Kummer theory for finite fields

Jean-Marc Couveignes

Institut de Mathématiques de Bordeaux

Workshop FAST, September 2017

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Specializing isogenies between algebraic groups

Le G/K be a commutative algebraic group over a perfect field and $\mathcal{T}\subset G(K)$ a finite subgroup and

$$I: \mathbf{G} \to \mathbf{H}$$

the quotient by T.

Set $d = \#T = \deg(I)$.

Assume there is a K-rational point *a* in **H** such that $I^{-1}(a)$ is irreducible.

Any $b \in G(\overline{\mathbb{F}}_p)$ such that I(b) = a defines a degree d cyclic extension L = K(b) of K. Indeed we have a non-degenerate pairing

 $<,>: H(\mathsf{K})/I(G(\mathsf{K})) \times \operatorname{Gal}(I^{-1}(H(\mathsf{K}))) \to T$

If $a \in H(\mathsf{K})$ take $b \in I^{-1}(a)$ and set $< a, \mathfrak{a} >= \mathfrak{a}(b) - b$.

Geometric automorphisms

Automorphisms of K(b)/K admit a geometric description. They act by translation.

Let ϕ be a generator of $\operatorname{Gal}(\mathsf{K}(b)/\mathsf{K})$. There is a $t \in \mathcal{T}$ such that

$$\phi(b)=b\oplus_{\mathbf{G}} t.$$

Kummer : $\mathbf{G} = \mathbf{H} = \mathbf{G}_{\mathrm{m}}$ and I = [d]. See $\mathbf{G} \subset \mathbb{A}^1$ with z-coordinate and $z(0_{\mathbf{G}}) = 1$ and $z(P_1 \oplus_{\mathbf{G}_{\mathrm{m}}} P_2) = z(P_1) \times z(P_2), \ z(I(P)) = z(P)^d, \ z(t) = \zeta,$ $z(b \oplus_{\mathbf{G}_{\mathrm{m}}} t) = \zeta \times z(b).$

Artin-Schreier : $\mathbf{G} = \mathbf{H} = \mathbf{G}_{a}$ and $I = \wp$ See $\mathbf{G}_{a} = \mathbb{A}^{1}$ with z-coordinate $z(0_{\mathbf{G}}) = 0$ and $z(P_{1} \oplus_{\mathbf{G}_{a}} P_{2}) = z(P_{1}) + z(P_{2}), \ z(\wp(P)) = z(P)^{p} - z(P),$ $z(P \oplus_{\mathbf{G}_{a}} t) = z(P) + c$ where $c = z(t) \in \mathbb{F}_{p}$.

Specializing isogenies between algebraic groups

Le ${\bf G}/{\bf K}$ be a commutative algebraic group over a perfect field and ${\cal T}$ finite étale sub-group-scheme and

$${\it I}:G\to H$$

the quotient by T.

Set $d = \#T = \deg(I)$.

Assume there is a K-rational point *a* in **H** such that $I^{-1}(a)$ is irreducible.

Any $b \in G(\overline{\mathbb{F}}_p)$ such that I(b) = a defines a degree d cyclic extension L = K(b) of K. Indeed we have a bijection

$$\kappa: H(\mathsf{K})/I(G(\mathsf{K})) \to H^1(\operatorname{Gal}(I^{-1}(H(\mathsf{K}))), T)$$

If $a \in H(\mathsf{K})$ take $b \in I^{-1}(a)$ and set $\kappa(a)(\mathfrak{a}) = \mathfrak{a}(b) - b$.

Any *T*-torsor is a fiber of *I*.

Strategy : find smoothness bases that are Galois invariant.

- $\deg(z \times t) \leq \deg(z) + \deg(t)$,
- there are p^n elements with degree < n for $n \le d$,
- there is an algorithm that factors certain elements in $L_{d-1} = \mathbb{F}_q$ as products of elements with smaller degree. There is a significant proportion of such smooth elements.

うして ふゆう ふほう ふほう うらつ

We look for such degree functions that are Galois invariant.

Kummer theory

Classify cyclic degree d extensions of K with characteristic p prime to *d* containing a primitive *d*-th root of unity. Embed K in a Galois closure \bar{K} . Let H be a subgroup of K^* containing $(K^*)^d$. Set $\mathbf{L} = \mathbf{K}(H^{\frac{1}{d}})$. One associates to every \mathfrak{a} in $\operatorname{Gal}(\mathsf{K}(H^{\frac{1}{d}})/\mathsf{K})$ an homomorphism $\kappa(\mathfrak{a})$ from $H/(\mathbf{K}^*)^d$ to μ_d

$$\kappa(\mathfrak{a}): heta\mapstorac{\mathfrak{a}(heta^{rac{1}{d}})}{ heta^{rac{1}{d}}}$$

The map $\mathfrak{a} \mapsto \kappa(\mathfrak{a})$ is an isomorphism from $\operatorname{Gal}(\mathsf{K}(H^{\frac{1}{d}})/\mathsf{K})$ to Hom $(H/(\mathbf{K}^*)^d, \mu_d)$.

Classifies abelian extensions of K with exponent dividing d.

This example is given by Joux et Lercier : Take p = 43 and d = 6 so $q = 43^6$ and let $A(X) = X^6 - 3$ which is irreducible in $\mathbb{F}_{43}[X]$. So $\mathbb{F}_q = \mathbb{F}_{43}[X]/X^6 - 3$. Since p = 43 is congruent to 1 modulo d = 6 we have

$$\phi(x) = x^{43} = (x^6)^7 \times x = 3^7 x = \zeta_6 x$$

うして ふゆう ふほう ふほう うらつ

with $\zeta_6 = 3^7 = 37 \mod 43$.

Kummer theory of finite fields

If $\mathbf{K} = \mathbb{F}_q$ then any subgroup H of \mathbf{K}^* is cyclic. We must assume d|q-1 and set q-1 = md. We take $H = \mathbf{K}^*$ so $\mathbf{K}^*/(\mathbf{K}^*)^d$ is cyclic with order d corresponding to the unique degree d extension of \mathbf{K} : Let r be a generator of \mathbf{K}^* and

$$s = r^{\frac{1}{d}}$$

Set L = K(s). The Galois group is generated by the Frobenius ϕ and $\phi(s) = s^q$ so

$$\kappa(\phi)(r) = \frac{\phi(s)}{s} = s^{q-1} = \zeta = r^m$$

The map $r \mapsto \zeta$ from $\mathbf{K}^*/(\mathbf{K}^*)^d$ to μ_d is exponentiation by m.

Artin-Schreier theory

Classifies degree p extensions of K. Here the map $X \mapsto X^d$ is replaced by $X \mapsto X^p - X = \wp(X)$. One adds to K the roots of $X^p - X = a$. Let H be a subgroup of (K, +) containing $\wp(K)$ and set $L = K(\wp^{-1}(H))$. To every \mathfrak{a} in Gal(L/K) one associates an homomorphism $\kappa(\mathfrak{a})$ from $H/\wp(K)$ to $(\mathbb{F}_p, +)$:

$$\kappa(\mathfrak{a}): \theta \mapsto \mathfrak{a}(\wp^{-1}(\theta)) - \wp^{-1}(\theta).$$

うして ふゆう ふほう ふほう うらつ

The map $\mathfrak{a} \mapsto \kappa(\mathfrak{a})$ is an isomorphism from the Galois group $\operatorname{Gal}(\mathbf{L}/\mathbf{K})$ to $\operatorname{Hom}(H/\wp(\mathbf{K}), \mathbb{F}_p)$.

Artin-Schreier for finite fields

Assume $\mathbf{K} = \mathbb{F}_q$ with $q = p^f$. The kernel of $\wp : \mathbb{F}_q \to \mathbb{F}_q$ is \mathbb{F}_p and the quotient $\mathbb{F}_q / \wp(\mathbb{F}_q)$ has order p. The unique extension **L** of degree p of \mathbb{F}_q is generated by $b = \wp^{-1}(a)$ with $a \in \mathbb{F}_q - \wp(\mathbb{F}_q)$. $\phi(b) - b$ is in \mathbb{F}_p and the map $a \mapsto \phi(b) - b$ is an isomorphism from $\mathbf{K}/\wp(\mathbf{K})$ to \mathbb{F}_p . More explicitly $\phi(b) = b^q$ and $\phi(b) - b = b^q - b = (b^p)^{p^{f-1}} - b = (b+a)^{p^{f-1}} - b$ since $\wp(b) = b^p - b = a.$ So $b^{p^f} - b = b^{p^{f-1}} - b + a^{p^{f-1}}$ and iterating we obtain

$$\phi(b) - b = b^{p^t} - b = a + a^p + a^{p^2} + \dots + a^{p^{t-1}}$$

So the isomorphism from $K/\wp(K)$ to \mathbb{F}_p is the absolute trace.

Take
$$p = 7$$
 and $f = 1$, so $q = 7$.
The absolute trace of 1 is 1, so we set $\mathbf{K} = \mathbb{F}_7$ and $A(X) = X^7 - X - 1$ and we set

$$\mathsf{L} = \mathbb{F}_{7^7} = \mathbb{F}_7[X]/(A(X)).$$

Setting $x = X \mod A(X)$, one has $\phi(x) = x + 1$.

A different algebraic group

We first take **G** to be the Lucas torus. Assume *p* is odd. Let *D* be a non-zero element in **K**. Let \mathbb{P}^1 be the projective line with homogeneous coordinates [U, V]and affine coordinate $u = \frac{U}{V}$. $\mathbf{G} \subset \mathbb{P}^1$ is the open subset with inequation

うして ふゆう ふほう ふほう うらつ

$$U^2 - DV^2 \neq 0.$$

 $u(0_{\mathbf{G}}) = \infty \text{ and } u(P_1 \oplus_{\mathbf{G}} P_2) = \frac{u(P_1)u(P_2) + D}{u(P_1) + u(P_2)} \text{ and } u(\oplus_{\mathbf{G}} P_1) = -u(P_1).$

A different algebraic group

$$\begin{split} U^2 - DV^2 &\neq 0. \\ u(0_{\mathbf{G}}) &= \infty \text{ and } u(P_1 \oplus_{\mathbf{G}} P_2) = \frac{u(P_1)u(P_2) + D}{u(P_1) + u(P_2)} \text{ and} \\ u(\oplus_{\mathbf{G}} P_1) &= -u(P_1). \\ \text{Assume } \mathbf{K} &= \mathbb{F}_q \text{ and } D \text{ is not a square in } \mathbb{F}_q. \\ \#\mathbf{G}(\mathbb{F}_q) &= q+1 \text{ and } u \in \mathbb{F}_q \cup \{\infty\}. \\ \text{The Frobenius endomorphism } \phi : [U, V] \mapsto [U^q, V^q] \text{ is nothing but} \\ \text{multiplication by } -q. \\ \text{Indeed} \end{split}$$

$$(U+V\sqrt{D})^q=U^q-\sqrt{D}V^q$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

because D is not a square \mathbb{F}_q .

Using the Lucas Torus

If *d* divides q + 1 then $\mathbf{G}[d]$ is \mathbb{F}_q -rational. Set q + 1 = md and consider the isogeny $I = [d] : \mathbf{G} \to \mathbf{G}$. The quotient $\mathbf{G}(\mathbb{F}_q)/I(\mathbf{G}(\mathbb{F}_q)) = \mathbf{G}(\mathbb{F}_q)/\mathbf{G}(\mathbb{F}_q)^d$ is cyclic of order *d*. Let *r* be a generator of $\mathbf{G}(\mathbb{F}_q)$ and choose $s \in I^{-1}(r)$. Let $\mathbf{L} = \mathbf{K}(s) = \mathbf{K}(u(s))$ a degree *d* extension of \mathbf{K} . For any $\mathfrak{a} \in \operatorname{Gal}(\mathbf{L}/\mathbf{K})$, the difference $\mathfrak{a}(s) \ominus_{\mathbf{G}} s$ lies in $\mathbf{G}[d]$ and the pairing

$$< \mathfrak{a}, r > \mapsto \mathfrak{a}(s) \ominus_{\mathbf{G}} s$$

induces an isomorphism from $\operatorname{Gal}(\mathsf{L}/\mathsf{K})$ to $\operatorname{Hom}(\mathsf{G}(\mathsf{K})/(\mathsf{G}(\mathsf{K}))^d, \mathsf{G}[d]).$ Here $\operatorname{Gal}(\mathsf{L}/\mathsf{K})$ is generated by ϕ and $<\phi, r > \text{is } \phi(s) \ominus_{\mathsf{G}} s.$ Remember that $\phi(s) = [-q]$ so

$$(\phi, r) = [-q - 1]s = [-m]r.$$

Lucas polynomials

Call σ the *u*-coordinate of *s* and τ the one of *t* then

$$\phi(\sigma) = \frac{\tau \sigma + D}{\sigma + \tau}$$

and the Frobenius acts like a linear rational transform. Let $A(X) = \prod_{s \in I^{-1}(r)} (X - u(s))$ be the minimal polynomial of u(s) and set $\mathbf{L} = \mathbf{K}[X] / A(X)$. One has $(U + \sqrt{D}V)^d = \sum_{0 \le 2k \le d} \begin{pmatrix} d \\ 2k \end{pmatrix} U^{d-2k} V^{2k} D^k +$ $\sqrt{D}\sum_{1\leq 2k+1\leq d} \begin{pmatrix} d\\ 2k+1 \end{pmatrix} U^{d-2k-1}V^{2k+1}D^k.$ So $u([k]P) = \frac{\sum_{0 \le 2k \le d} u(P)^{d-2k} \begin{pmatrix} d \\ 2k \end{pmatrix} D^k}{\sum_{1 \le 2k+1 \le d} u(P)^{d-2k-1} \begin{pmatrix} d \\ 2k+1 \end{pmatrix} D^k}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Take p = q = 13 and d = 7 so m = 2. Check D = 2 is not a square in \mathbb{F}_{13} . Find $r = U + \sqrt{2}V$ such that r has order p + 1 = 14 in $\mathbb{F}_{13}(\sqrt{2})^*/\mathbb{F}_{13}^*$. For example U = 3 et V = 2 are fine. The *u*-coordinate of $3 + 2\sqrt{2}$ is $u(r) = \frac{3}{2} = 8$.

$$A(X) = X^7 + 3X^5 + 10X^3 + 4X - 8(7X^6 + 5X^4 + 6X^2 + 8).$$

Set t = [-m]r = [-2]r so u(t) = 4. Since Frobenius acts like translation by t:

$$X^p = \frac{4X+2}{X+4} \mod A(X).$$

A non-linear flag

$$A(X) = \sum_{0 \leq 2k \leq d} X^{d-2k} \begin{pmatrix} d \\ 2k \end{pmatrix} D^k - u(r) \sum_{1 \leq 2k+1 \leq d} X^{d-2k-1} \begin{pmatrix} d \\ 2k+1 \end{pmatrix} D^k.$$

Set $x = X \mod A(X)$. The Galois group acts on x by linear rational transforms so it is sensible to define for every k < d

$$P_{k} = \{\frac{a_{0} + a_{1}x + a_{2}x^{2} + \dots + a_{k}x^{k}}{b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{k}x^{k}}|(a_{0}, a_{1}, \dots, a_{k}, b_{0}, b_{1}, \dots, b_{k}) \in \mathsf{K}^{2k+2}\}.$$

One has

$$\mathbf{K} = P_0 \subset P_1 \subset \cdots \subset P_{d-1} = \mathbf{L}$$

and the the P_k are Galois invariant. Further

$$P_k \times P_l \subset P_{k+l}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

if $k+l \leq d-1$.

Using elliptic curves

This time we take $\mathbf{G} = E/\mathbb{F}_q$ an ordinary elliptic curve. Let i be a degree *d* ideal of $\operatorname{End}(E)$ dividing $\phi - 1$. Assume i is invertible and $\operatorname{End}(E)/i$ is cyclic. Set $T = \operatorname{Ker} i \subset E(\mathbb{F}_q)$ and $I : E \to F = E/T$. The quotient $F(\mathbb{F}_q)/I(E(\mathbb{F}_q))$ is isomorphic to *T*. Choose *a* in $F(\mathbb{F}_q)$ such that *a* mod $I(E(\mathbb{F}_q))$ is a generator. Choose $b \in I^{-1}(a)$ and set $\mathbf{L} = \mathbf{K}(b)$ a degree *d* extension. Clearly $\phi(b) = b \oplus_{\mathbf{G}} t$ for some $t \in T$. For any integer $k \ge 0$ call \mathcal{F}_k the set of functions in $\mathbb{F}_q(E)$ with degree $\le k$ having no pole at *b*.

$$P_k = \{f(b) | f \in \mathcal{F}_k\}.$$

Clearly $\mathbf{K} = P_0 = P_1 \subset P_2 \subset \cdots \subset P_d = \mathbf{L}$ and

$$P_k \times P_l \subset P_{k+l}$$
.

Since \mathcal{F}_k is invariant by T, also P_k is invariant by $\operatorname{Gal}(\mathsf{L}/\mathsf{K})$ because $\phi(f(b)) = f(\phi(b)) = f(b \oplus_{\mathsf{G}} t)$.

Let $K = \mathbb{F}_7$ and d = 5, we first consider the elliptic curve E of order 10 defined by $y^2 + xy + 5y = x^3 + 3x^2 + 3x + 2$. The point t = (3, 1) generates a subgroup $T \subset E$ of order 5, and with E' = E/T defined by $y^2 + xy + 5y = x^3 + 3x^2 + 4x + 6$, we find

$$I: (x, y) \mapsto \left(\frac{x^5 + 2x^2 + 5x + 6}{x^4 + 3x^2 + 4}, \frac{(x^6 + 4x^4 + 3x^3 + 6x^2 + 3x + 4)y + 3x^5 + x^4 + x^3 + 3x^2 + 4x + 1}{x^6 + x^4 + 5x^2 + 6}\right)$$

Let now a = (4, 2), we define L with the irreducible polynomial $(\tau^5 + 2\tau^2 + 5\tau + 6) - 4(\tau^4 + 3\tau^2 + 4) = \tau^5 + 3\tau^4 + 4\tau^2 + 5\tau + 4$, and we set $b = (\tau : \tau^{4756})$.

Références

N. Bourbaki. Algèbre, chapitre V. Masson, 1981.

A. Joux and R. Lercier.

The function field sieve in the medium prime case. Lecture Notes in Comput. Sci., 4004 :254–270, 2006.

S. Lang.

Algebra. Addison-Wesley, 1984.

- G. Malle and B.H. Matzat. Inverse Galois Theory. Springer, 1999.

A. M. Odlyzko.

Discrete logarithms : The past and the future. Designs, Codes, and Cryptography, 19:129–145, 2000.

(ロ) (型) (E) (E) (E) (O)