Character sums 00000 Randomness extractors for EC 00000000

2-Source Randomness Extractors for Elliptic Curves

Abdoul Aziz Ciss

Laboratoire de Traitement de l'Information et Systèmes Intelligents École Polytechnique de Thiès, Sénégal aaciss@ept.sn

Workshop FAST - Bordeaux

Character sum

Randomness extractors for EC 00000000

Randomness Extractors

Definition

A randomness extractor for a group G is a function which converts a random element of G into a uniformly random bit-string of fixed length.

Applications

- Key derivation
- Encryption, signatures
- Construction of cryptographically secure pseudorandom numbers generator
- Error correcting codes

Extractors

Character sum: 00000 Randomness extractors for EC 00000000

3/22

Statistical distance

Let X and Y be S-valued random variables, where S is a finite set. The statistical distance $\Delta(X, Y)$ between X and Y is

$$\Delta(X,Y) = \frac{1}{2} \sum_{s \in S} |\Pr[X=s] - \Pr[Y=s]|$$

Let U_S be a random variable uniformly distributed on S. Then a random variable X on S is said to be ε -uniform if

$$\Delta(X, U_S) \le \varepsilon$$

Extractors

Character sum: 00000 Randomness extractors for EC 00000000

4 / 22

Extractor

Let S and T be two finite sets. A (T, ε) -extractor is a function

 $Ext:S\longrightarrow T$

such that for every distribution X on S, the distribution Ext(X) is ε -close to the uniform distribution on T. That is

 $\Delta(Ext(X), U_T) \le \varepsilon,$

where U_T is the uniform distribution on T

Character sum 00000 Randomness extractors for EC 00000000

5/22

Two-source extractor

Let R, S and T be finite sets. The function $Ext : R \times S \longrightarrow T$ is a two-source extractor if the distribution $Ext(X_1, X_2)$ is ε -close to the uniform distribution U_T for every uniformly distributed random variables X_1 in R and X_2 in S. That is,

 $\Delta(Ext(X_1, X_2), U_T) \le \varepsilon,$

Extractors

Character sum

Randomness extractors for EC 00000000

6/22

Collision probability

Let S be a finite set and X be an S-valued random variable. The collision probability of X, denoted by Col(X), is the probability

$$Col(X) = \sum_{s \in S} \Pr[X = s]^2$$

If X and X' are identically distributed random variables on S, the collision probability of X is interpreted as $Col(X) = \Pr[X = X']$

Character sums

Randomness extractors for EC 00000000

Collision probability

Lemma

Let S be a finite set and let $(\alpha_x)_{x\in S}$ be a sequence of real numbers. Then,

$$\frac{\sum_{x\in S} |\alpha_x|)^2}{|S|} \le \sum_{x\in S} \alpha_x^2.$$
(1)

This inequality is a direct consequence of Cauchy-Schwarz inequality:

$$\sum_{x \in S} |\alpha_x| = \sum_{x \in S} |\alpha_x| \cdot 1 \le \sqrt{\sum_{x \in S} \alpha_x^2} \sqrt{\sum_{x \in S} 1^2} \le \sqrt{|S|} \sqrt{\sum_{x \in S} \alpha_x^2}.$$

If X is an S-valued random variable and if we consider that $\alpha_x = \Pr[X = x]$, then

$$\frac{1}{|S|} \le Col(X),\tag{2}$$

7 / 22

Extractors

Character sum

Randomness extractors for EC 00000000

8/22

Relation btw Δ and Col

Lemma

Let X be a random variable over a finite S of size |S| and $\delta = \Delta(X, U_S)$ be the statistical distance between X and U_S , the uniformly distributed random variable over S. Then,

$$Col(X) \ge \frac{1+4\delta^2}{|S|}$$

Character sum: 00000 Randomness extractors for EC 00000000

9/22

Relation btw Δ and Col

Proof. If $\delta = 0$, then the result is an easy consequence of Equation 2. Let suppose that $\delta \neq 0$ and define

$$q_x = |\Pr[X = x] - 1/|S||/2\delta.$$

Then $\sum_{x} q_x = 1$ and by Equation 1, we have

$$\begin{aligned} \frac{1}{|S|} &\leq \sum_{x \in S} q_x^2 = \sum_{x \in S} \frac{(\Pr[X = x] - 1/|S|)^2}{4\delta^2} = \frac{1}{4\delta^2} \left(\sum_{x \in S} \Pr[X = x]^2 - 1/|S| \right) \\ &\leq \frac{1}{4\delta^2} (Col(X) - 1/|S|). \end{aligned}$$

The lemma can be deduced easily.

Character sums

Randomness extractors for EC 00000000

Character sums

Definition

Let G be a commutative group. A character χ of G is a homomorphism

$$\chi: G \longrightarrow \mathbb{C}^*.$$

 $\hat{G} = \text{Hom}(G, \mathbb{C}^*)$ is a multiplicative group with neutral element χ_0 , the character defined by $\chi_0(x) = 1, \forall x \in G$.

If G is a cyclic group of order r, then $\chi(x)^r = \chi(x^r) = \chi(1) = 1$. If $x \in G$, then $\chi(x) \in \mu_r$, the subgroup of \mathbb{C}^* of r^{th} of unity.

Character sums

Randomness extractors for EC 00000000

Character sums

If $\chi \in \hat{G}$, then the inverse of χ in \hat{G} is the conjugate character $\bar{\chi}$ of χ defined by $\bar{\chi}(x) = \overline{\chi(x)}$

Proposition

Let $K = \mathbb{F}_q$, with $q = p^n$ and let F be an *n*-variables polynomial with coefficients in K. If φ is a non-trivial additive character of K, then the number of solution of the equation F = 0 is given by

$$N = q^{-1} \sum_{y,x} y\varphi(F(x_1, x_2, \dots, x_n)),$$

where the summation is extended to all points (y, x_1, \ldots, x_n) of K^{n+1}

Character sums

Randomness extractors for EC 00000000

Character sums over prime fields

Let e_p be the character on \mathbb{F}_p such that, for all $x \in \mathbb{F}_p$

$$e_p(x) = e^{\frac{2i\pi x}{p}} \in \mathbb{C}^*.$$

Let $S(a,G) = \sum_{x \in G} e_p(ax)$, then

$$M = \max_{a}(|S(a,G)|) \le \sqrt{p}.$$

If I is an interval of integers, it's well known that

$$\sum_{x \in \mathbb{F}_p^*} \left| \sum_{a \in I} e_p(ax) \right| \le p \log_2(p).$$

(□) (E) (E) E () Q() 12/22

Character sums

Randomness extractors for EC 00000000

Character sums over \mathbb{F}_q

We denote by ψ the additive character in \mathbb{F}_q such that for all $z \in \mathbb{F}_q$, $\psi(z) = e_p(\operatorname{Tr}(x))$. Let G be a subgroup of \mathbb{F}_q and let introduce the following Gauss sum

$$T(a,G) = \sum_{x \in G} \psi(ax).$$

Then,

$$\max_{a \in \mathbb{F}_q^*} |T(a, G)| \le q^{1/2}.$$

If V is an additive subgroup of \mathbb{F}_q and if ψ is an additive character of \mathbb{F}_q , then,

$$\sum_{y \in \mathbb{F}_q} \left| \sum_{z \in V} \psi(yz) \right| \le q.$$

Character sums over elliptic curves

Let *E* be an elliptic curve defined over \mathbb{F}_q . For a point $P \neq \mathcal{O}$ on *E* we write $P = (\mathbf{x}(P), \mathbf{y}(P))$. Let ψ be a nonprincipal additive character of \mathbb{F}_q and let \mathcal{P} and \mathcal{Q} be two subsets of $E(\mathbb{F}_q)$. For arbitrary complex functions $\rho(P)$ and $\vartheta(Q)$ supported on \mathcal{P} and \mathcal{Q} we consider the bilinear sums of additive type:

$$V_{\rho,\vartheta}(\psi,\mathcal{P},\mathcal{Q}) = \sum_{P\in\mathcal{P}}\sum_{Q\in\mathcal{Q}}\rho(P)\vartheta(Q)\psi(\mathbf{x}(P\oplus Q)).$$

Let

$$\sum_{P \in \mathcal{P}} |\rho(P)|^2 \leq R \quad \text{ and } \quad \sum_{Q \in \mathcal{Q}} |\vartheta(Q)|^2 \leq T.$$

Then, uniformly over all nontrivial additive character ψ of \mathbb{F}_q ,

$$|V_{\rho,\vartheta}(\psi,\mathcal{P},\mathcal{Q})| \ll \sqrt{qRT}.$$

Character sums

Randomness extractors for EC •••••••

2-source randomness extractors for $E(\mathbb{F}_p)$

Definition

Let *E* be an elliptic curve defined a finite field \mathbb{F}_q , with q = p a prime greater than 5, and let \mathcal{P} and \mathcal{Q} be two subgroups of $E(\mathbb{F}_q)$ with $\#\mathcal{P} = r$ and $\#\mathcal{Q} = t$. Define the function

$$Ext_1 : \mathcal{P} \times \mathcal{Q} \longrightarrow \{0, 1\}^k$$
$$(P, Q) \longmapsto \operatorname{lsb}_k(\mathbf{x}(P \oplus Q))$$

Character sum: 00000 Randomness extractors for EC 0000000

16 / 22

2-source randomness extractors for $E(\mathbb{F}_p)$

Theorem

Let E be an elliptic curve defined over \mathbb{F}_p and let \mathcal{P} and \mathcal{Q} be two subgroups of $E(\mathbb{F}_p)$, with $\#\mathcal{P} = r$ and $\#\mathcal{Q} = t$. Let $U_{\mathcal{P}}$ and $U_{\mathcal{Q}}$ be two random variables uniformly distributed in \mathcal{P} and \mathcal{Q} respectively and let U_k be the uniform distribution in $\{0,1\}^k$. Then,

$$\Delta(Ext_1(U_{\mathcal{P}}, U_{\mathcal{Q}}), U_k) \ll \sqrt{\frac{2^{k-1}p\log(p)}{rt}}$$

Character sum: 00000 Randomness extractors for EC 0000000

2-source randomness extractors for $E(\mathbb{F}_p)$

Corollary

Let m and l be the bit size of r and t respectively and let e be a positive integer. If k is a positive integer such that

$$k \le m + l - (n + 2e + \log_2(n) + 1),$$

then Ext_1 is a $(k, O(2^{-e}))$ -deterministic extractor for $\mathcal{P} \times \mathcal{Q}$.

□ ▶ < **□** ▶ < **≧** ▶ < **≧** ▶ **≦** ∽ Q (~ 17/22

Randomness extractors for EC

◆□> ◆□> ◆臣> ◆臣> 臣 のへで

18 / 22

Application to the Unified Model KE

Symetric key size	Bit size of p	Bit size of $\#\mathcal{P}$: $ m _2$
$ k _2 = 64$: DES-64	521	378
	384	309
	256	245
$ k _2 = 128$: AES-128	521	410
	384	340
$ k _2 = 256$: AES-256	521	474

Table: Parameters for $Ext_1(Z_e, Z_s)$ at the 80-bit security level

2-source randomness extractors for $E(\mathbb{F}_{p^n})$, with p > 5

Definition

Let E be an elliptic curve defined over the finite field \mathbb{F}_{p^n} , where p is a prime greater than 5 and n > 1. Consider two subgroups \mathcal{P} and \mathcal{Q} of $E(\mathbb{F}_q)$. Define the function

$$Ext_2: \mathcal{P} \times \mathcal{Q} \longrightarrow \mathbb{F}_p^k$$
$$(P, Q) \longmapsto (x_1, x_2, \dots, x_k)$$

where $\mathbf{x}(P \oplus Q) = (x_1, x_2, \dots, x_k, x_{k+1}, \dots, x_n)$. In other words, the function Ext_2 output the k first \mathbb{F}_p -coefficients of the abscissa of the point $P \oplus Q$.

Randomness extractors for EC 00000000

20 / 22

2-source randomness extractors for $E(\mathbb{F}_{p^n})$, with p > 5

Theorem

Let E be an elliptic curve defined over \mathbb{F}_{p^n} and let \mathcal{P} and \mathcal{Q} be two subgroup of $E(\mathbb{F}_{p^n})$ with $\#\mathcal{P} = r$ and $\#\mathcal{Q} = t$. Denote by $U_{\mathcal{P}}$ and $U_{\mathcal{Q}}$ two random variables uniformly distributed on \mathcal{P} and \mathcal{Q} respectively. Then,

$$\Delta(Ext_2(U_{\mathcal{P}}, U_{\mathcal{Q}}), U_{\mathbb{F}_p^k}) \ll \sqrt{\frac{p^{n+k}}{4rt}}$$

Character sum 00000 Randomness extractors for EC

Future work

1. Generalization of Ext_1 and Ext_2

$$Ext_1: \mathcal{P}_1 \times \mathcal{P}_2 \times \ldots \times \mathcal{P}_s \longrightarrow \{0, 1\}^k$$
$$(P_1, P_2, \ldots, P_s) \longmapsto \operatorname{lsb}_k(\operatorname{x}(P_1 \oplus P_2 \oplus \ldots \oplus P_s))$$

$$Ext_2: \mathcal{P}_1 \times \mathcal{P}_2 \times \ldots \times \mathcal{P}_s \longrightarrow \mathbb{F}_p^k$$
$$(P_1, P_2, \ldots, P_s) \longmapsto \mathcal{D}_k(\mathbf{x}(P_1 \oplus P_2 \oplus \ldots \oplus P_s))$$

2. Construct good pseudorandom number generators with Ext_1 and Ext_2

Extractors

Character sum: 00000 Randomness extractors for EC

◆□> ◆□> ◆目> ◆目> ◆目> ○○○

22 / 22

Thank you for your attention