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Elliptic curves

E : Y2 = X3 + aX + b, a, b ∈ Fp

Abelian variety of dimension 1 ⇒ finite group

Hasse 1934
|#E(Fp)− (p + 1)| ⩽ 2

√p

Deuring 1941: All these cardinalities occur.
Literature: [Sch10]
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Primality proofs

If P ∈ E(Z/N1Z) with P of prime order N2,

N2 >
(

4
√

N1 + 1
)2

,

then N1 is prime.

Record: 25 050 decimal digits (Morain 2010)
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Cryptography

Discrete logarithm based cryptography
▶ Need prime cardinality
▶ Prefer random curves

Pairing-based cryptography Weil and (reduced) Tate pairing

e : E(Fp)[ℓ]× E(Fpk)[ℓ]→ F×
pk [ℓ]

▶ Bilinear: e(aP, bQ) = e(P,Q)ab

▶ An exponential number of cryptographic primitives...
▶ Need CM constructions for suitable curves.
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Definition 2.1
Let L = Zω1 + Zω2 with ℑ

(
ω2
ω1

)
> 0 be a complex lattice. An elliptic

function is a meromorphic function f : C→ C with

f(z + ω) = f(z) ∀z ∈ C, ω ∈ L.

ω1

ω2

Proposition 2.2
C/L is a compact Riemann surface of genus 1.
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Definition 2.3
The Weierstraß ℘-function and its derivative are given by

℘(z|L) =
1

z2 +
∑
ω∈L

′
(

1

(z− ω)2
− 1

ω2

)
℘′(z|L) = −2

∑
ω∈L

1

(z− ω)3

Proposition 2.4

℘′ is odd and elliptic, ℘ is even and elliptic. The field of elliptic functions
is C(℘, ℘′).

Andreas Enge Complex multiplication Bordeaux 2017 6



Definition 2.5
Let the Eisenstein series be defined by

Gk(L) =
∑
ω∈L

′ 1

ω2k

g2(L) = 60G2(L)
g3(L) = 140G3(L)
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Proposition 2.6
The map

C/L → E : Y2Z = 4X3 − g2(L)XZ2 − g3(L)Z3

z 7→

{
(℘(z) : ℘′(z) : 1) for z ̸∈ L(
℘(z)
℘′(z) : 1 : 1

℘′(z)

)
in a neighbourhood of 0

0 7→ (0 : 1 : 0)

is a bijection between the additive group C/L and E.
The right hand side (in Z = 1) has discriminant

∆(L) = g2(L)3 − 27g3(L)2.
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Theorem 2.7 (Addition formula of ℘)

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)2

for z1 ± z2 ̸∈ L

℘(2z) = −2℘(z) + 1

4

(
℘′′(z)
℘′(z)

)2

= −2℘(z) + 1

4

(
12℘(z)2 − g2

2℘′(z)

)2

for 2z ̸∈ L
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Definition 3.1

Let M =

(
a b
c d

)
∈ Sl2(Z) and k ∈ Z. We denote

(f ◦M)(z) = f(Mz) = f
(

az + b
cz + d

)
(f|kM)(z) = (cz + d)−kf(Mz)

Let Γ = Sl2(Z)/{±1} be the modular group. Let H = {z ∈ C : ℑ(z) > 0}.
Then

M : H → H
Q ∪ {i∞} → Q ∪ {i∞};

the latter are called cusps. Let H∗ = H ∪Q ∪ {i∞}.
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Proposition 3.2

Γ = ⟨T,S⟩

with the translation T =

(
1 1
0 1

)
: z 7→ z + 1 and the inversion (Stürzung)

S =

(
0 −1
1 0

)
: z 7→ −1

z .

Γ\H∗ is a compact Riemann surface represented by the fundamental
domain

F =

{
z ∈ H : −1

2
⩽ ℜ(z) < 1

2
, |z| ⩾ 1,ℜ(z) ⩽ 0 if |z| = 1

}
∪ {i∞}
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Definition 3.3
A meromorphic function f : H→ C is a modular form for Γ of weight k if

1 f|kM = f ∀M ∈ G
2 f is meromorphic at i∞: There are ν0 ∈ Z and aν ∈ C with

f(z) =
∑
ν⩾ν0

aνqν with q = e2πiz.

f is called a modular function if k = 0; the field of modular functions for Γ
is denoted CΓ.
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Definition 3.4
Two lattices L and L′ are homothetic if L′ = λL for some λ ∈ C∗.

Proposition 3.5

℘(λz|λL) = λ−2℘(z|L)
g2(λL) = λ−4g2(L)
g3(λL) = λ−6g3(L)

The curves

E = C/L : Y2 = 4X3 − g2(L)X− g3(L)
E′ = C/λL : Y2 = 4X3 − λ−4g2(L)X− λ−6g3(L) = 4X3 − g2(λL)X− g3(λL)

are isomorphic under (X,Y) 7→ (λ−2X, λ−3Y); these are the only possible
isomorphisms.
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Examples 3.6
Define g2(z) = g2(Z+ zZ), and so on.
Then g2, g3, ∆ are modular for Γ of weight 4, 6, 12.

j = 1728
g32
∆

is a modular function, holomorphic in H with a simple pole at i∞:

j = q−1 + 744 + 196884q + 21493760q2 + · · · ;

precisely,
CΓ = C(j).
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Theorem 3.7
E = C/L and E′ = C/L′ isomorphic

⇔ L and L′ homothetic
⇔ j(L) = j(L′)
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Definition 4.1
An isogeny from C/L to C/L′ is an α ∈ C∗ such that αL ⊆ L′. It is a
group homomorphism:

α(z1 + z2) = αz1 + αz2,

with kernel
kerα = (α−1L′)/L.

L is a sublattice of α−1L′. Its index is

| kerα| = |α|2 covol(L)
covol(L′)

If L = L′, then an isogeny is called endomorphism or multiplier.
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Theorem 4.2
Let L = Z+ τZ be a lattice and α ∈ C\Z. Are equivalent:

1 αL ⊆ L
2 L = 1

A

(
A, −B+

√
D

2

)
Z

is a proper fractional ideal of an imaginary

quadratic order O =
(
1, D+

√
D

2

)
Z
, and α ∈ O.

3 ℘(αz|L) is a rational function in ℘(z|L), ℘′(αz|L) equals ℘′(z|L) times
a rational function in ℘(z|L).
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Corollary 4.3

An elliptic curve over C has endomorphism ring
Z or
O, an imaginary-quadratic order of discriminant D (complex
multiplication).

In the latter case,

E = C/a for a proper ideal a of O

a = AZ+

(
−B +

√
D

2

)
Z

A,B,C ∈ Z,A > 0, gcd(A,B,C) = 1,

D = B2 − 4AC; so C > 0.

There are h(O) = |Cl(O)| non-isomorphic such curves, parameterised by
the singular values j(a) := j(τ) with τ = −B+

√
D

2A a basis quotient of a.
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Theorem 5.1 (Deuring 1941)
Every (ordinary) elliptic curve over a finite field Fq = Fpm is the reduction
“modulo p” of an elliptic curve over C with the same endomorphism ring,
called its canonical lift.
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Definition 5.2
The map π : E→ E, (x, y) 7→ (xq, yq), is called the Frobenius
endomorphism.

Theorem 5.3 (Hasse)

Let O =
(
1, 1/0+

√
D

2

)
be the order of discriminant D < −4, and

4q = t2 − v2D.

Then |t| ⩽ 2
√q. Either the element π = t+v

√
D

2 or −π is (reduced to) the
Frobenius on the elliptic curves with complex multiplication by O. They
have minimal polynomials

π2 − Tr(π)π + N(π) = π2 ∓ tπ + q.

The associated elliptic curves have cardinality

| ker(π − 1)| = |π − 1|2 = N(π − 1) = q + 1∓ t.
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Theorem 6.1
j(a) is an algebraic integer.
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Theorem 6.2
KH = K(j(a))

K = Q(
√

D)

Q

KH ∩ R = Q(j(a))

KH/K is Galois
with group Cl(O) via:

σ(b) : j(a) 7→ j(ab−1)

If D is fundamental, it is the Hilbert class field, the maximal abelian
unramified extension, of K, and σ is the Artin map from class field theory.
p prime ideal of order f in Cl(O)
⇔ p has inertia degree f in KH
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Definition 6.3
The irreducible polynomial

HD(X) =
∏

a∈Cl(O)

(
X− j(a)

)
∈ Z[X] (1)

is called the (Hilbert) class polynomial of O.
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Algorithm 7.1
Input: A problem
Output: An elliptic curve E over Fq with known cardinality providing a
solution to the problem

1 Choose D, q = pf such that 4pf = t2 − v2D for some t, v ∈ Z (and
there is no solution with a smaller f), and suitable |E| = q + 1− t .

2 Compute
HD(X) =

∏
a∈Cl(O)

(
X− j(a)

)
∈ Z[X]

by Algorithm 7.2.
3 Compute a root j ∈ Fq of HD mod p.
4 k = j

1728−j , γ quadratic non-residue in Fq

5 return the one of
E : Y2 = X3 + 3kX + 2k E′ : Y2 = X3 + 3kγ2X + 2kγ3
with |E| = q + 1− t (for D < −4, otherwise, more twists)
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Algorithm 7.2

Input: D < 0 a quadratic discriminant
Output: HD ∈ Z[X]

1 Let h = #Cl(OD).
2 Compute the reduced system of representatives [Ak,Bk,Ck] of

Cl(OD) for k = 1, . . . , h:

D = B2
k − 4AkCk, gcd(Ak,Bk,Ck) = 1, |Bk| ⩽ Ak ⩽ Ck

and Bk > 0 if there is equality in one of the inequalities.
3 for k = 1, . . . , hD

4 τk ← −Bk+
√

D
2Ak

∈ C
5 jk ← j(τk) ∈ C
6 HD ←

∏hD
k=1(X− jk) ∈ C[X]

7 Drop the imaginary part of HD, and round the coefficients to integers.

Andreas Enge Complex multiplication Bordeaux 2017 25



Complex multiplication
1 Motivation

2 Elliptic curves over C

3 Modular forms and functions

4 Complex multiplication

5 Cardinality of E(Fq)

6 Class fields

7 Algorithm

8 Class numbers, heights and precision

Andreas Enge Complex multiplication Bordeaux 2017 26



Theorem 8.1

hD ∈ O
(
|D|1/2 log |D|

)
;

under GRH,

hD ∈ O
(
|D|1/2 log log |D|

)
, hD ∈ Ω

(
|D|1/2

log log |D|

)
.
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Theorem 8.2 ([Eng09, Sch91])

maxcoeff(HD) ⩽ ChD+π
√
|D|

hD∑
k=1

1

Ak
∈ O

(
|D|1/2 log2 |D|

)
⊆ Õ

(
|D|1/2

)
with C = 3.01 . . ..
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