2-Source Randomness Extractors for

Elliptic Curves

Abdoul Aziz Ciss

Laboratoire de Traitement de l'Information et Systèmes Intelligents
École Polytechnique de Thiès, Sénégal
aaciss@ept.sn
Workshop FAST - Bordeaux

Randomness Extractors

Definition

A randomness extractor for a group G is a function which converts a random element of G into a uniformly random bit-string of fixed length.

Applications

- Key derivation
- Encryption, signatures
- Construction of cryptographically secure pseudorandom numbers generator
- Error correcting codes

Statistical distance

Let X and Y be S-valued random variables, where S is a finite set. The statistical distance $\Delta(X, Y)$ between X and Y is

$$
\Delta(X, Y)=\frac{1}{2} \sum_{s \in S}|\operatorname{Pr}[X=s]-\operatorname{Pr}[Y=s]|
$$

Let U_{S} be a random variable uniformly distributed on S. Then a random variable X on S is said to be ε-uniform if

$$
\Delta\left(X, U_{S}\right) \leq \varepsilon
$$

Extractor

Let S and T be two finite sets. A (T, ε)-extractor is a function

$$
E x t: S \longrightarrow T
$$

such that for every distribution X on S, the distribution $\operatorname{Ext}(X)$ is ε-close to the uniform distribution on T. That is

$$
\Delta\left(\operatorname{Ext}(X), U_{T}\right) \leq \varepsilon
$$

where U_{T} is the uniform distribution on T

Two-source extractor

Let R, S and T be finite sets. The function $E x t: R \times S \longrightarrow T$ is a two-source extractor if the distribution $\operatorname{Ext}\left(X_{1}, X_{2}\right)$ is ε-close to the uniform distribution U_{T} for every uniformly distributed random variables X_{1} in R and X_{2} in S. That is,

$$
\Delta\left(E x t\left(X_{1}, X_{2}\right), U_{T}\right) \leq \varepsilon
$$

Collision probability

Let S be a finite set and X be an S-valued random variable. The collision probability of X, denoted by $\operatorname{Col}(X)$, is the probability

$$
\operatorname{Col}(X)=\sum_{s \in S} \operatorname{Pr}[X=s]^{2}
$$

If X and X^{\prime} are identically distributed random variables on S, the collision probability of X is interpreted as $\operatorname{Col}(X)=\operatorname{Pr}\left[X=X^{\prime}\right]$

Collision probability

Lemma

Let S be a finite set and let $\left(\alpha_{x}\right)_{x \in S}$ be a sequence of real numbers. Then,

$$
\begin{equation*}
\frac{\left(\sum_{x \in S}\left|\alpha_{x}\right|\right)^{2}}{|S|} \leq \sum_{x \in S} \alpha_{x}^{2} \tag{1}
\end{equation*}
$$

This inequality is a direct consequence of Cauchy-Schwarz inequality:

$$
\sum_{x \in S}\left|\alpha_{x}\right|=\sum_{x \in S}\left|\alpha_{x}\right| \cdot 1 \leq \sqrt{\sum_{x \in S} \alpha_{x}^{2}} \sqrt{\sum_{x \in S} 1^{2}} \leq \sqrt{|S|} \sqrt{\sum_{x \in S} \alpha_{x}^{2}} .
$$

If X is an S-valued random variable and if we consider that $\alpha_{x}=$ $\operatorname{Pr}[X=x]$, then

$$
\begin{equation*}
\frac{1}{|S|} \leq \operatorname{Col}(X) \tag{2}
\end{equation*}
$$

Relation btw Δ and Col

Lemma

Let X be a random variable over a finite S of size $|S|$ and $\delta=\Delta\left(X, U_{S}\right)$ be the statistical distance between X and U_{S}, the uniformly distributed random variable over S. Then,

$$
\operatorname{Col}(X) \geq \frac{1+4 \delta^{2}}{|S|}
$$

Relation btw Δ and Col

Proof. If $\delta=0$, then the result is an easy consequence of Equation 2.
Let suppose that $\delta \neq 0$ and define

$$
q_{x}=|\operatorname{Pr}[X=x]-1 /|S|| / 2 \delta .
$$

Then $\sum_{x} q_{x}=1$ and by Equation 1, we have

$$
\begin{aligned}
\frac{1}{|S|} & \leq \sum_{x \in S} q_{x}^{2}=\sum_{x \in S} \frac{(\operatorname{Pr}[X=x]-1 /|S|)^{2}}{4 \delta^{2}}=\frac{1}{4 \delta^{2}}\left(\sum_{x \in S} \operatorname{Pr}[X=x]^{2}-1 /|S|\right) \\
& \leq \frac{1}{4 \delta^{2}}(\operatorname{Col}(X)-1 /|S|) .
\end{aligned}
$$

The lemma can be deduced easily.

Character sums

Definition

Let G be a commutative group. A character χ of G is a homomorphism

$$
\chi: G \longrightarrow \mathbb{C}^{*}
$$

$\hat{G}=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ is a multiplicative group with neutral element χ_{0}, the character defined by $\chi_{0}(x)=1, \forall x \in G$.

If G is a cyclic group of order r, then $\chi(x)^{r}=\chi\left(x^{r}\right)=\chi(1)=1$.
If $x \in G$, then $\chi(x) \in \mu_{r}$, the subgroup of \mathbb{C}^{*} of $r^{\text {th }}$ of unity.

Character sums

If $\chi \in \hat{G}$, then the inverse of χ in \hat{G} is the conjugate character $\bar{\chi}$ of χ defined by $\bar{\chi}(x)=\overline{\chi(x)}$

Proposition

Let $K=\mathbb{F}_{q}$, with $q=p^{n}$ and let F be an n-variables polynomial with coefficients in K. If φ is a non-trivial additive character of K, then the number of solution of the equation $F=0$ is given by

$$
N=q^{-1} \sum_{y, x} y \varphi\left(F\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right),
$$

where the summation is extended to all points $\left(y, x_{1}, \ldots, x_{n}\right)$ of K^{n+1}

Character sums over prime fields

Let e_{p} be the character on \mathbb{F}_{p} such that, for all $x \in \mathbb{F}_{p}$

$$
e_{p}(x)=e^{\frac{2 i \pi x}{p}} \in \mathbb{C}^{*} .
$$

Let $S(a, G)=\sum_{x \in G} e_{p}(a x)$, then

$$
M=\max _{a}(|S(a, G)|) \leq \sqrt{p}
$$

If I is an interval of integers, it's well known that

$$
\sum_{x \in \mathbb{F}_{p}^{*}}\left|\sum_{a \in I} e_{p}(a x)\right| \leq p \log _{2}(p)
$$

Character sums over \mathbb{F}_{q}

We denote by ψ the additive character in \mathbb{F}_{q} such that for all $z \in \mathbb{F}_{q}$, $\psi(z)=e_{p}(\operatorname{Tr}(x))$. Let G be a subgroup of \mathbb{F}_{q} and let introduce the following Gauss sum

$$
T(a, G)=\sum_{x \in G} \psi(a x) .
$$

Then,

$$
\max _{a \in \mathbb{F}_{q}^{*}}|T(a, G)| \leq q^{1 / 2} .
$$

If V is an additive subgroup of \mathbb{F}_{q} and if ψ is an additive character of \mathbb{F}_{q}, then,

$$
\sum_{y \in \mathbb{F}_{q}}\left|\sum_{z \in V} \psi(y z)\right| \leq q .
$$

Character sums over elliptic curves

Let E be an elliptic curve defined over \mathbb{F}_{q}. For a point $P \neq \mathcal{O}$ on E we write $P=(\mathrm{x}(P), \mathrm{y}(P))$. Let ψ be a nonprincipal additive character of \mathbb{F}_{q} and let \mathcal{P} and \mathcal{Q} be two subsets of $E\left(\mathbb{F}_{q}\right)$. For arbitrary complex functions $\rho(P)$ and $\vartheta(Q)$ supported on \mathcal{P} and \mathcal{Q} we consider the bilinear sums of additive type:

$$
V_{\rho, \vartheta}(\psi, \mathcal{P}, \mathcal{Q})=\sum_{P \in \mathcal{P}} \sum_{Q \in \mathcal{Q}} \rho(P) \vartheta(Q) \psi(\mathrm{x}(P \oplus Q))
$$

Let

$$
\sum_{P \in \mathcal{P}}|\rho(P)|^{2} \leq R \quad \text { and } \quad \sum_{Q \in \mathcal{Q}}|\vartheta(Q)|^{2} \leq T
$$

Then, uniformly over all nontrivial additive character ψ of \mathbb{F}_{q},

$$
\left|V_{\rho, \vartheta}(\psi, \mathcal{P}, \mathcal{Q})\right| \ll \sqrt{q R T} .
$$

2-source randomness extractors for $E\left(\mathbb{F}_{p}\right)$

Definition

Let E be an elliptic curve defined a finite field \mathbb{F}_{q}, with $q=p$ a prime greater than 5 , and let \mathcal{P} and \mathcal{Q} be two subgroups of $E\left(\mathbb{F}_{q}\right)$ with $\# \mathcal{P}=r$ and $\# \mathcal{Q}=t$. Define the function

$$
\begin{aligned}
E x t_{1}: \mathcal{P} \times \mathcal{Q} & \longrightarrow\{0,1\}^{k} \\
(P, Q) & \longmapsto \operatorname{lsb}_{k}(\mathrm{x}(P \oplus Q))
\end{aligned}
$$

2-source randomness extractors for $E\left(\mathbb{F}_{p}\right)$

Theorem

Let E be an elliptic curve defined over \mathbb{F}_{p} and let \mathcal{P} and \mathcal{Q} be two subgroups of $E\left(\mathbb{F}_{p}\right)$, with $\# \mathcal{P}=r$ and $\# \mathcal{Q}=t$. Let $U_{\mathcal{P}}$ and $U_{\mathcal{Q}}$ be two random variables uniformly distributed in \mathcal{P} and \mathcal{Q} respectively and let U_{k} be the uniform distribution in $\{0,1\}^{k}$. Then,

$$
\Delta\left(\operatorname{Ext}_{1}\left(U_{\mathcal{P}}, U_{\mathcal{Q}}\right), U_{k}\right) \ll \sqrt{\frac{2^{k-1} p \log (p)}{r t}}
$$

2-source randomness extractors for $E\left(\mathbb{F}_{p}\right)$

Corollary

Let m and l be the bit size of r and t respectively and let e be a positive integer. If k is a positive integer such that

$$
k \leq m+l-\left(n+2 e+\log _{2}(n)+1\right),
$$

then $E x t_{1}$ is a $\left(k, O\left(2^{-e}\right)\right)$-deterministic extractor for $\mathcal{P} \times \mathcal{Q}$.

Application to the Unified Model KE

Symetric key size	Bit size of p	Bit size of \#P $:\|m\|_{2}$
$\|k\|_{2}=64:$ DES-64	521	378
	384	309
	256	245
$\|k\|_{2}=128:$ AES-128	521	410
	384	340

Table: Parameters for $\operatorname{Ext}_{1}\left(Z_{e}, Z_{s}\right)$ at the 80 -bit security level

2-source randomness extractors for $E\left(\mathbb{F}_{p^{n}}\right)$, with $p>5$

Definition

Let E be an elliptic curve defined over the finite field $\mathbb{F}_{p^{n}}$, where p is a prime greater than 5 and $n>1$. Consider two subgroups \mathcal{P} and \mathcal{Q} of $E\left(\mathbb{F}_{q}\right)$. Define the function

$$
\begin{aligned}
E x t_{2}: \mathcal{P} \times \mathcal{Q} & \longrightarrow \mathbb{F}_{p}^{k} \\
(P, Q) & \longmapsto\left(x_{1}, x_{2}, \ldots, x_{k}\right)
\end{aligned}
$$

where $\mathrm{x}(P \oplus Q)=\left(x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right)$. In other words, the function $E x t_{2}$ output the k first \mathbb{F}_{p}-coefficients of the abscissa of the point $P \oplus Q$.

2-source randomness extractors for $E\left(\mathbb{F}_{p^{n}}\right)$, with $p>5$

Theorem

Let E be an elliptic curve defined over $\mathbb{F}_{p^{n}}$ and let \mathcal{P} and \mathcal{Q} be two subgroup of $E\left(\mathbb{F}_{p^{n}}\right)$ with $\# \mathcal{P}=r$ and $\# \mathcal{Q}=t$. Denote by $U_{\mathcal{P}}$ and $U_{\mathcal{Q}}$ two random variables uniformly distributed on \mathcal{P} and \mathcal{Q} respectively. Then,

$$
\Delta\left(\operatorname{Ext}_{2}\left(U_{\mathcal{P}}, U_{\mathcal{Q}}\right), U_{\mathbb{F}_{p}^{k}}\right) \ll \sqrt{\frac{p^{n+k}}{4 r t}}
$$

Future work

1. Generalization of Ext ${ }_{1}$ and $E x t_{2}$

$$
\begin{aligned}
\text { Ext }_{1}: \mathcal{P}_{1} \times \mathcal{P}_{2} \times \ldots \times \mathcal{P}_{s} & \longrightarrow\{0,1\}^{k} \\
\left(P_{1}, P_{2}, \ldots, P_{s}\right) & \longmapsto \operatorname{lsb}_{k}\left(\mathrm{x}\left(P_{1} \oplus P_{2} \oplus \ldots \oplus P_{s}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { Ext }_{2}: \mathcal{P}_{1} \times \mathcal{P}_{2} \times \ldots \times \mathcal{P}_{s} & \longrightarrow \mathbb{F}_{p}^{k} \\
\left(P_{1}, P_{2}, \ldots, P_{s}\right) & \longmapsto \mathcal{D}_{k}\left(\mathrm{x}\left(P_{1} \oplus P_{2} \oplus \ldots \oplus P_{s}\right)\right)
\end{aligned}
$$

2. Construct good pseudorandom number generators with Ext 1_{1} and Ext ${ }_{2}$

Thank you for your attention

