Complex multiplication of elliptic curves

Andreas Enge

LFANT project-team
INRIA Bordeaux-Sud-Ouest
andreas.enge@inria.fr
http://www.math.u-bordeaux.fr/~aenge

FAST Workshop, Bordeaux, 6 September 2017

Complex multiplication

(1) Motivation

(2) Elliptic curves over \mathbb{C}
(3) Modular forms and functions

4 Complex multiplication
(5) Cardinality of $E\left(\mathbb{F}_{q}\right)$

6 Class fields
(7) Algorithm

8 Class numbers, heights and precision

Inría

Elliptic curves

- $E: Y^{2}=X^{3}+a X+b, \quad a, b \in \mathbb{F}_{p}$
- Abelian variety of dimension $1 \Rightarrow$ finite group

- Hasse 1934

$$
\left|\# E\left(\mathbb{F}_{p}\right)-(p+1)\right| \leqslant 2 \sqrt{p}
$$

- Deuring 1941: All these cardinalities occur.

Literature: [Sch10]
inría

Primality proofs

If $P \in E\left(\mathbb{Z} / N_{1} \mathbb{Z}\right)$ with P of prime order N_{2},

$$
N_{2}>\left(\sqrt[4]{N_{1}}+1\right)^{2}
$$

then N_{1} is prime.

Record: 25050 decimal digits (Morain 2010)

Cryptography

- Discrete logarithm based cryptography
- Need prime cardinality
- Prefer random curves
- Pairing-based cryptography Weil and (reduced) Tate pairing

$$
e: E\left(\mathbb{F}_{p}\right)[\ell] \times E\left(\mathbb{F}_{p^{k}}\right)[\ell] \rightarrow \mathbb{F}_{p^{k}}^{\times}[\ell]
$$

- Bilinear: $e(a P, b Q)=e(P, Q)^{a b}$
- An exponential number of cryptographic primitives...
- Need CM constructions for suitable curves.

Complex multiplication

(1) Motivation

(2) Elliptic curves over \mathbb{C}
(3) Modular forms and functions

4 Complex multiplication
(5) Cardinality of $E\left(\mathbb{F}_{q}\right)$

6 Class fields
(7) Algorithm
8) Class numbers, heights and precision
inría

Definition 2.1

Let $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ with $\Im\left(\frac{\omega_{2}}{\omega_{1}}\right)>0$ be a complex lattice. An elliptic function is a meromorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ with

$$
f(z+\omega)=f(z) \quad \forall z \in \mathbb{C}, \omega \in L
$$

Proposition 2.2

\mathbb{C} / L is a compact Riemann surface of genus 1 .
inría

Definition 2.3

The Weierstraß \wp-function and its derivative are given by

$$
\begin{aligned}
\wp(z \mid L) & =\frac{1}{z^{2}}+\sum_{\omega \in L}^{\prime}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) \\
\wp^{\prime}(z \mid L) & =-2 \sum_{\omega \in L} \frac{1}{(z-\omega)^{3}}
\end{aligned}
$$

Proposition 2.4

\wp^{\prime} is odd and elliptic, \wp is even and elliptic. The field of elliptic functions is $\mathbb{C}\left(\wp, \wp^{\prime}\right)$.

Definition 2.5

Let the Eisenstein series be defined by

$$
\begin{aligned}
G_{k}(L) & =\sum_{\omega \in L}^{\prime} \frac{1}{\omega^{2 k}} \\
g_{2}(L) & =60 G_{2}(L) \\
g_{3}(L) & =140 G_{3}(L)
\end{aligned}
$$

Proposition 2.6

The map

$$
\mathbb{C} / L \rightarrow E: Y^{2} Z=4 X^{3}-g_{2}(L) X Z^{2}-g_{3}(L) Z^{3}
$$

$$
\begin{aligned}
z & \mapsto \begin{cases}\left(\wp(z): \wp^{\prime}(z): 1\right) & \text { for } z \notin L \\
\left(\frac{\wp(z)}{\wp^{\prime}(z)}: 1: \frac{1}{\wp^{\prime}(z)}\right) & \text { in a neighbourhood of } 0\end{cases} \\
0 & \mapsto(0: 1: 0)
\end{aligned}
$$

is a bijection between the additive group \mathbb{C} / L and E.
The right hand side (in $Z=1$) has discriminant

$$
\Delta(L)=g_{2}(L)^{3}-27 g_{3}(L)^{2} .
$$

Theorem 2.7 (Addition formula of \wp)

$$
\begin{aligned}
\wp\left(z_{1}+z_{2}\right) & =-\wp\left(z_{1}\right)-\wp\left(z_{2}\right)+\frac{1}{4}\left(\frac{\wp^{\prime}\left(z_{1}\right)-\wp^{\prime}\left(z_{2}\right)}{\wp\left(z_{1}\right)-\wp\left(z_{2}\right)}\right)^{2} \text { for } z_{1} \pm z_{2} \notin L \\
\wp(2 z) & =-2 \wp(z)+\frac{1}{4}\left(\frac{\wp^{\prime \prime}(z)}{\wp^{\prime}(z)}\right)^{2} \\
& =-2 \wp(z)+\frac{1}{4}\left(\frac{12 \wp(z)^{2}-g_{2}}{2 \wp^{\prime}(z)}\right)^{2} \text { for } 2 z \notin L
\end{aligned}
$$

Complex multiplication

(1) Motivation

(2) Elliptic curves over \mathbb{C}
(3) Modular forms and functions
(4) Complex multiplication
(5) Cardinality of $E\left(\mathbb{F}_{q}\right)$
(6) Class fields
(7) Algorithm
8) Class numbers, heights and precision
inría

Definition 3.1

Let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{Sl}_{2}(\mathbb{Z})$ and $k \in \mathbb{Z}$. We denote

$$
\begin{aligned}
(f \circ M)(z) & =f(M z)=f\left(\frac{a z+b}{c z+d}\right) \\
\left(f f_{k} M\right)(z) & =(c z+d)^{-k} f(M z)
\end{aligned}
$$

Let $\Gamma=\operatorname{Sl}_{2}(\mathbb{Z}) /\{ \pm 1\}$ be the modular group. Let $\mathbb{H}=\{z \in \mathbb{C}: \Im(z)>0\}$. Then

$$
\begin{aligned}
M: \mathbb{H} & \rightarrow \mathbb{H} \\
\mathbb{Q} \cup\{i \infty\} & \rightarrow \mathbb{Q} \cup\{i \infty\} ;
\end{aligned}
$$

the latter are called cusps. Let $\mathbb{H}^{*}=\mathbb{H} \cup \mathbb{Q} \cup\{i \infty\}$.

Proposition 3.2

$$
\Gamma=\langle T, S\rangle
$$

with the translation $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right): z \mapsto z+1$ and the inversion (Stürzung) $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right): z \mapsto \frac{-1}{z}$.
$\Gamma \backslash \mathbb{H}^{*}$ is a compact Riemann surface represented by the fundamental domain

$$
\mathcal{F}=\left\{z \in \mathbb{H}:-\frac{1}{2} \leqslant \Re(z)<\frac{1}{2},|z| \geqslant 1, \Re(z) \leqslant 0 \text { if }|z|=1\right\} \cup\{i \infty\}
$$

Definition 3.3

A meromorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is a modular form for Γ of weight k if
(1) $f_{k} M=f \quad \forall M \in G$
(2) f is meromorphic at $i \infty$: There are $\nu_{0} \in \mathbb{Z}$ and $a_{\nu} \in \mathbb{C}$ with

$$
f(z)=\sum_{\nu \geqslant \nu_{0}} a_{\nu} q^{\nu} \text { with } q=e^{2 \pi i z}
$$

f is called a modular function if $k=0$; the field of modular functions for Γ is denoted \mathbb{C}_{Γ}.

Definition 3.4

Two lattices L and L^{\prime} are homothetic if $L^{\prime}=\lambda L$ for some $\lambda \in \mathbb{C}^{*}$.

Proposition 3.5

$$
\begin{aligned}
\wp(\lambda z \mid \lambda L) & =\lambda^{-2} \wp(z \mid L) \\
g_{2}(\lambda L) & =\lambda^{-4} g_{2}(L) \\
g_{3}(\lambda L) & =\lambda^{-6} g_{3}(L)
\end{aligned}
$$

The curves

$$
\begin{array}{rll}
E=\mathbb{C} / L & : & Y^{2}=4 X^{3}-g_{2}(L) X-g_{3}(L) \\
E^{\prime}=\mathbb{C} / \lambda L & : & Y^{2}=4 X^{3}-\lambda^{-4} g_{2}(L) X-\lambda^{-6} g_{3}(L)=4 X^{3}-g_{2}(\lambda L) X-g_{3}
\end{array}
$$

are isomorphic under $(X, Y) \mapsto\left(\lambda^{-2} X, \lambda^{-3} Y\right)$; these are the only possible isomorphisms.

Examples 3.6

Define $g_{2}(z)=g_{2}(\mathbb{Z}+z \mathbb{Z})$, and so on.
Then g_{2}, g_{3}, Δ are modular for Γ of weight $4,6,12$.

$$
j=1728 \frac{g_{2}^{3}}{\Delta}
$$

is a modular function, holomorphic in \mathbb{H} with a simple pole at $i \infty$:

$$
j=q^{-1}+744+196884 q+21493760 q^{2}+\cdots ;
$$

precisely,

$$
\mathbb{C}_{\Gamma}=\mathbb{C}(j) .
$$

Theorem 3.7

$$
\begin{aligned}
& E=\mathbb{C} / L \text { and } E^{\prime}=\mathbb{C} / L^{\prime} \text { isomorphic } \\
\Leftrightarrow & L \text { and } L^{\prime} \text { homothetic } \\
\Leftrightarrow & j(L)=j\left(L^{\prime}\right)
\end{aligned}
$$

Complex multiplication

(1) Motivation

(2) Elliptic curves over \mathbb{C}
(3) Modular forms and functions

4 Complex multiplication
(5) Cardinality of $E\left(\mathbb{F}_{q}\right)$
(6) Class fields
(7) Algorithm
(8) Class numbers, heights and precision
inría

Definition 4.1

An isogeny from \mathbb{C} / L to \mathbb{C} / L^{\prime} is an $\alpha \in \mathbb{C}^{*}$ such that $\alpha L \subseteq L^{\prime}$. It is a group homomorphism:

$$
\alpha\left(z_{1}+z_{2}\right)=\alpha z_{1}+\alpha z_{2},
$$

with kernel

$$
\operatorname{ker} \alpha=\left(\alpha^{-1} L^{\prime}\right) / L .
$$

L is a sublattice of $\alpha^{-1} L^{\prime}$. Its index is

$$
|\operatorname{ker} \alpha|=|\alpha|^{2} \frac{\operatorname{covol}(L)}{\operatorname{covol}\left(L^{\prime}\right)}
$$

If $L=L^{\prime}$, then an isogeny is called endomorphism or multiplier.

Theorem 4.2

Let $L=\mathbb{Z}+\tau \mathbb{Z}$ be a lattice and $\alpha \in \mathbb{C} \backslash \mathbb{Z}$. Are equivalent:
(1) $\alpha L \subseteq L$
(2) $L=\frac{1}{A}\left(A, \frac{-B+\sqrt{D}}{2}\right)_{\mathbb{Z}}$ is a proper fractional ideal of an imaginary quadratic order $\mathcal{O}=\left(1, \frac{D+\sqrt{D}}{2}\right)_{\mathbb{Z}}$, and $\alpha \in \mathcal{O}$.
(3) $\wp(\alpha z \mid L)$ is a rational function in $\wp(z \mid L), \wp^{\prime}(\alpha z \mid L)$ equals $\wp^{\prime}(z \mid L)$ times a rational function in $\wp(z \mid L)$.

Corollary 4.3

An elliptic curve over \mathbb{C} has endomorphism ring

- \mathbb{Z} or
- \mathcal{O}, an imaginary-quadratic order of discriminant D (complex multiplication).
In the latter case,

$$
\begin{aligned}
E= & \mathbb{C} / \mathfrak{a} \text { for a proper ideal } \mathfrak{a} \text { of } \mathcal{O} \\
\mathfrak{a}= & A \mathbb{Z}+\left(\frac{-B+\sqrt{D}}{2}\right) \mathbb{Z} \\
& A, B, C \in \mathbb{Z}, A>0, \operatorname{gcd}(A, B, C)=1 \\
& D=B^{2}-4 A C ; \text { so } C>0
\end{aligned}
$$

There are $h(\mathcal{O})=|\mathrm{Cl}(\mathcal{O})|$ non-isomorphic such curves, parameterised by the singular values $j(\mathfrak{a}):=j(\tau)$ with $\tau=\frac{-B+\sqrt{D}}{2 A}$ a basis quotient of \mathfrak{a}.

Complex multiplication

(1) Motivation

(2) Elliptic curves over \mathbb{C}
(3) Modular forms and functions

4 Complex multiplication
(5) Cardinality of $E\left(\mathbb{F}_{q}\right)$
(6) Class fields
(7) Algorithm
(8) Class numbers, heights and precision
inría

Theorem 5.1 (Deuring 1941)

Every (ordinary) elliptic curve over a finite field $\mathbb{F}_{q}=\mathbb{F}_{p^{m}}$ is the reduction "modulo p " of an elliptic curve over \mathbb{C} with the same endomorphism ring, called its canonical lift.

Definition 5.2

The map $\pi: E \rightarrow E,(x, y) \mapsto\left(x^{q}, y^{q}\right)$, is called the Frobenius endomorphism.

Theorem 5.3 (Hasse)

Let $\mathcal{O}=\left(1, \frac{1 / 0+\sqrt{D}}{2}\right)$ be the order of discriminant $D<-4$, and

$$
4 q=t^{2}-v^{2} D
$$

Then $|t| \leqslant 2 \sqrt{q}$. Either the element $\pi=\frac{t+v \sqrt{D}}{2}$ or $-\pi$ is (reduced to) the Frobenius on the elliptic curves with complex multiplication by \mathcal{O}. They have minimal polynomials

$$
\pi^{2}-\operatorname{Tr}(\pi) \pi+\mathrm{N}(\pi)=\pi^{2} \mp t \pi+q
$$

The associated elliptic curves have cardinality
Ínría $|\operatorname{ker}(\pi-1)|=|\pi-1|^{2}=\mathrm{N}(\pi-1)=q+1 \mp t$.

Complex multiplication

(1) Motivation

(2) Elliptic curves over \mathbb{C}
(3) Modular forms and functions

4 Complex multiplication
(5) Cardinality of $E\left(\mathbb{F}_{q}\right)$
(6) Class fields
(7) Algorithm
(8) Class numbers, heights and precision
inría

Theorem 6.1

$j(\mathfrak{a})$ is an algebraic integer.

Theorem 6.2

K_{H} / K is Galois with group $\mathrm{Cl}(\mathcal{O})$ via:

$$
\sigma(\mathfrak{b}): j(\mathfrak{a}) \mapsto j\left(\mathfrak{a} \mathfrak{b}^{-1}\right)
$$

If D is fundamental, it is the Hilbert class field, the maximal abelian unramified extension, of K, and σ is the Artin map from class field theory. \mathfrak{p} prime ideal of order f in $\mathrm{Cl}(\mathcal{O})$
$\Leftrightarrow \mathfrak{p}$ has inertia degree f in K_{H}

Definition 6.3

The irreducible polynomial

$$
\begin{equation*}
H_{D}(X)=\prod_{\mathfrak{a} \in \operatorname{Cl}(\mathcal{O})}(X-j(\mathfrak{a})) \in \mathbb{Z}[X] \tag{1}
\end{equation*}
$$

is called the (Hilbert) class polynomial of \mathcal{O}.

Inría

Complex multiplication

(1) Motivation

(2) Elliptic curves over \mathbb{C}
(3) Modular forms and functions

4 Complex multiplication
(5) Cardinality of $E\left(\mathbb{F}_{q}\right)$
(6) Class fields
(7) Algorithm
(8) Class numbers, heights and precision

Cnría

Algorithm 7.1

Input: A problem
Output: An elliptic curve E over \mathbb{F}_{q} with known cardinality providing a solution to the problem
(1) Choose $D, q=p^{f}$ such that $4 p^{f}=t^{2}-v^{2} D$ for some $t, v \in \mathbb{Z}$ (and there is no solution with a smaller f), and suitable $|E|=q+1-t$.
(2) Compute

$$
H_{D}(X)=\prod_{\mathfrak{a} \in \mathrm{Cl}(\mathcal{O})}(X-j(\mathfrak{a})) \in \mathbb{Z}[X]
$$

by Algorithm 7.2.
(3) Compute a root $\bar{j} \in \mathbb{F}_{q}$ of $H_{D} \bmod p$.
(0) $k=\frac{\bar{j}}{1728-\bar{j}}, \gamma$ quadratic non-residue in \mathbb{F}_{q}
(5) return the one of $E: Y^{2}=X^{3}+3 k X+2 k \quad E^{\prime}: Y^{2}=X^{3}+3 k \gamma^{2} X+2 k \gamma^{3}$ with $|E|=q+1-t$ (for $D<-4$, otherwise, more twists)

Algorithm 7.2

Input: $D<0$ a quadratic discriminant
Output: $H_{D} \in \mathbb{Z}[X]$
(1) Let $h=\# \mathrm{Cl}\left(\mathcal{O}_{D}\right)$.
(0) Compute the reduced system of representatives $\left[A_{k}, B_{k}, C_{k}\right]$ of $\mathrm{Cl}\left(\mathcal{O}_{D}\right)$ for $k=1, \ldots, h$:

$$
D=B_{k}^{2}-4 A_{k} C_{k}, \operatorname{gcd}\left(A_{k}, B_{k}, C_{k}\right)=1,\left|B_{k}\right| \leqslant A_{k} \leqslant C_{k}
$$

and $B_{k}>0$ if there is equality in one of the inequalities.
(0) for $k=1, \ldots, h_{D}$

- $\quad \tau_{k} \leftarrow \frac{-B_{k}+\sqrt{D}}{2 A_{k}} \in \mathbb{C}$
- $j_{k} \leftarrow j\left(\tau_{k}\right) \in \mathbb{C}$
(0) $H_{D} \leftarrow \prod_{k=1}^{h_{D}}\left(X-j_{k}\right) \in \mathbb{C}[X]$
(0) Drop the imaginary part of H_{D}, and round the coefficients to integers.

Complex multiplication

(1) Motivation

(2) Elliptic curves over \mathbb{C}
(3) Modular forms and functions

4 Complex multiplication
(5) Cardinality of $E\left(\mathbb{F}_{q}\right)$
(6) Class fields
(7) Algorithm
(8) Class numbers, heights and precision

Theorem 8.1

$$
h_{D} \in O\left(|D|^{1 / 2} \log |D|\right) ;
$$

under GRH,

$$
h_{D} \in O\left(|D|^{1 / 2} \log \log |D|\right), h_{D} \in \Omega\left(\frac{|D|^{1 / 2}}{\log \log |D|}\right) .
$$

Theorem 8.2 ([Eng09, Sch91])

$$
\operatorname{maxcoeff}\left(H_{D}\right) \leqslant C h_{D}+\pi \sqrt{|D|} \sum_{k=1}^{h_{D}} \frac{1}{A_{k}} \in O\left(|D|^{1 / 2} \log ^{2}|D|\right) \subseteq O\left(|D|^{1 / 2}\right)
$$ with $C=3.01 \ldots$.

R Andreas Enge.
The complexity of class polynomial computation via floating point approximations.
Mathematics of Computation, 78(266):1089-1107, 2009.
René Schoof.
The exponents of the groups of points on the reductions of an elliptic curve.
In G. van der Geer, F. Oort, and J. Steenbrink, editors, Arithmetic Algebraic Geometry, pages 325-335, Boston, 1991. Birkhäuser.
國 Reinhard Schertz.
Complex Multiplication, volume 15 of New Mathematical Monographs.
Cambridge University Press, Cambridge, 2010.

Inría

