_l \subset P_{k+l}$$
.

Since \mathcal{F}_k is invariant by T, also P_k is invariant by $\operatorname{Gal}(\mathsf{L}/\mathsf{K})$ because $\phi(f(b)) = f(\phi(b)) = f(b \oplus_{\mathsf{G}} t)$.