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The linear sieve
Algorithm for computing discrete logarithms in Fq with q = pd .
Fq = Fp[X ]/A(X ) with A(X ) ∈ Fp[X ]
A(X ) unitary, irreducible, degree d .
Set x = X mod A(X ).
For every 0 ≤ n ≤ d − 1 set

Ln = Fp ⊕ xFp ⊕ · · · ⊕ xnFp ⊂ Fq.

So L0 = Fp ⊂ L1 ⊂ . . . ⊂ Ld−1 = Fq and
La × Lb ⊂ La+b if a + b ≤ n − 1.
Fix κ.
Look for multiplicative relations between elements in Lκ.
For example if κ = 1 :∏

1≤i≤I
(ai + bix)ei = 1 ∈ Fq (1)

with ai and bi in Fp.



Finding relations

Once found enough relations we have a basis of the Z-module of
relations between elements in Lκ.
How do we find relations like 1 ?
Assume again κ = 1.
Pick random triples (ai , bi , ei ) and compute the residue modulo
A(X ) of

∏
i (ai + biX )ei :

r(X ) ≡
∏
i

(ai + biX )ei mod A(X )

with deg(r(X )) ≤ d − 1.
Hope r(X ) splits as r(X ) =

∏
j(uj + vjX )fj .

We get the relation∏
i

(ai + bix)ei
∏
j

(uj + vjx)−fj = 1.

Lκ is called the smoothness base.



A remark by Joux and Lercier
Recall x = X mod A(X ).
Assume there is an automorphism a of Fq such that a(x) = ux + v
avec u, v ∈ Fp,
Letting a act on equation 1 we obtain another relation of the same
type : ∏

1≤i≤I
(ai + bi (ux + v))ei = 1 ∈ Fq. (2)

Indeed a acts not only on equations but also on factors ai + bix .
Assuming a = φα

a(x) = xp
α

= ux + v ∈ Fq (3)

Remove ux + v out of the smoothness base and replace it in every
relation by xp

α
.

Divide the size of the smoothness base by the order of the group
generated by a (at most d).



Degree maps

Strategy : find smoothness bases that are Galois invariant.
In the above case, define the degree of z = a0 + a1x + · · ·+ akx

k

to be k if 0 ≤ k < d and ak 6= 0.
Smallest k s.t. z ∈ Lk .

deg(z × t) ≤ deg(z) + deg(t),
there are pn elements with degree < n for n ≤ d ,
there is an algorithm that factors certain elements in
Ld−1 = Fq as products of elements with smaller degree. There
is a significant proportion of such smooth elements.

We look for such degree functions that are Galois invariant.



An example

This example is given by Joux et Lercier :
Take p = 43 and d = 6 so q = 436 and let A(X ) = X 6 − 3 which
is irreducible in F43[X ].
So Fq = F43[X ]/X 6 − 3.
Since p = 43 is congruent to 1 modulo d = 6 we have

φ(x) = x43 = (x6)7 × x = 37x = ζ6x

with ζ6 = 37 = 37 mod 43.
This is Kummer theory. Similar examples are produced by
Artin-Schreier theory. What are the limitations of these
constructions ?



Kummer theory

Classify cyclic degree d extensions of K with characteristic p prime
to d containing a primitive d-th root of unity.
Embed K in a Galois closure K̄.
Let H be a subgroup of K∗ containing (K∗)d .
Set L = K(H

1
d ).

One associates to every a in Gal(K(H
1
d )/K) an homomorphism

κ(a) from H/(K∗)d to µd

κ(a) : θ 7→ a(θ
1
d )

θ
1
d

.

The map a 7→ κ(a) is an isomorphism from Gal(K(H
1
d )/K) to

Hom(H/(K∗)d , µd).
Classifies abelian extensions of K with exponent dividing d .



Kummer theory of finite fields

If K = Fq then any subgroup H of K∗ is cyclic. We must assume
d |q − 1 and set q − 1 = md .
We take H = K∗ so K∗/(K∗)d is cyclic with order d corresponding
to the unique degree d extension of K :
Let r be a generator of K∗ and

s = r
1
d .

Set L = K(s). The Galois group is generated by the Frobenius φ
and φ(s) = sq so

κ(φ)(r) =
φ(s)

s
= sq−1 = ζ = rm

The map r 7→ ζ from K∗/(K∗)d to µd is exponentiation by m.



Artin-Schreier theory

Classifies degree p extensions of K.
Here the map X 7→ X d is replaced by X 7→ X p − X = ℘(X ).
One adds to K the roots of X p − X = a.
Let H be a subgroup of (K,+) containing ℘(K) and set
L = K(℘−1(H)).
To every a in Gal(L/K) one associates an homomorphism κ(a)
from H/℘(K) to (Fp,+) :

κ(a) : θ 7→ a(℘−1(θ))− ℘−1(θ).

The map a 7→ κ(a) is an isomorphism from the Galois group
Gal(L/K) to Hom(H/℘(K),Fp).



Artin-Schreier for finite fields

Assume K = Fq with q = pf .
The kernel of ℘ : Fq → Fq is Fp and the quotient Fq/℘(Fq) has
order p.
The unique extension L of degree p of Fq is generated by
b = ℘−1(a) with a ∈ Fq − ℘(Fq).
φ(b)− b is in Fp and the map a 7→ φ(b)− b is an isomorphism
from K/℘(K) to Fp.
More explicitly φ(b) = bq and
φ(b)− b = bq − b = (bp)p

f−1 − b = (b + a)p
f−1 − b since

℘(b) = bp − b = a.
So bp

f − b = bp
f−1 − b + ap

f−1
and iterating we obtain

φ(b)− b = bp
f − b = a + ap + ap

2
+ · · ·+ ap

f−1
.

So the isomorphism from K/℘(K) to Fp is the absolute trace.



Invariant flags of linear spaces

Kummer : L = K[x ] with xd = r
Lk = K⊕Kx ⊕ · · · ⊕Kxk is Galois invariant since a(x) = ζx and
ζ ∈ K.
We have a Galois invariant flag
K = L0 ⊂ L1 ⊂ · · · ⊂ Ld−1 = L
of vector spaces.
Artin-Schreier : L = K[x ] with xp − x = a and a(x) = x + c with
c ∈ K so a(xk) = (x + c)k ∈ Lk .
This time the Galois action is triangular rather than diagonal. Same
phenomenon for Witt-Artin-Schreier extensions.
In both cases we have a Galois invariant degree function.



Invariant flags of linear spaces

Which cyclic extensions L/K allow such a Galois invariant flag of
vector spaces ?
Let C be the (cyclic) Galois group and d its order.
Assume d is prime to p. Let φ be a generator of C .
Let (w , φ(w), φ2(w), . . . , φd−1(w)) be a normal K-base of L.
For every irreducible factor f ∈ K[X ] of X d − 1, call Vf ⊂ L the
associated characteristic subspace in L.
Every Galois invariant K-linear space in L is a direct sum of such
characteristic spaces.
If a complete Galois invariant flag exists

K = L0 ⊂ L1 ⊂ · · · ⊂ Ld−1 = L

with Lk of dimension k , then every f must have degree 1. So
X d − 1 splits on K and we are in the Kummer case.



Specializing isogenies between algebraic groups

Le G/K be a commutative algebraic group over a perfect field and
T ⊂ G(K) a finite subgroup and

I : G→ H

the quotient by T .
Set d = #T = deg(I ).
Assume there is a K-rational point a in H such that I−1(a) is
irreducible.
Any b ∈ G(F̄p) such that I (b) = a defines a degree d cyclic
extension L = K(b) of K. Indeed we have a non-degenerate pairing

<,>: H(K)/I (G (K))×Gal(I−1(H(K)))→ T

If a ∈ H(K) take b ∈ I−1(a) and set < a, a >= a(b)− b.



Geometric automorphisms

Automorphisms of K(b)/K admit a geometric description. They act
by translation.
Let φ be a generator of Gal(K(b)/K). There is a t ∈ T such that

φ(b) = b ⊕G t.

Kummer : G = H = Gm and I = [d ].
See G ⊂ A1 with z-coordinate and z(0G) = 1 and
z(P1⊕GmP2) = z(P1)× z(P2), z(I (P)) = z(P)d , z(t) = ζ,
z(b ⊕Gm t) = ζ × z(b).

Artin-Schreier : G = H = Ga and I = ℘
See Ga = A1 with z-coordinate z(0G) = 0 and
z(P1⊕GaP2) = z(P1) + z(P2), z(℘(P)) = z(P)p − z(P),
z(P⊕Gat) = z(P) + c where c = z(t) ∈ Fp.



A different example
We first take G to be the Lucas torus. Assume p is odd.
Let D be a non-zero element in K.
Let P1 be the projective line with homogeneous coordinates [U,V ]
and affine coordinate u = U

V .
G ⊂ P1 is the open subset with inequation

U2 − DV 2 6= 0.

u(0G) =∞ and u(P1⊕GP2) = u(P1)u(P2)+D
u(P1)+u(P2)

and
u(	GP1) = −u(P1).
Assume K = Fq and D is not a square in Fq.
#G(Fq) = q + 1 and u ∈ Fq ∪ {∞}.
The Frobenius endomorphism φ : [U,V ] 7→ [Uq,V q] is nothing but
multiplication by −q.
Indeed

(U + V
√
D)q = Uq −

√
DV q

because D is not a square Fq.



Using the Lucas Torus

If d divides q + 1 then G[d ] is Fq-rational.
Set q + 1 = md and consider the isogeny I = [d ] : G→ G.
The quotient G(Fq)/I (G(Fq)) = G(Fq)/G(Fq)d is cyclic of order
d . Let r be a generator of G(Fq) and choose s ∈ I−1(r).
Let L = K(s) = K(u(s)) a degree d extension of K.
For any a ∈ Gal(L/K), the difference a(s)	G s lies in G[d ] and the
pairing

< a, r >7→ a(s)	G s

induces an isomorphism from Gal(L/K) to
Hom(G(K)/(G(K))d ,G[d ]).
Here Gal(L/K) is generated by φ and < φ, r > is φ(s)	G s.
Remember that φ(s) = [−q] so

(φ, r) = [−q − 1]s = [−m]r .



Lucas polynomials

Call σ the u-coordinate of s and τ the one of t then

φ(σ) =
τσ + D

σ + τ

and the Frobenius acts like a linear rational transform.
Let A(X ) =

∏
s∈I−1(r)(X − u(s)) be the minimal polynomial of

u(s) and set L = K[X ]/A(X ).

One has (U +
√
DV )d =

∑
0≤2k≤d

(
d
2k

)
Ud−2kV 2kDk +

√
D
∑

1≤2k+1≤d

(
d

2k + 1

)
Ud−2k−1V 2k+1Dk .

So u([k]P) =

∑
0≤2k≤d u(P)d−2k

 d
2k

Dk

∑
1≤2k+1≤d u(P)d−2k−1

 d
2k + 1

Dk



A non-linear flag

A(X )=
∑

0≤2k≤d X d−2k

 d
2k

Dk−u(r)
∑

1≤2k+1≤d X d−2k−1

 d
2k + 1

Dk .

Set x = X mod A(X ). The Galois group acts on x by linear rational
transforms so it is sensible to define for every k < d

Pk = { a0 + a1x + a2x
2 + · · ·+ akx

k

b0 + b1x + b2x2 + · · ·+ bkxk
|(a0,a1,...,ak ,b0,b1,...,bk )∈K2k+2}.

One has

K = P0 ⊂ P1 ⊂ · · · ⊂ Pd−1 = L

and the the Pk are Galois invariant.
Further

Pk × Pl ⊂ Pk+l

if k + l ≤ d − 1.



An example

Take p = q = 13 and d = 7 so m = 2. Check D = 2 is not a
square in F13.
Find r = U +

√
2V such that r has order p + 1 = 14 in

F13(
√
2)∗/F∗13.

For example U = 3 et V = 2 are fine.
The u-coordinate of 3 + 2

√
2 is u(r) = 3

2 = 8.

A(X ) = X 7 + 3X 5 + 10X 3 + 4X − 8(7X 6 + 5X 4 + 6X 2 + 8).

Set t = [−m]r = [−2]r so u(t) = 4. Since Frobenius acts like
translation by t :

X p =
4X + 2
X + 4

mod A(X ).
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Using elliptic curves
This time we take G = E/Fq an ordinary elliptic curve.
Let i be a degree d ideal of End(E ) dividing φ− 1.
Assume i is invertible and End(E )/i is cyclic.
Set T = Ker i ⊂ E (Fq) and I : E → F = E/T .
The quotient F (Fq)/I (E (Fq)) is isomorphic to T .
Choose a in F (Fq) such that a mod I (E (Fq)) is a generator.
Choose b ∈ I−1(a) and set L = K(b) a degree d extension.
Clearly φ(b) = b ⊕G t for some t ∈ T .
For any integer k ≥ 0 call Fk the set of functions in Fq(E ) with
degree ≤ k having no pole at b.

Pk = {f (b)|f ∈ Fk}.

Clearly K = P0 = P1 ⊂ P2 ⊂ · · · ⊂ Pd = L and

Pk × Pl ⊂ Pk+l .

Since Fk is invariant by T , also Pk is invariant by Gal(L/K)
because φ(f (b)) = f (φ(b)) = f (b ⊕G t).


