## Context-free languages in Algebraic Geometry and Number Theory

#### José Manuel Rodríguez Caballero

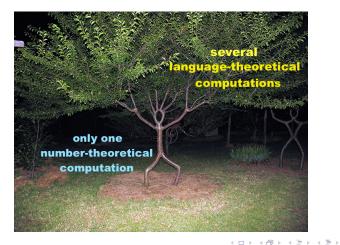
Ph.D. student Laboratoire de combinatoire et d'informatique mathématique (LaCIM) Université du Québec à Montréal (UQÀM)

> Presentation at the LFANT Seminar Institut de Mathématiques de Bordeaux (IMB) Université de Bordeaux

> > October 24, 2017 work-in-progress

## Motivation

To simultaneously compute several arithmetical functions by means of several language-theoretical computations, but just doing one number-theoretical computation.



Context-free languages in AG and NT

# **Part I** Kassel-Reutenauer polynomials

José Manuel Rodríguez Caballero Context-free languages in AG and NT

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・

SQR

3

#### Definition

For any integer  $n \ge 1$ , we define the *n*th *Kassel-Reutenauer* polynomial as follows :

$$P_n(q) := a_{n,0} + \sum_{k=1}^{n-1} a_{n,k} \left( q^{n-1+k} + q^{n-1-k} \right),$$

where  $a_{n,k} := \# \left\{ d | n : d - 2\frac{n}{d} \le 2k < 2d - \frac{n}{d} \right\}$ . Furthermore, we define  $C_n(q) := (q-1)^2 P_n(q)$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Theorem

$$\prod_{m=1}^{\infty} \frac{(1-t^m)^2}{(1-qt^m)(1-q^{-1}t^m)} = 1 + \sum_{n=1}^{\infty} \frac{C_n(q)}{q^n} t^n$$

This result is essentially identity (9.2) in Nathan Jacob Fine, "Basic hypergeometric series and applications", No. 27, American Mathematical Soc., 1988.

・ 同 ト ・ ヨ ト ・ ヨ ト

Consider the Hilbert scheme  $H^n_{\mathbb{C}} := \operatorname{Hilb}^n \left( \left( \mathbb{A}^1_{\mathbb{C}} \setminus \{0\} \right) \times \left( \mathbb{A}^1_{\mathbb{C}} \setminus \{0\} \right) \right)$  of *n* points on the bidimensional complex torus.

Theorem (Hausel, Letellier and Rodriguez-Villegas, 2011)

For each  $n \ge 1$ , the *E*-polynomial of  $H^n_{\mathbb{C}}$  is  $C_n(q)$ .

(1日) (日) (日)

Notice that  $(\mathbb{C} \setminus \{0\}) \times (\mathbb{C} \setminus \{0\})$  acts naturally on

 $\left(\mathbb{A}^1_{\mathbb{C}} \backslash \{0\}\right) \times \left(\mathbb{A}^1_{\mathbb{C}} \backslash \{0\}\right).$ 

This action induces an action of  $(\mathbb{C}\setminus\{0\}) \times (\mathbb{C}\setminus\{0\})$  on  $H^n_{\mathbb{C}}$ . Define the geometric quotient  $\widetilde{H}^n_{\mathbb{C}} := H^n_{\mathbb{C}}//((\mathbb{C}\setminus\{0\}) \times (\mathbb{C}\setminus\{0\}))$ .

Theorem (Hausel, Letellier and Rodriguez-Villegas, 2011) For each  $n \ge 1$ , the *E*-polynomial of  $\widetilde{H}^n_{\mathbb{C}}$  is  $P_n(q)$ .

(4月) (日) (日) 日

Theorem (Kassel and Reutenauer, 2016)

For any integer  $n \geq 1$ ,

(i)  $P_n(1)$  is the sum of divisors of n,

- (ii)  $C_n(-1)$  is the number of integer solutions to the equation  $x^2 + y^2 = n$ ,
- (iii)  $|C_n(\sqrt{-1})|$  is the number of integer solutions to the equation  $x^2 + 2y^2 = n$ ,

(iv)  $6Re P_n\left(\frac{-1+\sqrt{-3}}{2}\right)$  is the number of integer solutions to the equation  $x^2 + xy + y^2 = n$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Finite fields geometric interpretation of  $C_n(q)$ 

Consider the Hilbert scheme

$$H^n_{\mathbb{F}_q} := \mathrm{Hilb}^n \left( \left( \mathbb{A}^1_{\mathbb{F}_q} \backslash \{0\} \right) \times \left( \mathbb{A}^1_{\mathbb{F}_q} \backslash \{0\} \right) \right)$$

of *n* points on the bidimensional  $\mathbb{F}_q$ -torus.

Theorem (Kassel and Reutenauer, 2015)

For each  $n \geq 1$ ,

$$\sum_{m=1}^{\infty} C_n(q^m) t^m = \frac{t \frac{d}{dt} Z_{H_{\mathbb{F}_q}^n}(t)}{Z_{H_{\mathbb{F}_q}^n}(t)},$$

where  $Z_{H^n_{\mathbb{F}_q}}(t)$  is the local zeta function of  $H^n_{\mathbb{F}_q}$ .

同下 イヨト イヨト

#### Theorem (Kassel and Reutenauer, 2015)

For any prime power q and any integer  $n \ge 1$ ,  $C_n(q)$  is the number of ideals I of the group algebra  $\mathbb{F}_q [\mathbb{Z} \oplus \mathbb{Z}]$  such that  $\mathbb{F}_q [\mathbb{Z} \oplus \mathbb{Z}] / I$ is a vector space of dimension n over  $\mathbb{F}_q$ .

□ ▶ < E ▶ < E ▶</p>

## The coefficients of $P_n(q)$

Theorem (J. M. R. C., 2017)

For any integer  $n \ge 1$ ,

(i) the largest coefficient of  $P_n(q)$  is F(n), where F(n) is the Erdös-Nicolas function<sup>a</sup>, i.e.

$$F(n) := \max_{t>0} \# \{ d | n : t < d \le 2t \}.$$

- (ii) the polynomial  $P_n(q)$  has a coefficient greater than 1 if and only if 2n is the perimeter<sup>b</sup> of a Pythagorean triangle,
- (iii) all the coefficients of  $P_n(q)$  are non-zero if and only if n is 2-densely divisible<sup>c</sup>.

*a*. Paul Erdös, Jean-Louis Nicolas. Méthodes probabilistes et combinatoires en théorie des nombres. Bull. SC. Math **2** (1976) : 301–320.

b. The perimeter of a Pythagorean triangle is always an even integer.

c. i.e. the quotient of two consecutive divisors of n is less than or equal to 2. Densely divisible numbers were introduced by the international team *polymath8*, led by Terence Tao, in order to improve Zhang's bounded gaps between primes. An integer  $n \ge 1$  is an *odd-trapezoidal number* if for each pair of integers  $a \ge 1$  and  $k \ge 1$ , the equality

$$n = a + (a + 1) + (a + 2) + ... + (a + k - 1)$$

implies that k is odd.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

For any integer  $n \ge 1$ , we have that n is odd-trapezoidal if and only if

$$a_{n,0} \geq a_{n,1} \geq a_{n,2} \geq \ldots \geq a_{n,n-1},$$

where  $a_{n,0}, a_{n,1}, a_{n,2}, ..., a_{n,n-1}$  are the coefficients in the computational definition of  $P_n(q)$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

## Conclusion of Part I

From the polynomial  $P_n(q)$  it is computationally easy to derive the following information about n:

- (i) Whether or not 2n is the perimeter of a Pythagorean triangle.
- (ii) Whether or not n is 2-densely divisible.
- (iii) Whether or not *n* is odd-trapezoidal.
- (iv) The number of middle divisors  $^1$  of n.
- (v) The number of integer solutions to the equations  $x^2 + y^2 = n$ ,  $x^2 + 2y^2 = n$  and  $x^2 + xy + y^2 = n$ .
- (vi) The number of ideals I of the group algebra  $\mathbb{F}_q [\mathbb{Z} \oplus \mathbb{Z}]$  such that  $\mathbb{F}_q [\mathbb{Z} \oplus \mathbb{Z}] / I$  is a vector space of dimension n over  $\mathbb{F}_q$ .
- (vii) The value of Erdös-Nicolas function at n.
- (viii) The sum of divisors of n.
  - (ix) Topological information about  $H^n_{\mathbb{C}}$  and  $\widetilde{H}^n_{\mathbb{C}}$ .

1. i.e the divisors *d* satisfying  $\sqrt{\frac{n}{2}} < d \le \sqrt{2n}$ .  $\langle \Box \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle$ José Manuel Rodríguez Caballero Context-free languages in AG and NT

# Part II Language Theory

José Manuel Rodríguez Caballero Context-free languages in AG and NT

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Э

990

- (i) We will encode part of the information from Kassel-Reutenauer polynomials into formal words.
- (ii) We will translate some of the properties satisfied by Kassel-Reutenauer polynomials into language-theoretical statements.

・ 戸 ト ・ ヨ ト ・ ヨ ト

We can express  $C_n(q) \in \mathbb{Z}[q]$ , in a unique way, as follows <sup>2</sup>,

$$C_n(q) = \eta_0 q^{e_0} + \eta_1 q^{e_1} + \dots + \eta_k q^{e_k},$$

for some  $\eta_0,\eta_1,...,\eta_k\in\{+1,-1\}$  and  $e_0,e_1,...,e_k\in\mathbb{Z}$  satisfying :

(i) 
$$e_0 \ge e_1 \ge ... \ge e_k \ge 0$$
,  
(ii) for any  $0 \le j \le k - 1$ , if  $e_j = e_{j+1}$ , then  $\eta_j = \eta_{j+1}$ .  
So, the vector KR $(n) := (\eta_0, \eta_1, ..., \eta_k) \in \{+1, -1\}^{k+1}$  is  
well-defined. By abuse of notation, we will write KR $(n)$  as a word  
over the alphabet  $\{+, -\}$ , identifying  $+ \leftrightarrow +1$  and  $- \leftrightarrow -1$ .

2. Notice that each positive coefficient of  $C_n(q)$  corresponds to the multiplicity of a pole of  $Z_{H^n_{\mathbb{F}_q}}(t)$ . Similarly, each negative coefficient of  $C_n(q)$  corresponds to the multiplicity of a zero of the same rational function.  $\langle \Box \rangle \times \langle \Xi \rangle = \langle \Xi \rangle$ 

For 
$$n = 6$$
,  
 $C_6(q) = q^{12} - q^{11} + q^7 - 2q^6 + q^5 - q + 1$   
 $= +q^{12} - q^{11} + q^7 - q^6 - q^6 + q^5 - q + 1$ .

Therefore,

$$KR(6) = + - + - - + - + .$$

・ロト ・回 ト ・注 ト ・注 ト

E

990

## A hidden pattern

Notice that

can be obtained from the well-matched parentheses

# ()(())(())(())()

by means of the letter-by-letter substitution <sup>3</sup>

$$\mu: \{(,)\}^* \longrightarrow \{+,-\}^*,$$

$$( \mapsto +-,$$

$$) \mapsto -+.$$



3. i.e. morphism of free monoids. Here,  $\Sigma^*$  denotes the free monoid over the alphabet  $\Sigma$ .

It follows from the computational definition of  $C_n(q)$  that KR(n) is palindromic. The following property is less obvious.

Theorem (J. M. R. C., 2017)

For each integer  $n \ge 1$ ,  $KR(n) = \mu(w_n)$ , for some well-matched parentheses  $w_n$ .

Define the function  $\delta : \mathbb{Z}_{\geq 1} \longrightarrow \{(,)\}^*$  by  $\delta(n) := w_n$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

The following result can be interpreted as a language-theoretical version of a formula for the coefficients of  $C_n(q)$  due to Kassel and Reutenauer.

Theorem (J. M. R. C., 2017)

Let  $n \ge 1$  be an integer. Denote  $D_n$  the set of divisors of n. Define  $2D_n := \{2d : d \in D_n\}$ . Let  $\tau_1 < \tau_2 < ... < \tau_k$  be the elements of  $D_n \triangle 2D_n$  written in increasing order. Then,

 $\delta(n)=t_1\,t_2\ldots t_k,$ 

where

$$t_i := \begin{cases} ( & \text{if } \tau_i \in D_n \setminus (2D_n), \\ ) & \text{if } \tau_i \in (2D_n) \setminus D_n. \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

#### Definition

Let  $\Sigma$  be a finite alphabet. Given a set  $S \subseteq \mathbb{Z}_{\geq 1}$ , we say that S is *rational* (*context-free*) with respect to a function  $f : \mathbb{Z}_{>1} \longrightarrow \Sigma^*$ , if

$$S=f^{-1}(L)$$

for some rational (context-free) language  $L \subseteq \Sigma^*$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

The following sets are rational with respect to  $\delta$ ,

- (i) the empty set of integers,
- (ii) all the integers,
- (iii) powers of 2,

(iv) semi-perimeters<sup>a</sup> of Pythagorean triangles.

a. The semi-perimeter is a half of the perimeter.

A B + A B +

The number of blocks of an integer  $n \ge 1$  is defined as the number of connected components of the topological space

$$\bigcup_{d|n} [d, 2d].$$

Notice that n is 2-densely divisible if and only if n has only one block.

(1日) (1日) (1日)

The following sets are context-free with respect to  $\delta$ ,

(i) integer having exactly k blocks, for any fixed  $k \ge 1$ ,

(ii) numbers n satisfying  $F(n) \ge h$ , for any fixed integer  $h \ge 1$ , where F(n) is the Erdös-Nicolas function.

・ 同 ト ・ ヨ ト ・ ヨ ト



For all 
$$n \ge 1$$
,  

$$\widehat{\delta}(n) := \psi \, \delta(n) ,$$
where  $\psi : \{((, )), (), )(\}^* \longrightarrow \{A, B, C, D\}^*$  satisfies, for al  
 $w \in \{((, )), (), )(\}^*$ ,

$$\begin{array}{rcl} \psi \varepsilon & := & \varepsilon, \\ \psi(w) & := & A \psi w, \\ \psi)w( & := & B \psi w, \\ \psi(w( & := & C \psi w, \\ \psi)w) & := & D \psi w. \end{array}$$

José Manuel Rodríguez Caballero Context-free languages in AG and NT

▲ロト ▲圖ト ▲屋ト ▲屋ト

E

990

We define the Hirschhorn function<sup>4</sup>,  $H : \mathbb{Z}_{\geq 1} \times \{0, 1\} \longrightarrow \mathbb{Z}_{\geq 0}$  by means of the expression

$$\begin{split} \mathsf{H}(n,b) &:= \# \left\{ (a,k) \in \Pi_n : \quad k \equiv b \pmod{2} \right\}, \\ \text{where } \Pi_n \text{ is the set of pairs } (a,k) \in (\mathbb{Z}_{\geq 1})^2 \text{ such that} \end{split}$$

$$n = a + (a + 1) + (a + 2) + ... + (a + k - 1).$$

Notice that H(n, b) = 0 if and only if n is odd-trapezoidal.

4. M. D. Hirschhorn and P. M. Hirschhorn. "Partitions into consecutive parts." (2009).

José Manuel Rodríguez Caballero Context-free languages in AG and NT

Given  $k \in \mathbb{Z}_{\geq 0}$  and  $b \in \{0, 1\}$ , the set of integers  $n \geq 1$  satisfying  $H(n, b) \geq k$  is rational with respect to  $\hat{\delta}$ .

伺 ト く ヨ ト く ヨ ト

For each integer  $k \ge 1$ , the set of numbers n having exactly k middle divisors is context-free with respect to  $\hat{\delta}$ .

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Languages-theoretical algorithms can be used in order to compute the evaluation at *n* of several nontrivial arithmetical functions (including characteristic functions) just from the information provided by  $\delta(n)$ .

・ 同 ト ・ ヨ ト ・ ヨ ト

-

# **Part III** Arithmetic theorems having language-theoretic proofs

José Manuel Rodríguez Caballero Context-free languages in AG and NT

・ 戸 ト ・ ヨ ト ・ ヨ ト

MQ (P

"God has the Big Book, the beautiful proofs of mathematical theorems are listed here"



#### Paul Erdös

José Manuel Rodríguez Caballero Context-free languages in AG and NT

同下 イヨト イヨト

MQ (P

"Don't come to me with your pretty proofs. We don't bother with that baby stuff around here!"



#### Solomon Lefschetz

José Manuel Rodríguez Caballero Context-free languages in AG and NT

• • = • • = •

For all integers  $n \ge 2$ , if n is not a power of 2 and n is odd-trapezoidal, then 2n is the perimeter of a Pythagorean triangle.

(4 同) ト 4 ヨ ト 4 ヨ ト

For all integers  $n \ge 1$ , if 2n is the perimeter of a Pythagorean triangle, then n has at least two different prime divisors.

・ 同 ト ・ ヨ ト ・ ヨ ト

For all integers  $n \ge 2$ , if n is 2-densely divisible and 2n is not the perimeter of a Pythagorean triangle then n is a power of 2.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

The following result is Theorem 3 in Hartmut F. W. Höft, *On the Symmetric Spectrum of Odd Divisors of a Number*, preprint on-line available at https://oeis.org/A241561/a241561.pdf

Theorem (Höft, 2015)

For all  $n \ge 1$ , there exists at least a middle divisor of n if and only if the number of blocks of n is odd.

同下 イヨト イヨト

# Using language-theoretical relationships, **nontrivial** elementary number-theoretical results can be derived via $\delta(n)$ .

3

DQ P

A formal language is *decidable* if there exists a total Turing machine <sup>5</sup> that, when given a finite sequence of symbols as input, accepts it if it belongs to the language and rejects it otherwise.

## Is the language $\delta(\mathbb{Z}_{\geq 1})$ decidable?

## References

- Tamás Hausel, Emmanuel Letellier and Fernando Rodriguez-Villegas. Arithmetic harmonic analysis on character and quiver varieties, Duke Mathematical Journal 160.2 (2011) : 323-400.
- Tamás Hausel, Emmanuel Letellier and Fernando Rodriguez-Villegas. *Arithmetic harmonic analysis on character and quiver varieties II*, Advances in Mathematics **234** (2013) : 85-128.
- Christian Kassel and Christophe Reutenauer, *The Fourier expansion of*  $\eta(z) \ \eta(2z) \ \eta(3z) \ / \ \eta(6z)$ , Archiv der Mathematik **108**.5 (2017) : 453-463.
- Christian Kassel and Christophe Reutenauer, Counting the ideals of given codimension of the algebra of Laurent polynomials in two variables, Michigan J Maths (to appear).
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, Ramanujan Journal (to appear).



José Manuel Rodríguez Caballero, *Symmetric Dyck Paths and Hooley's*  $\Delta$ -function, Combinatorics on Words. Springer International Publishing AG. 2017.

SQC

## The End

## Merci !

# Thank you !

José Manuel Rodríguez Caballero

Context-free languages in AG and NT