
Numerics of classical elliptic functions,
elliptic integrals and modular forms

Fredrik Johansson
LFANT, Inria Bordeaux & Institut de Mathématiques de Bordeaux

KMPB Conference: Elliptic Integrals, Elliptic Functions and
Modular Forms in Quantum Field Theory

DESY, Zeuthen, Germany
24 October 2017

1 / 49

Introduction

Elliptic functions
I F (z + ω1m + ω2n) = F (z), m,n ∈ Z
I Can assume ω1 = 1 and ω2 = τ ∈ H = {τ ∈ C : Im(τ) > 0}

Elliptic integrals
I
∫

R(x,
√

P(x))dx; inverses of elliptic functions

Modular forms/functions on H
I F (aτ+b

cτ+d) = (cτ + d)kF (τ) for
(

a b
c d

)
∈ PSL2(Z)

I Related to elliptic functions with fixed z and varying
lattice parameter ω2/ω1 = τ ∈ H

Jacobi theta functions (quasi-elliptic functions)
I Used to construct elliptic and modular functions

2 / 49

Numerical evaluation

Lots of existing literature, software (Pari/GP, Sage, Maple,
Mathematica, Matlab, Maxima, GSL, NAG, . . .).

This talk will mostly review standard techniques (and many
techniques will be omitted).

My goal: general purpose methods with

I Rigorous error bounds
I Arbitrary precision
I Complex variables

Implementations in the C library Arb (http://arblib.org/)

3 / 49

Why arbitrary precision?

Applications:
I Mitigating roundoff error for lengthy calculations
I Surviving cancellation between exponentially large terms
I High order numerical differentiation, extrapolation
I Computing discrete data (integer coefficients)
I Integer relation searches (LLL/PSLQ)
I Heuristic equality testing

Also:
I Can increase precision if error bounds are too pessimistic

Most interesting range: 10− 105 digits. (Millions, billions...?)

4 / 49

Ball/interval arithmetic

A real number in Arb is represented by a rigorous enclosure as
a high-precision midpoint and a low-precision radius:

[3.14159265358979323846264338328± 1.07 · 10−30]

Complex numbers: [m1 ± r1] + [m2 ± r2]i.

Key points:
I Error bounds are propagated automatically
I As cheap as arbitrary-precision floating-point
I To compute f (x) =

∑∞
k=0� ≈

∑N−1
k=0 � rigorously, only

need analysis to bound |
∑∞

k=N �|
I Dependencies between variables may lead to inflated

enclosures. Useful technique is to compute f ([m ± r]) as
[f (m)± s] where s = |r| sup|x−m|≤r |f ′(x)|.

5 / 49

Reliable numerical evaluation
Example: sin(π + 10−35)
IEEE 754 double precision result: 1.2246467991473532e-16

Adaptive numerical evaluation with Arb:
164 bits: [± 6.01 · 10−19]
128 bits: [−1.0 · 10−35 ± 3.38 · 10−38]
192 bits: [−1.00000000000000000000 · 10−35 ± 1.59 · 10−57]

Can be used to implement reliable floating-point functions,
even if you don’t use interval arithmetic externally:

Float
input

Arb
function

Accurate
enough?

Increase
precision

Output
midpoint noyes

6 / 49

Elliptic and modular functions in Arb

I PSL2(Z) transformations and argument reduction

I Jacobi theta functions θ1(z, τ), . . . , θ4(z, τ)

I Arbitrary z-derivatives of Jacobi theta functions

I Weierstrass elliptic functions ℘(n)(z, τ), ℘−1(z, τ), ζ(z, τ), σ(z, τ)

I Modular forms and functions: j(τ), η(τ),∆(τ), λ(τ),G2k(τ)

I Legendre complete elliptic integrals K (m),E(m),Π(n,m)

I Incomplete elliptic integrals F (φ,m), E(φ,m), Π(n, φ,m)

I Carlson incomplete elliptic integrals RF ,RJ ,RC ,RD,RG

Possible future projects:

I The suite of Jacobi elliptic functions and integrals

I Asymptotic complexity improvements

7 / 49

An application: Hilbert class polynomials
For D < 0 congruent to 0 or 1 mod 4,

HD(x) =
∏

(a,b,c)

(
x − j

(
−b +

√
D

2a

))
∈ Z[x]

where (a,b, c) is taken over all the primitive reduced binary
quadratic forms ax2 + bxy + cy2 with b2 − 4ac = D.

Example:
H−31 = x3 + 39491307x2− 58682638134x + 1566028350940383

Algorithms: modular, complex analytic

−D Degree Bits Pari/GP classpoly CM Arb
106 + 3 105 8527 12 s 0.8 s 0.4 s 0.14 s
107 + 3 706 50889 194 s 8 s 29 s 17 s
108 + 3 1702 153095 1855 s 82 s 436 s 274 s

8 / 49

Some visualizations

The Weierstrass zeta-function ζ(0.25 + 2.25i, τ) as the lattice
parameter τ varies over [−0.25, 0.25] + [0, 0.15]i.

9 / 49

Some visualizations

The Weierstrass elliptic functions ζ(z, 0.25 + i) (left) and
σ(z, 0.25 + i) (right) as z varies over [−π, π], [−π, π]i.

10 / 49

Some visualizations

The function j(τ) on the complex interval [−2, 2] + [0, 1]i.

The function η(τ) on the complex interval [0, 24] + [0, 1]i.

11 / 49

Some visualizations

Plot of j(τ) on [
√

13,
√

13 + 10−101] + [0, 2.5× 10−102]i.

Plot of η(τ) on [
√

2,
√

2 + 10−101] + [0, 2.5× 10−102]i.

12 / 49

Approaches to computing special functions

I Numerical integration (integral representations, ODEs)

I Functional equations (argument reduction)

I Series expansions

I Root-finding methods (for inverse functions)

I Precomputed approximants (not applicable here)

13 / 49

Brute force: numerical integration
For analytic integrands, there are good algorithms that easily
permit achieving 100s or 1000s of digits of accuracy:

I Gaussian quadrature
I Clenshaw-Curtis method (Chebyshev series)
I Trapezoidal rule (for periodic functions)
I Double exponential (tanh-sinh) method
I Taylor series methods (also for ODEs)

Pros:
I Simple, general, flexible approach
I Can deform path of integration as needed

Cons:
I Usually slower than dedicated methods
I Possible convergence problems (oscillation, singularities)
I Error analysis may be complicated for improper integrals

14 / 49

Poisson and the trapezoidal rule (historical remark)

In 1827, Poisson considered the example of the perimeter of
an ellipse with axis lengths 1/π and 0.6/π:

I =
1

2π

∫ 2π

0

√
1− 0.36 sin2(θ)dθ =

2
π

E(0.36) = 0.9027799 . . .

Poisson used the trapezoidal approximation

I ≈ IN =
4
N

N/4∑′

k=0

√
1− 0.36 sin2(2πk/N).

With N = 16 (four points!), he computed I ≈ 0.9927799272
and proved that the error is < 4.84 · 10−6.

In fact |IN − I | = O(3−N). See Trefethen & Weideman,
The exponentially convergent trapezoidal rule, 2014.

15 / 49

A model problem: computing exp(x)

Standard two-step numerical recipe for special functions:
(not all functions fit this pattern, but surprisingly many do!)

1. Argument reduction

exp(x) = exp(x − n log(2)) · 2n

exp(x) =
[
exp(x/2R)

]2R

2. Series expansion

exp(x) = 1 + x +
x2

2!
+

x3

3!
+ . . .

Step (1) ensures rapid convergence and good numerical
stability in step (2).

16 / 49

Reducing complexity for p-bit precision

Principles:
I Balance argument reduction and series order optimally
I Exploit special (e.g. hypergeometric) structure of series

How to compute exp(x) for x ≈ 1 with an error of 2−1000?

I Only reduction: apply x → x/2 reduction 1000 times
I Only series evaluation: use 170 terms (170! > 21000)

I Better: apply d
√

1000e = 32 reductions and use 32 terms

This trick reduces the arithmetic complexity from p to p0.5

(time complexity from p2+ε to p1.5+ε).

With a more complex scheme, the arithmetic complexity can
be reduced to O(log2 p) (time complexity p1+ε).

17 / 49

Evaluating polynomials using rectangular splitting

(Paterson and Stockmeyer 1973; Smith 1989)∑N
i=0�xi in O(N) cheap steps + O(N 1/2) expensive steps

(� + �x + �x2 + �x3) +

(� + �x + �x2 + �x3) x4 +

(� + �x + �x2 + �x3) x8 +

(� + �x + �x2 + �x3) x12

This does not genuinely reduce the asymptotic complexity,
but can be a huge improvement (100 times faster) in practice.

18 / 49

Elliptic functions Elliptic integrals

Argument reduction

Move to standard domain
(periodicity, modular
transformations)

Move parameters close
together (various formulas)

Series expansions

Theta function q-series Multivariate hypergeometric
series (Appell, Lauricella . . .)

Special cases

Modular forms & functions,
theta constants

Complete elliptic integrals,
ordinary hypergeometric
series (Gauss 2F1)

19 / 49

Modular forms and functions

A modular form of weight k is a holomorphic function on
H = {τ : τ ∈ C, Im(τ) > 0} satisfying

F
(

aτ + b
cτ + d

)
= (cτ + d)kF (τ)

for any integers a,b, c,d with ad − bc = 1. A modular function
is meromorphic and has weight k = 0.

Since F (τ) = F (τ + 1), the function has a Fourier series (or
Laurent series/q-expansion)

F (τ) =
∞∑

n=−m

cne2iπnτ =

∞∑
n=−m

cnqn, q = e2πiτ , |q| < 1

20 / 49

Some useful functions and their q-expansions

Dedekind eta function
I η

(
aτ+b
cτ+d

)
= ε(a,b, c,d)

√
cτ + dη(τ)

I η(τ) = eπiτ/12∑∞
n=−∞(−1)nq(3n2−n)/2

The j-invariant

I j
(

aτ+b
cτ+d

)
= j(τ)

I j(τ) = 1
q + 744 + 196884q + 21493760q2 + · · ·

I j(τ) = 32(θ8
2 + θ8

3 + θ8
4)3/(θ2θ3θ4)8

Theta constants (q = eπiτ)

I (θ2, θ3, θ4) =
∑∞

n=−∞

(
q(n+1/2)2

, qn2
, (−1)nqn2

)
Due to sparseness, we only need N = O(

√
p) terms for p-bit

accuracy (so the evaluation takes p1.5+ε time).

21 / 49

Argument reduction for modular forms

PSL2(Z) is generated by
(

1 1
0 1

)
and

(
0 −1
1 0

)
.

By repeated use of τ → τ + 1 or τ → −1/τ , we can move τ to
the fundamental domain

{
τ ∈ H : |z| ≥ 1, |Re(z)| ≤ 1

2

}
.

In the fundamental domain, |q| ≤ exp(−π
√

3) = 0.00433 . . .,
which gives rapid convergence of the q-expansion.

-2.0 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

22 / 49

Practical considerations

Instead of applying F (τ + 1) = F (τ) or F (−1/τ) = τkF (τ) step
by step, build transformation matrix g =

(
a b
c d

)
and apply to F

in one step.

I This improves numerical stability
I g can usually be computed cheaply using machine floats

If computing F via theta constants, apply transformation for F
instead of the individual theta constants.

23 / 49

Fast computation of eta and theta function q-series

Consider
∑N

n=0 qn2
. More generally, qP(n), P ∈ Z[x] of degree 2.

Naively: 2N multiplications.

Enge, Hart & J, Short addition sequences for theta functions, 2016:

I Optimized addition sequence for P(0),P(1), . . . (2× speedup)

I Rectangular splitting: choose splitting parameter m so that P
has few distinct residues mod m (logarithmic speedup, in
practice another 2× speedup)

Schost & Nogneng, On the evaluation of some sparse polynomials, 2017:

I N 1/2+ε method (p1.25+ε time complexity) using FFT

I Faster for p > 200000 in practice

24 / 49

Jacobi theta functions

Series expansion:

θ3(z, τ) =

∞∑
n=−∞

qn2
w2n, q = eπiτ ,w = eπiz

and similarly for θ1, θ2, θ4.

The terms eventually decay rapidly (there can be an initial
“hump” if |w| is large). Error bound via geometric series.

For z-derivatives, we compute the object θ(z + x, τ) ∈ C[[x]]
(as a vector of coefficients) in one step.

θ(z+x, τ) = θ(z, τ)+θ′(z, τ)x+. . .+
θ(r−1)(z, τ)

(r − 1)!
xr−1+O(xr) ∈ C[[x]]

25 / 49

Argument reduction for Jacobi theta functions

Two reductions are necessary:

I Move τ to τ ′ in the fundamental domain (this operation
transforms z → z′, introduces some prefactors, and
permutes the theta functions)

I Reduce z′ modulo τ ′ using quasiperiodicity

General formulas for the transformation τ → τ ′ = aτ+b
cτ+d are

given in (Rademacher, 1973):

θn(z, τ) = exp(πiR/4) · A · B · θS(z′, τ ′)

z′ =
−z

cτ + d
, A =

√
i

cτ + d
, B = exp

(
−πic

z2

cτ + d

)
R, S are integers depending on n and (a,b, c,d).
The argument reduction also applies to θ(z + x, τ) ∈ C[[x]].

26 / 49

Elliptic functions

The Weierstrass elliptic function ℘(z, τ) = ℘(z + 1, τ) = ℘(z + τ, τ)

℘(z, τ) =
1
z2 +

∑
n2+m2 6=0

[
1

(z + m + nτ)2 −
1

(m + nτ)2

]

is computed via Jacobi theta functions as

℘(z, τ) = π2θ2
2(0, τ)θ2

3(0, τ)
θ2

4(z, τ)

θ2
1(z, τ)

− π2

3

[
θ4

3(0, τ) + θ4
3(0, τ)

]

Similarly σ(z, τ), ζ(z, τ) and ℘(k)(z, τ) using z-derivatives of
theta functions.

With argument reduction for both z and τ already
implemented for theta functions, reduction for ℘ is
unnecessary (but can improve numerical stability).

27 / 49

Some timings

For d decimal digits (z =
√

5 +
√

7i, τ =
√

7 + i/
√

11):

Function d = 10 d = 102 d = 103 d = 104 d = 105

exp(z) 7.7 · 10−7 2.94 · 10−6 0.000112 0.0062 0.237

log(z) 8.1 · 10−7 2.75 · 10−6 0.000114 0.0077 0.274

η(τ) 6.2 · 10−6 1.99 · 10−5 0.00037 0.0150 0.69

j(τ) 6.3 · 10−6 2.29 · 10−5 0.00046 0.0223 1.10

(θi(0, τ))4
i=1 7.6 · 10−6 2.67 · 10−5 0.00044 0.0217 1.09

(θi(z, τ))4
i=1 2.8 · 10−5 8.10 · 10−5 0.00161 0.0890 5.41

℘(z, τ) 3.9 · 10−5 0.000122 0.00213 0.113 6.55

(℘, ℘′) 5.6 · 10−5 0.000166 0.00255 0.128 7.26

ζ(z, τ) 7.5 · 10−5 0.000219 0.00284 0.136 7.80

σ(z, τ) 7.6 · 10−5 0.000223 0.00299 0.143 8.06

28 / 49

Elliptic integrals

Any elliptic integral
∫

R(x,
√

P(x))dx can be written in terms
of a small “basis set”. The Legendre forms are used by tradition.

Complete elliptic integrals:
K (m) =

∫ π/2
0

dt√
1−m sin2 t

=
∫ 1

0
dt(√

1−t2
)(√

1−mt2
)

E(m) =
∫ π2

0

√
1−m sin2 t dt =

∫ 1
0

√
1−mt2√

1−t2
dt

Π(n,m) =
∫ π/2

0
dt

(1−n sin2 t)
√

1−m sin2 t
=
∫ 1

0
dt

(1−nt2)
√

1−t2
√

1−mt2

Incomplete integrals:
F (φ,m) =

∫ φ
0

dt√
1−m sin2 t

=
∫ sinφ

0
dt(√

1−t2
)(√

1−mt2
)

E(φ,m) =
∫ φ

0

√
1−m sin2 t dt =

∫ sinφ
0

√
1−mt2√

1−t2
dt

Π(n, φ,m) =
∫ φ

0
dt

(1−n sin2 t)
√

1−m sin2 t
=
∫ sinφ

0
dt

(1−nt2)
√

1−t2
√

1−mt2

29 / 49

Complete elliptic integrals and 2F1

The Gauss hypergeometric function is defined for |z| < 1 by

2F1(a,b, c, z) =

∞∑
k=0

(a)k(b)k

(c)k

zk

k!
, (x)k = x(x + 1) · · · (x + k−1)

and elsewhere by analytic continuation. The 2F1 function can
be computed efficiently for any z ∈ C.

K (m) = 1
2π 2F1(1

2 ,
1
2 , 1,m)

E(m) = 1
2π 2F1(−1

2 ,
1
2 , 1,m)

This works, but it’s not the best way!

30 / 49

Complete elliptic integrals and the AGM

The AGM of x, y is the common limit of the sequences

an+1 =
an + bn

2
, bn+1 =

√
anbn

with a0 = x,b0 = y. As a functional equation:

M (x, y) = M
(

x + y
2

,
√

xy
)

Each step doubles the number of digits in M (x, y) ≈ x ≈ y
⇒ convergence in O(log p) operations (p1+ε time complexity).

K (m) =
π

2M (1,
√

1−m)
, E(m) = (1−m)(2mK ′(m) + K (m))

31 / 49

Numerical aspects of the AGM

Argument reduction vs series expansion: O(1) terms only.
Slightly better than reducing all the way to |an − bn| < 2−p:

π

4K (z2)
=

1
2
− z2

8
− 5z4

128
− 11z6

512
− 469z8

32768
+ O(z10)

Complex variables: simplify to M (z) = M (1, z) using
M (x, y) = xM (1, y/x). Some case distinctions for correct
square root branches in AGM iteration.

Derivatives: can use finite (central) difference for M ′(z) (better
method possible using elliptic integrals), higher derivatives
using recurrence relations.

32 / 49

Incomplete elliptic integrals

Incomplete elliptic integrals are multivariate hypergeometric
functions. In terms of the Appell F1 function

F1(a,b1,b2; c; x, y) =

∞∑
m,n=0

(a)m+n(b1)m(b2)n

(c)m+n m! n!
xmyn

where |x|, |y| < 1, we have

F (z,m) =

∫ z

0

dt√
1−m sin2 t

= sin(z) F1(1
2 ,

1
2 ,

1
2 ,

3
2 ; sin2 z,m sin2 z)

Problems:

I How to reduce arguments so that |x|, |y| � 1?
I How to perform analytic continuation and obtain

consistent branch cuts for complex variables?

33 / 49

Branch cuts of Legendre incomplete elliptic integrals

34 / 49

Branch cuts of F (z,m) with respect to z . . .

35 / 49

Branch cuts of F (z,m) with respect to z (continued)

36 / 49

Branch cuts of F (z,m) with respect to z (continued)

37 / 49

Branch cuts of F (z,m) with respect to z (continued)

38 / 49

Branch cuts of F (z,m) with respect to z (continued)

39 / 49

Branch cuts of F (z,m) with respect to m

Conclusion: the Legendre forms are not nice as building blocks.

40 / 49

Carlson’s symmetric forms

In the 1960s, Bille C. Carlson suggested an alternative “basis
set” for incomplete elliptic integrals:

RF (x, y, z) =
1
2

∫ ∞
0

dt√
(t + x)(t + y)(t + z)

RJ (x, y, z,p) =
3
2

∫ ∞
0

dt

(t + p)
√

(t + x)(t + y)(t + z)

RC (x, y) = RF (x, y, y), RD(x, y, z) = RJ (x, y, z, z)

Advantages:
I Symmetry unifies and simplifies transformation laws
I Symmetry greatly simplifies series expansions
I The functions have nice complex branch structure
I Simple universal algorithm for computation

41 / 49

Evaluation of Legendre forms

For−π
2 ≤ Re(z) ≤ π

2 :

F (z,m) = sin(z) RF (cos2(z), 1−m sin2(z), 1)

Elsewhere, use quasiperiodic extension:

F (z + kπ,m) = 2kK (m) + F (z,m), k ∈ Z

Similarly for E(z,m) and Π(n, z,m).

Slight complication to handle (complex) intervals straddling
the lines Re(z) = (n + 1

2)π.

Useful for implementations: variants with z → πz.

42 / 49

Symmetric argument reduction

We have the functional equation

RF (x, y, z) = RF

(
x + λ

4
,

y + λ

4
,

z + λ

4

)
where λ =

√
x
√

y +
√

y
√

z +
√

z
√

x. Each application reduces
the distance between x, y, z by a factor 1/4.

Algorithm: apply reduction until the distance is ε, then use an
order-N series expansion with error term O(εN).

For p-bit accuracy, need p/(2N) argument reduction steps.

(A similar functional equation exists for RJ (x, y, z,p).)

43 / 49

Series expansion when arguments are close

RF (x, y, z) = R−1/2
(1

2 ,
1
2 ,

1
2 , x, y, z

)
RJ (x, y, z,p) = R−3/2

(1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , x, y, z,p,p

)
Carlson’s R is a multivariate hypergeometric series:

R−a(b; z) =

∞∑
M=0

(a)M

(
∑n

j=1 bj)M
TM (b1, . . . ,bn; 1− z1, . . . , 1− zn)

=

∞∑
M=0

z−a
n (a)M

(
∑n

j=1 bj)M
TM

(
b1, . . . ,bn−1; 1− z1

zn
, . . . , 1− zn−1

zn

)
,

TM (b1, . . . ,bn,w1, . . . ,wn) =
∑

m1+...+mn=M

n∏
j=1

(bj)mj

(mj)!
w

mj

j

Note that |TM | ≤ Const · p(M) max(|w1|, . . . , |wn|)M , so we can
easily bound the tail by a geometric series.

44 / 49

A clever idea by Carlson: symmetric polynomials

Using elementary symmetric polynomials Es(w1, . . . ,wn),

TM (1
2 ,w) =

∑
m1+2m2+...+nmn=M

(−1)M+
∑

j mj
(1

2

)∑
j mj

n∏
j=1

E
mj

j (w)

(mj)!

We can expand R around the mean of the arguments, taking
wj = 1− zj/A where A = 1

n

∑n
j=1 zj . Then E1 = 0, and most of

the terms disappear!

Carlson suggested expanding to M < N = 8:

A1/2RF (x, y, z) = 1−E2

10
+

E3

14
+

E2
2

24
−3E2E3

44
−

5E3
2

208
+

3E2
3

104
+

E2
2 E3

16
+O(ε8)

Need p/16 argument reduction steps for p-bit accuracy.

45 / 49

Rectangular splitting for the R series
The exponents of Em2

2 Em3
3 appearing in the series for RF are

the lattice points m2,m3 ∈ Z≥0 with 2m2 + 3m3 < N .

m2

m3

(terms appearing for N = 10)

Compute powers of E2, use Horner’s rule with respect to E3.
Clear denominators so that all coefficients are small integers.

⇒ O(N 2) cheap steps + O(N) expensive steps

For RJ , compute powers of E2,E3, use Horner for E4,E5.

46 / 49

Balancing series evaluation and argument reduction
Consider RF :

p = wanted precision in bits
O(εN) = error due to truncating the series expansion
O(N 2) = number of terms in series
O(p/N) = number of argument reduction steps for εN = 2−p

Overall cost O(N 2 + p/N) is minimized by N ∼ p0.333, giving
p0.667 arithmetic complexity (p1.667 time complexity).

Empirically, N ≈ 2p0.4 is optimal (due to rectangular splitting).
Speedup over N = 8 at d digits precision:

d = 10 d = 102 d = 103 d = 104 d = 105

1 1.5 4 11 31

47 / 49

Some timings
We include K (m) (computed by AGM), F (z,m) (computed by
RF) and the inverse Weierstrass elliptic function:

℘−1(z, τ) =
1
2

∫ ∞
z

dt√
(t − e1)(t − e2)(t − e3)

= RF (z−e1, z−e2, z−e3)

Function d = 10 d = 102 d = 103 d = 104 d = 105

exp(z) 7.7 · 10−7 2.94 · 10−6 0.000112 0.0062 0.237

log(z) 8.1 · 10−7 2.75 · 10−6 0.000114 0.0077 0.274

η(τ) 6.2 · 10−6 1.99 · 10−5 0.00037 0.0150 0.693

K (m) 5.4 · 10−6 1.97 · 10−5 0.000182 0.0068 0.213

F (z,m) 2.4 · 10−5 0.000114 0.0022 0.187 19.1

℘(z, τ) 3.9 · 10−5 0.000122 0.00214 0.129 6.82

℘−1(z, τ) 3.1 · 10−5 0.000142 0.00253 0.202 19.7

48 / 49

Quadratic transformations

It is possible to construct AGM-like methods (converging in
O(log p) steps) for general elliptic integrals and functions.

Problems:
I The overhead may be slightly higher at low precision
I Correct treatment of complex variables is not obvious

Unfortunately, I have not had time to study this topic.
However, see the following papers:

I The elliptic logarithm (≈ ℘−1): John E. Cremona and
Thotsaphon Thongjunthug, The complex AGM, periods of
elliptic curves over and complex elliptic logarithms, 2013.

I Elliptic and theta functions: Hugo Labrande, Computing
Jacobi’s θ in quasi-linear time, 2015.

49 / 49

