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Introduction

Elliptic functions
» Flz+wym+wyn) =F(z), mnelZx
» Canassumew; = landwy =7 € H= {7 € C:Im(7) > 0}

Elliptic integrals
» [ R(x,/P(x))dx; inverses of elliptic functions

Modular forms/functions on H

> F(425) = (cm + d)*F(r) for (¢}) € PSI»(2)
» Related to elliptic functions with fixed z and varying

lattice parameter wy /wy = 7 € H

Jacobi theta functions (quasi-elliptic functions)
» Used to construct elliptic and modular functions



Numerical evaluation

Lots of existing literature, software (Pari/GP, Sage, Maple,
Mathematica, Matlab, Maxima, GSL, NAG, ...).

This talk will mostly review standard techniques (and many
techniques will be omitted).

My goal: general purpose methods with

» Rigorous error bounds
» Arbitrary precision
» Complex variables

Implementations in the C library Arb (http://arblib.org/)



Why arbitrary precision?

Applications:
» Mitigating roundoff error for lengthy calculations
» Surviving cancellation between exponentially large terms

v

High order numerical differentiation, extrapolation
» Computing discrete data (integer coefficients)
Integer relation searches (LLL/PSLQ)

Heuristic equality testing

v

v

Also:
» Can increase precision if error bounds are too pessimistic

Most interesting range: 10 — 10° digits. (Millions, billions...?)
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Ball/interval arithmetic

A real number in Arb is represented by a rigorous enclosure as
a high-precision midpoint and a low-precision radius:

[3.14159265358979323846264338328 + 1.07 - 10730]

Complex numbers: [m; + 11| + [my £ 12]i.

Key points:
» Error bounds are propagated automatically
» As cheap as arbitrary-precision floating-point
» To compute f(x) =Y o O~ ZZ,X;OI O rigorously, only
need analysis to bound | Y72 O

» Dependencies between variables may lead to inflated
enclosures. Useful technique is to compute f([m + r]) as

[f(m) £ s] where s = [r| sup,_ <, [f'(x)].



Reliable numerical evaluation

Example: sin(m + 1073%)
IEEE 754 double precision result: 1.2246467991473532¢-16

Adaptive numerical evaluation with Arb:
64 bits: [+6.01 - 10719]
128 bits: [-1.0 - 10735 4+ 3.38 - 10738]
192 bits: [—1.00000000000000000000 - 103 4 1.59 - 10~>7]

Can be used to implement reliable floating-point functions,
even if you don't use interval arithmetic externally:

Float Arb Increase
Input function precision
Output Accurate
midpoint enough? no
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Elliptic and modular functions in Arb

>

PSI,(Z) transformations and argument reduction

Jacobi theta functions 0, (z, 1), ..., 04(z, 7)

Arbitrary z-derivatives of Jacobi theta functions

Weierstrass elliptic functions ¢ (z, 1), o~ (z,7),((2,7),0(2,T)
Modular forms and functions: j(7),n(7), A(7), A(7), Gk ()
Legendre complete elliptic integrals K(m), E(m), II(n, m)
Incomplete elliptic integrals F(¢, m), E(¢, m), I1(n, ¢, m)

Carlson incomplete elliptic integrals Ry, Ry, Rc, Rp, Rg

Possible future projects:

>

>

The suite of Jacobi elliptic functions and integrals

Asymptotic complexity improvements
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An application: Hilbert class polynomials
For D < 0 congruent to 0 or 1 mod 4,

Hp(x) = H (x—j (T)) € Z[x]
)

(a,b,c

where (a, b, c) is taken over all the primitive reduced binary
quadratic forms ax? + bxy + cy? with b* — 4ac = D.

Example:
H_ 31 = x* +39491307x? — 58682638134 + 1566028350940383

Algorithms: modular, complex analytic

-D Degree Bits ‘ Pari/GP classpolyy CM Arb
105 +3 105 8527 12s 08s | 0.4s 0.14s
10" +3 706 50889 194 s 8s| 29s 17s
108 +3 1702 153095 | 1855s 82s | 436s 274s
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Some visualizations

The Weierstrass zeta-function ((0.25 + 2.25i, 7) as the lattice
parameter 7 varies over [—0.25, 0.25] + [0, 0.15]i.
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Some visualizations

) .
The Weierstrass elliptic functions ((z, 0.25 + i) (left) and
0(z,0.25 + i) (right) as z varies over [—m, 7], [—7, 7]i.
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Some visualizations

The function j(7) on the complex interval [—2, 2] + [0, 1]i.

B (T,

The function n(7) on the complex interval [0, 24] +
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Some visualizations

A

Plot of j(r) on [v/13, V13 + 107101] 4 [0,2.5 x 10~102],

. . ol i ol o
Plot of 5(7) on [v2,v2 + 107191 4 0,2.5 x 107192];.
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Approaches to computing special functions

v

Numerical integration (integral representations, ODEs)

v

Functional equations (argument reduction)

v

Series expansions

v

Root-finding methods (for inverse functions)

v

Precomputed approximants (not applicable here)
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Brute force: numerical integration

For analytic integrands, there are good algorithms that easily
permit achieving 100s or 1000s of digits of accuracy:

» Gaussian quadrature

» Clenshaw-Curtis method (Chebyshev series)
» Trapezoidal rule (for periodic functions)

» Double exponential (tanh-sinh) method

» Taylor series methods (also for ODEs)

Pros:
» Simple, general, flexible approach
» Can deform path of integration as needed
Cons:
» Usually slower than dedicated methods
» Possible convergence problems (oscillation, singularities)
» Error analysis may be complicated for improper integrals
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Poisson and the trapezoidal rule (historical remark)

In 1827, Poisson considered the example of the perimeter of
an ellipse with axis lengths 1/7 and 0.6 /7:

27
2
I= 27r \/ 1 - 0.36sin’(9)df = ZE(0.36) = 0.9027799 ...

Poisson used the trapezoidal approximation

N/4

I~ NZ \/1—03651n (2wk/N).

With N = 16 (four points!), he computed I ~ 0.9927799272
and proved that the error is < 4.84 - 1075,

In fact |[Iy — I| = O(37Y). See Trefethen & Weideman,
The exponentially convergent trapezoidal rule, 2014.
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A model problem: computing exp(x)

Standard two-step numerical recipe for special functions:
(not all functions fit this pattern, but surprisingly many do!)

1. Argument reduction

exp(x) = exp(x — nlog(2)) - 2"

R\12"
exp(x) = [exp(x/2")]
2. Series expansion
2 3
exp(x) = 1+ x+ 50 + 57+
Step (1) ensures rapid convergence and good numerical
stability in step (2).

16 /49



Reducing complexity for p-bit precision

Principles:
» Balance argument reduction and series order optimally
» Exploit special (e.g. hypergeometric) structure of series

How to compute exp(x) for x =~ 1 with an error of 2710002

» Only reduction: apply x — x/2 reduction 1000 times
» Only series evaluation: use 170 terms (170! > 21000)
» Better: apply [v/1000] = 32 reductions and use 32 terms

This trick reduces the arithmetic complexity from p to p®-°
(time complexity from p?* to p!->*¢).

With a more complex scheme, the arithmetic complexity can
be reduced to O(log® p) (time complexity p'*<).
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Evaluating polynomials using rectangular splitting

(Paterson and Stockmeyer 1973; Smith 1989)

SN ,Ox'in O(N) cheap steps + O(N'/2) expensive steps

(0 + Ox + O + O ) -
(0 4+ Ox + O + O ) x* +
(0 4+ Ox + O + 0O ) x® +
(0 4+ Ox + O + OxF ) x%2

This does not genuinely reduce the asymptotic complexity,
but can be a huge improvement (100 times faster) in practice.
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Elliptic functions Elliptic integrals

Argument reduction
Move to standard domain Move parameters close
(periodicity, modular together (various formulas)
transformations)
Series expansions

Theta function g-series Multivariate hypergeometric

series (Appell, Lauricella...)

Special cases

Modular forms & functions, Complete elliptic integrals,
theta constants ordinary hypergeometric

series (Gauss 2 )
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Modular forms and functions
A modular form of weight k is a holomorphic function on
H = {7 :7 € C,Im(7) > 0} satisfying

ar+b
F(CT-i-d

) = (c7 + d)FF(r)

for any integers a, b, ¢, d with ad — bc = 1. A modular function
is meromorphic and has weight k = 0.

Since F(7) = F(7 + 1), the function has a Fourier series (or
Laurent series/ g-expansion)

o o
F(T)Z Z Cnezmm-: Z qun7 q:eZﬂiT7‘q‘ <1

n—=——m n=—m
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Some useful functions and their g-expansions

Dedekind eta function
-7 (g;j_g) = e(a, b, ¢, d)v/er + dn(r)
> (1) = emiT/12 Z;O:_w(_l)nq(Snz—n)/Z

The j-invariant
> (&) = o)
> j(r) = & + 744 + 1968844 + 214937604 + - - -
> J(r) = 32(03 + 65 + 63)°/(620502)°

Theta constants (g = e™'")
> (92703’04) — Z;o:_oo (q(n"rl/z)Z’ qnz’ (_l)nqnz)

Due to sparseness, we only need N = O(,/p) terms for p-bit
accuracy (so the evaluation takes p'>*¢ time).
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Argument reduction for modular forms
: 11 0 -1
PSI,(Z) is generated by (O 1) and (1 0 )

By repeated use of 7 — 7+ 1 or 7 — —1/7, we can move 7 to
the fundamental domain {T € H : |z| > 1, |Re(2)| < 3 }.

In the fundamental domain, |g| < exp(—7v/3) = 0.00433 .. .,
which gives rapid convergence of the g-expansion.

22/49



Practical considerations

Instead of applying F(7 + 1) = F(7) or F(—1/7) = 7FF(7) step
by step, build transformation matrix g = (¢ %) and apply to F
in one step.

» This improves numerical stability

» g can usually be computed cheaply using machine floats

If computing F via theta constants, apply transformation for F
instead of the individual theta constants.

N



Fast computation of eta and theta function g-series

Consider Z],LO g’ . More generally, g, P € Z[x] of degree 2.

Naively: 2N multiplications.

Enge, Hart & ], Short addition sequences for theta functions, 2016:

» Optimized addition sequence for P(0), P(1),... (2x speedup)

» Rectangular splitting: choose splitting parameter m so that P
has few distinct residues mod m (logarithmic speedup, in
practice another 2x speedup)

Schost & Nogneng, On the evaluation of some sparse polynomials, 2017:
» N'/2t¢ method (p'2°+¢ time complexity) using FFT

» Faster for p > 200000 in practice
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Jacobi theta functions

Series expansion:

[e.e]
5 . .
93(2’ 7_) — § : qn w2n’ q= errz-r7 w = e"®

n=—oo

and similarly for 6,, 62, 04.

The terms eventually decay rapidly (there can be an initial
“hump” if |w| is large). Error bound via geometric series.

For z-derivatives, we compute the object §(z + x, 7) € C[[x]]
(as a vector of coefficients) in one step.

e(r—l) (Zv 7—) r—1

0(z+x,7) = 0(z,7)+0 (2, 7)x+. . .+ r—1)!

+0(x") € C[[x]]
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Argument reduction for Jacobi theta functions

Two reductions are necessary:

» Move 7 to 7’ in the fundamental domain (this operation
transforms z — z/, introduces some prefactors, and
permutes the theta functions)

» Reduce z’ modulo 7’ using quasiperiodicity

ar+b
cT+d

General formulas for the transformation 7 — 7 = are

given in (Rademacher, 1973):

On(z,7) = exp(niR/4) - A- B-0s(z,7)

z’—i A= # B=-exp | —7wic a
Ccer+d “NVerra - P ct+d

R, S are integers depending on nand (a, b, c, d).
The argument reduction also applies to (z + x, 7) € C[[x]].
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Elliptic functions

The Weierstrass elliptic function p(z,7) = p(z + 1,7) = p(z + 7, 7)

1 1 1
plam) =27+ ZZ [(z+m+n¢)2_(m+n7)2
n2+m2=£0

is computed via Jacobi theta functions as

QE(Z, T) 2

plz.7) = w050, )50, 1)gs s [65(0,7) + 65(0.7)]
1 )

Similarly o(z, 7), ((z, 7) and p'®)(z, 7) using z-derivatives of
theta functions.

With argument reduction for both z and 7 already
implemented for theta functions, reduction for p is
unnecessary (but can improve numerical stability).
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Some timings

For d decimal digits (z = /5 + V7i, 7 = V7 + i/V/11):

Function d=10 d=10> d=10® d=10* d=10°
exp(z) 77-1077 2.94-10° 0.000112 0.0062  0.237
log(2) 8.1-1077 2.75-107% 0.000114 0.0077  0.274
n(7) 6.2-107% 1.99-10~° 0.00037 0.0150 0.69
j(r) 6.3-10°% 229.1075 0.00046 0.0223  1.10
(0:0,7)%, | 761075 2.67-105 0.00044  0.0217  1.09
(0i(z, T))‘l-l_l 2.8-107° 8.10-10"° 0.00161 0.0890 5.41
p(z,T) 3.9.10°5 0.000122 0.00213 0.113 6.55
(p,9) 5.6-107° 0.000166 0.00255 0.128 7.26
C(z, 1) 7.5-107° 0.000219 0.00284 0.136 7.80
o(z,T) 7.6-107° 0.000223  0.00299 0.143 8.06
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Elliptic integrals

Any elliptic integral [ R(x, /P(x))dx can be written in terms
of a small “basis set”. The Legendre forms are used by tradition.

Complete elliptic integrals
_ (/2
K(m) -~ Jo v/ 1—msin® t fo < 1- t2> (W)
= [*V1 - msin® tdt = [} Vl mtzd
w/2 dt dt
[I(n, m) = 0 (1-nsin?)y/1-msin®t fO (1—=n2)\/1=12y/1—ms?
Incomplete integrals

m) _ f smgb dt
0 v/ 1—msin® r (\/1 t2> (\/1 mt2>
fo V1 - msin?tdt = [P"° V\/ll;”;ﬂ

I(n fo = fsm¢ il

0 (1-n2)\/1-123/1-mz2

(1—nsin t\/l msin® t
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Complete elliptic integrals and » F;
The Gauss hypergeometric function is defined for |z| < 1 by

2Fi(a,b,c,z) = i (azgf)kjj, (X =x(x+1)---(x+k—-1)
k=0 ’

and elsewhere by analytic continuation. The , F; function can
be computed efficiently for any z € C.

This works, but it’s not the best way!
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Complete elliptic integrals and the AGM

The AGM of x, y is the common limit of the sequences

a,+b
apt+1 = n2 n’ bpi1 = anby

with ay = x, by = y. As a functional equation:

My = (52 )

Each step doubles the number of digitsin M (x,y) =~ x = y
= convergence in O(log p) operations (p'*¢ time complexity).

K(m) E(m) = (1-m)(2mK'(m) + K(m))

T 2M(VI-m)
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Numerical aspects of the AGM

Argument reduction vs series expansion: O(1) terms only.
Slightly better than reducing all the way to |a,, — b,| < 277:

8
TR =5 8 1om " Eo +0(2')

Complex variables: simplify to M(z) = M(1, z) using
M(x,y) = xM(1,y/x). Some case distinctions for correct
square root branches in AGM iteration.

Derivatives: can use finite (central) difference for M’(z) (better
method possible using elliptic integrals), higher derivatives
using recurrence relations.



Incomplete elliptic integrals

Incomplete elliptic integrals are multivariate hypergeometric
functions. In terms of the Appell F; function

0o a b b
Fi(a, by, by c;x,y) = Z ( )(n;;r;inlzﬁ(n|2)n Xy

m,n=0

where |x|, |y| < 1, we have
‘ dt - 111 3.¢in2 . 2
F(z, m):/ ———— =sin(z) Fi(3, 3, 3, 3;8in“ z, msin® z)
0 v1— msin®t
Problems:

» How to reduce arguments so that |x|, |y| < 1?

» How to perform analytic continuation and obtain
consistent branch cuts for complex variables?



Branch cuts of Legendre incomplete elliptic integrals

functions.wolfram.com

search site |

FUNCTION CATEGORIES VISUALIZATIONS NOTATIONS GENERAL IDENTITIES ABOUT THIS SITE

rorerons e | | EWPticE

Incomplete elliptic integral of the first kind

Mathematica Notation: E1liptieF([z, m]

Traditional Notation: Flz |m)

VIEW RELATED INFORMATION IN
« The Documentation Center
= MathWorld Elliptic Integrals » EllipticFlzzm] ~

DOWNLOAD FORMULAS
FOR THIS FUNCTION

|3 Mathematica Notebook

) PDF File

General characteristics (23 formulas)

*  Domain and analyticity (1 formula)

»  Symmetries and periodicities (5 formulas)

L= »  Poles and essential singularities (2 formulas)
|28 Mathematica Notebook »  Branch points (4 formulas)

) PDF File »  Branch cuts (11 formulas)
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Branch cuts of F(z, m) with respectto z. ..

Elliptic Integrals » EllipticFlzzm] » General characteristics » Branch cuts »

With respecttoz

General description

For fixed m. the function F{z |m) can have up to six infinite sets of branch cuts (it has at least four),
which form very complicated curves in the case of generic m.

For fixed real m < 1, the function F{z | m) does not have branch cuts on the real axis and on the vertical
intervals ‘C&C_J{"J;] +ak.m— csc'l{w";] +Mk},|";k eZ f\me(—oo, 1)
For fixed real m < 1, the function F{z | m) has four infinite sets of branch cuts located on vertical
intervals starting at the points 7=k £ csc"{ﬁ] foke Z and extending to imaginary infinity.
For fixed generic m. the function Fiz | m) has the following six infinite sets of branch cuts:

I real intervals {Mk + s 'J{V{H],Hk + E}f:k €& f\m> 1, where F(z |m) is continuous from

below (for generic complex m, these branch cuts deform into complicated curves); in the case m < 1 these
real intervals vanish

2) real intervals {Mk + f,x k+1)1- mc"{ﬁ]}f: ke Z\m=> 1, where Fiz |m) is continuous from

above (for generic complex m, these branch cuts deform into complicated curves); in the case m < 1 these
real intervals vanish

3}\'enicaljmen'als{§1—2xk. z +2xk1—x’w}f‘.kszr\m g (0, 1), 0r

{M—csc"{\i'm]+2xk, % +imk +iuo},|";kszf\m (0, 1), where Fz [m) is continuous from the left

4} vertical imen'als{'%” +2mk, 2—: +2mk +iuo} ke & Nm g0, 1), or
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Branch cuts of F(z, m) with respect to z (continued)

{Zx cse” {\4' ]+2xk —+2xk+1 uo}fksz,'\ms{ﬂ 1), where Fiz |m) is continuous from the
right
5}\-'erticalimer\-'als{§+2xk—iw,f+2xk}f;ks2f\m@{0,l]‘ﬂr

{f+2xk—iw,2xk+c&c"{\4‘m ]}f;ksl}\m e (0, 1, where Fiz |m) is continuous from the left
6}\-'erticalimer\-'als{37” +2mk—ioo, zT” +2xk}f‘,ksz,’\m &(0, 1), or

{‘_T” +2mk—ioo,2mk+W +c5c"{\";]} fike & \me (0, 1), where F{z |m) is continuous from the right.

BC;{F{:|m]]={{{(xk+c&c"{\";],xk+;),i}f;k;z!\mFR.-'\m>I}.
{{(m‘u—;,x{h—I]—csc"{\";])‘—i}f;ksz,'\mFR,’\m>I},
(2xk+;2kx+;+iuo) 1} rkez hme 0.0}/
{{(Zxkﬂv cse” V"_]ka+ +luo) }f;ksl}\ms{ﬂ,l]}‘
[2Nk+— 2kN+—+lw] —I}f;ksl}\m@{ﬂ,l]}v
{{(ZNIH—ZN cse” 'V"_] 2kx+%+xw] —I},." ke fme 0, I}
(2 +——m kme s ] 1}k eZ Ame (0, Il}\/
{{(2xk+——1w 2k +cse” {'V";]) }kaFZI\mF{U,”}-
(2 +——luo 2kx+2] —I}f;ksl;\m@{t},l]}v
{{(2xk+——xw 2mk+m+osc {H])--l}f;kFZAmF{U,']}
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Branch cuts of F(z, m) with respect to z (continued)

Formulas on real axis for real m
For m<i
For fixed real m < 1. the function F{z | m) does not have branch cuts on the real axis.

For m»1

) relm = —Fie|m s ——x[)eaflZ 2L -
el_l‘i;l"loF{l’+!E|m]— F{‘lm“—ﬂx[m]*-d[[x 2J+I]K{m]f‘

.\’FRAJ’J’!FR /\m>l f\xk+c.<c"{\";]<.r <xk+;f\ke2
» !!%F{.r—iclm] =F{x|m)f:x ER /\m FRAH’!> 1 /\xk+csc"{w";]<.r<xk+ ; f\kFZ
» =l_i'1:1_10F{.r+le|m] =Flx|m/:x ER /\m FRf\m> 1 /\;+xk<..r<.x{k+I]—csc"{ﬁ]f\kl.:l

2 1
lim Flx—ie|m)=-Fix|ml- —K —]+4[
e+ m
»

Vo
.\’FRAJ’J’!FR Am>l f\xk+;<..r<.x{k+llfcsc:"{w";]f\ksz

e
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Branch cuts of F(z, m) with respect to z (continued)

Formulas for vertical intervals

For m«i

For fixed real m < 1, the function F{z | m) has branch points rsc"{\u'm ]+Nk,|".r< e F and

m-cse”(¥m |+ Tk k €Z.Inthis case branch cuts lay at the vertical lines beginning from these

points and going o imaginary infinity. By this reason for fixed real m < 1, the function F(z |m) does not
have branch cuts on the vertical intervals

For m>0

s
[ limDF(Exk+i.r+5—e|m] F(Zxk+n’+—| ],"rFRJ\kFZ
e

Fd 2 1
lim F(Exk+xr+7+e|m 7F(ir+f m]f—x[7J+4{k+l]K{m]ﬁ
errll m
>

21"
mERArFR f\{t}ﬁm<lf\.\' >—Im{csc"[w";]]}V{m>I.f\r<.0] heeZ

Fid Eis 2 1
lim F(Zxk+i.r+f +e|m]= 7F(x'.\'+f |m]+—K[7]+4kK{m]L
) 0 2 2 m

Vm
MFRAYFR f\{t}‘zm< 1 A.\' <.Im{csc"[w";]]\({m> 1Ax >u}f\x &
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Branch cuts of F(z, m) with respect to z (continued)

im im 2 1
lim F[Exk+ix+——e m]:—F[i.r+— mJ——K(—]+4{k+2]K{m]f:
) 0 2 2 Wm m

mFR/\I’FR /\[U<m<I;’\.r>—lm{c5c"{ﬁ]]\/m>l.-‘\.t<0}j\ktzz

im 2 1
m]:—F[i.r+ — |m +—K(—]+4(k+ 1K (m) [
) W m

mcR/\rcR /\[U(m(I/\r‘:lm{{sc"[m]]Vm)I!\r)ﬂ}/\kl:l

im
lim F[Zxk+i.r+——e
'_e4fo 2

im im
> limOF[ZNkH.r+T+e m]:F[ZRk+l’.r+T ‘m]f;YFRAkFZ
e+
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Branch cuts of F(z, m) with respect to m

EllipticF

Incomplete elliptic integral of the first kind

Mathematica Notation: EL1ipticF([z, m]

Traditional Notation: F{z |m)

Elliptic Integrals » EllipticFlz.zm] » General characteristics » Branch cuts »

With respect to m (0 formulas)

Branch cut locations: complicated.

Conclusion: the Legendre forms are not nice as building blocks.
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Carlson’s symmetric forms

In the 1960s, Bille C. Carlson suggested an alternative “basis
set” for incomplete elliptic integrals:

dt
\/t—l—x E+y)(t+2)
o dt
Rf(xv%z’p)zz/o (t+p)V/(E+x)(t+y)(t+2)

xy,

RC(xJ’):RF(ny’,J’)v RD(xayvz>:R](x7y7zaz)

Advantages:

v

Symmetry unifies and simplifies transformation laws

v

Symmetry greatly simplifies series expansions

v

The functions have nice complex branch structure

v

Simple universal algorithm for computation
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Evaluation of Legendre forms

For —5 < Re(z) < 7:

F(z, m) = sin(z) Rp(cos?(z),1 — msin?(z),1)

Elsewhere, use quasiperiodic extension:

F(z+ kr,m) =2kK(m)+ F(z,m), kecZ
Similarly for E(z, m) and II(n, z, m).
Slight complication to handle (complex) intervals straddling

the lines Re(z) = (n+ 3)m.

Useful for implementations: variants with z — 7z.
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Symmetric argument reduction

We have the functional equation

X+X y+A z+A
RF(x7y7Z) :RF< 4 7y4 ) 4 )

where A = /x,/y + /¥vz + v/z/x. Each application reduces
the distance between x, y, z by a factor 1/4.

Algorithm: apply reduction until the distance is ¢, then use an
order-N series expansion with error term O(e™).

For p-bit accuracy, need p/(2N) argument reduction steps.

(A similar functional equation exists for R;(x, y, z, p).)



Series expansion when arguments are close
RF(x7y7 Z) = R—I/Z (%) %a %7x7y7 Z)
R](xayazvp) = R—3/2 (Evi)jv%v%ax YV, %, pap)

Carlson’s R is a multivariate hypergeometric series:

> a
Rog(b;z) = > %M.TM(bl,...,bn;l —z1,...,1—z,)

=5 Moy, b buril = Tho 1 - ,

TM(bl,...,bn,wl,...,

m1+ Amy=M ]1

Note that | Ty| < Const - p(M) max(|w, |, ..., |w,|)™, so we can
easily bound the tail by a geometric series.

n Zn
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A clever idea by Carlson: symmetric polynomials

Using elementary symmetric polynomials Es(wy, .. ., wy),

w>

M+
my+2mp+...+nmy=M /

We can expand R around the mean of the arguments, taking
w; =1 — zj/Awhere A = % Z]’-’Zl zj. Then Ej = 0, and most of
the terms disappear!

Carlson suggested expandingto M < N = 8:

E B E 3BE 5B 3E EFE
AR —1_2,. s == 3.2
(X, Y, 2) 10714124 a2 208 104" 16

+0(£%)

Need p/16 argument reduction steps for p-bit accuracy.
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Rectangular splitting for the R series

The exponents of E; E; appearing in the series for Ry are
the lattice points m, m3 € Z>o with 2my + 3msz < N.

(terms appearing for N = 10)

my

Compute powers of E,, use Horner’s rule with respect to Es.

Clear denominators so that all coefficients are small integers.

= O(N?) cheap steps + O(N) expensive steps

For R;, compute powers of E, E3, use Horner for Ej, Es.
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Balancing series evaluation and argument reduction

Consider Rg:

p = wanted precision in bits

O(e ) = error due to truncating the series expansion

O(N?) = number of terms in series

O(p / ) = number of argument reduction steps for eV = 277

Overall cost O(N? + p/N) is minimized by N ~ p°333, giving
p°567 arithmetic complexity (p!-%%7 time complexity).

Empirically, N ~ 2p%* is optimal (due to rectangular splitting).
Speedup over N = 8 at d digits precision:

d=10 d=10> d=10° d=10* d=10°
1 1.5 4 11 31
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Some timings

We include K(m) (computed by AGM), F(z, m) (computed by

Rr) and the inverse Weierstrass elliptic function:

p_l(z T) = 1 /OO dt = Rp(z—e1 Z—en Z—eg)

o 2) - et - et —e) o

Function | d =10 d=10> d=10® d=10* d=10°

exp(z) | 7.7-10~7 2.94-107° 0.000112 0.0062  0.237

log(z) 8.1-10~7 2.75-10-° 0.000114 0.0077  0.274

n(7) 6.2-107% 1.99-10~° 0.00037 0.0150 0.693

K(m) 54-10° 197-10-° 0.000182 0.0068  0.213

F(z,m) 2.4-107° 0.000114 0.0022 0.187 19.1

o(z,7) | 39-107° 0.000122 0.00214  0.129 6.82

o Yz,7) | 3.1-1075  0.000142 0.00253  0.202 19.7
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Quadratic transformations

It is possible to construct AGM-like methods (converging in
O(log p) steps) for general elliptic integrals and functions.

Problems:
» The overhead may be slightly higher at low precision
» Correct treatment of complex variables is not obvious

Unfortunately, I have not had time to study this topic.
However, see the following papers:

» The elliptic logarithm (=~ p~!): John E. Cremona and
Thotsaphon Thongjunthug, The complex AGM, periods of
elliptic curves over and complex elliptic logarithms, 2013.

» Elliptic and theta functions: Hugo Labrande, Computing
Jacobi’s § in quasi-linear time, 2015.
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