The inverse Galois problem for p-adic fields

David Roe

Department of Mathematics Massachusetts Institute of Technology

September 10, 2019

Inverse Galois Problem

- Classic Problem: determine if a finite G is a Galois group.
- Depends on base field: every G is a Galois group over $\mathbb{C}(t)$.
- Most work focused on L/\mathbb{Q} : S_n and A_n , every solvable group, every sporadic group except possibly M_{23}, \ldots
- Generic polynomials $f_G(t_1, ..., t_r, X)$ are known for some (G, K): every L/K with group G is a specialization.

Computational Problems

Given a finite group G, find algorithms for

- **①** Existence problem: exist L/\mathbb{Q}_p with $Gal(L/\mathbb{Q}_p) \cong G$?
- Counting problem: how many such L exist (always finite)?
- Enumeration problem: list the L.

Ramification Groups

Suppose

- L/K is an extension of p-adic fields, G = Gal(L/K),
- π is a uniformizer of L,
- $G_i = \{ \sigma \in G : v_L(\sigma(x) x) \ge i + 1 \forall x \in O_L \} \text{ for } i \ge -1,$
- $ullet U_L^{(0)} = \mathcal{O}_L^{ imes}$ and $U_L^{(i)} = 1 + \pi^i \mathcal{O}_L$ for $i \geq 1$.

Proposition ([2, Prop. IV.2.7])

For $i \ge 0$, the map $\theta_i : G_i/G_{i+1} \to U_L^{(i)}/U_L^{(i+1)}$ defined by $\theta_i(\sigma) = \sigma(\pi)/\pi$ is injective and independent of π .

Corollary

- G/G_0 is cyclic,
- G_0/G_1 is cyclic of order prime to p,
- G_i/G_{i+1} is an elementary abelian *p*-group for $i \ge 1$.

p-realizable groups

Definition

A group G is potentially p-realizable if it has a filtration $G \supseteq G_0 \supseteq G_1$ so that

- \bullet \bullet \bullet \bullet \bullet and \bullet \bullet are normal in \bullet ,
- ② G/G_0 is cyclic, generated by some $\sigma \in G$,
- **3** G_0/G_1 is cyclic, generated by some $\tau \in G_0$,
- \bullet G_1 is a p-group.

It is p-realizable if there exists L/\mathbb{Q}_p with $\mathrm{Gal}(L/\mathbb{Q}_p)\cong G$. It is minimally unrealizable if it is not p-realizable, but every proper quotient is.

Counting for *p*-groups

When G is a p-group, complete answer available. Suppose K/\mathbb{Q}_p has degree n and $K \not\supset \mu_p$.

Theorem ([3])

The maximal pro-p quotient of Gal(K) is a free pro-p group on n+1 generators.

Corollary

If G is a p-group generated by d elements (minimally), the number of extensions L/K with Galois group G is

$$\frac{1}{|\mathsf{Aut}(G)|} \left(\frac{|G|}{p^d}\right)^{n+1} \prod_{i=0}^{d-1} (p^{n+1} - p^i).$$

Criterion for *p*-groups

We get an easy condition on when a p-group is p-realizable. Let $W = G^pG'$ be the Frattini subgroup; G/W is the maximal elementary abelian quotient of G. A set of elements generates G if and only if its projection onto G/W spans G/W as an \mathbb{F}_p -vector space.

Corollary

If p > 2 and G is a p-group then G is p-realizable if and only if G/W has dimension less than 3.

Presentation of the absolute Galois group

For p > 2, $Gal(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$ is the profinite group generated by σ, τ, x_0, x_1 with x_0, x_1 pro-p and the following relations (see [1])

$$\begin{split} \tau^{\sigma} &= \tau^{p} \\ \langle x_{0}, \tau \rangle^{-1} x_{0}^{\sigma} &= x_{1}^{p} \bigg[x_{1}, x_{1}^{\tau_{2}^{p+1}} \left\{ x_{1}, \tau_{2}^{p+1} \right\}^{\sigma_{2} \tau_{2}^{(p-1)/2}} \\ & \left\{ \left\{ x_{1}, \tau_{2}^{p+1} \right\}, \sigma_{2} \tau_{2}^{(p-1)/2} \right\}^{\sigma_{2} \tau_{2}^{(p+1)/2} + \tau_{2}^{(p+1)/2}} \bigg] \end{split}$$

$$\begin{split} h \in \mathbb{Z}_p \text{ with mult. order } p-1, & \operatorname{proj}_p : \widehat{\mathbb{Z}} \to \mathbb{Z}_p \\ \langle x_0, \tau \rangle := (x_0 \tau x_0^{h^{p-2}} \tau \dots x_0^h \tau)^{\operatorname{proj}_p/(p-1)} \\ & \beta : \operatorname{Gal}(\mathbb{Q}_p^t/\mathbb{Q}_p) \to \mathbb{Z}_p^{\times} \quad \beta(\tau) = h \quad \beta(\sigma) = 1 \\ \{x, \rho\} := (x^{\beta(1)} \rho^2 x^{\beta(\rho)} \rho^2 \dots x^{\beta(\rho^{p-2})} \rho^2)^{\operatorname{proj}_p/(p-1)} \\ & \sigma_2 := \operatorname{proj}_2(\sigma) \qquad \qquad \tau_2 := \operatorname{proj}_2(\tau) \end{split}$$

Counting in general

By the Galois correspondence, Galois extensions of \mathbb{Q}_p correspond to finite index normal subgroups of $\mathrm{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$. Thus the number of extensions L/\mathbb{Q}_p with $\mathrm{Gal}(L/\mathbb{Q}_p) \cong G$ is

$$\frac{1}{\#\operatorname{Aut}(G)}\#\left\{\varphi:\operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)\twoheadrightarrow G\right\}$$

So we count the tuples σ , τ , x_0 , $x_1 \in G$ (up to automorphism) that

- satisfy the relations from $Gal(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$,
- 2 generate G.

Basic Strategy

Loop over σ generating the unramified quotient and τ generating the tame inertia (with $\tau^{\sigma} = \tau^{p}$). For each such (σ, τ) up to automorphism, count the valid x_0, x_1 .

Iterative approach

Counting for many G, so we can build up from quotients.

Iterative Strategy

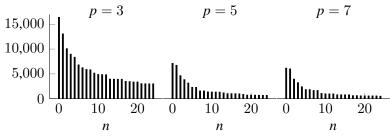
- Pick a minimal normal subgroup $N \triangleleft G$, then try to lift (σ, τ, x_0, x_1) from G/N to G.
- Tame G form a base case.

Two subtleties.

- If N is not characteristic, it will not be preserved by Aut(G) so not all automorphisms descend;
- The map $\operatorname{Stab}_{\operatorname{Aut}(G)}(N) \to \operatorname{Aut}(G/N)$ may not be surjective, so equivalent quadruples may become inequivalent.

Counts

Potentially *p*-realizable *G* with the count of L/\mathbb{Q}_p at least *n*.



The largest counts occurred for cyclic groups or products of large cyclic groups with small nonabelian groups:

- C_{1458} (p=3) with 2916,
- C_{1210} (p = 11) with 2376,
- $C_{243} \times S_3$ (p = 3) with 1944.

But also 1458G553, $(C_{27} \times C_{27}) \times C_2$ (p = 3) with 1323.

Realizability Criteria

Given potentially p-realizable G, let V be it's p-core and $W=V^pV'$. Then V/W is an \mathbb{F}_p vector space with action of G/V. Let T_G be the set of pairs $(\sigma,\tau)\in G^2$ generating G/V and satisfying $\tau^\sigma=\tau^p$.

Definition

- *G* is strongly-split if $\operatorname{ord}_G(\sigma) = \operatorname{ord}_{G/V}(\sigma)$ for all $(\sigma, \tau) \in T_G$.
- *G* is tame-decoupled if τ acts trivially on V/W for all $(\sigma, \tau) \in T_G$.
- $G \text{ is } x_0\text{-constrained if } x_0^\sigma \langle x_0, \tau \rangle^{-1} \in W \Rightarrow x_0 \in W \text{ for all } (\sigma, \tau) \in T_G.$

Set $n_{G,ss} = 0$ if strongly-split, 1 o/w; $n_{G,xc} = 0$ if x_0 -constrained, 1 o/w.

Theorem

Let n be the largest multiplicity of an indecomposable factor of V/W.

- If G is tame-decoupled then it is x_0 -constrained.
- If $n > 1 + n_{G,ss} + n_{G,xc}$ then G is not p-realizable.
- If W = 1 and V is a sum of distinct irreducibles, G is p-realizable.

Minimally unrealizable G with abelian V, p=3

Label	Description	V	SS	TD	XC	$1 + n_{G,ss} + n_{G,xc}$
27G5	\mathbb{F}_3^3	1^{3}	N	Υ	Υ	2
36G7	$\mathbb{F}_3^{2} \rtimes C_4$	1^2	Υ	Υ	Υ	1
54G14	$\mathbb{F}_3^3 \rtimes C_2$	1^{3}	Υ	Ν	Ν	2
72G33	$\mathbb{F}_3^2 \rtimes D_8$	1^2	Υ	Υ	Υ	1
162G16	$C_0^2 \rtimes C_2$	1^2	Υ	Ν	Ν	2
324G164	$\mathbb{F}_3^4 \rtimes C_4$	2^2	Υ	Ν	Υ	1
324G169	$\mathbb{F}_3^4 \rtimes (C_2 \times C_2)$	$1^2 \oplus 1^2$	Υ	Ν	Ν	2
378G51	$\mathbb{F}_3^2 \rtimes (C_7 \rtimes C_6)$	1^2	Υ	Υ	Υ	1
648G711	$\mathbb{F}_3^4 \rtimes C_8$	2^2	Υ	Ν	Υ	1

162G16 and 324G169

There are two instances not explained by the theorem.

- For 324G169, $V \cong 1^2 \oplus 1^2$. There are nontrivial x_0 satisfying $x_0^{\sigma}\langle x_0, \tau \rangle^{-1} = 1$, but they all lie in a 1-dimensional indecomposable subrepresentation. The other subrepresentation can't be spanned by x_1 on its own.
- For 162G16, the quotient by W is p-realizable. Here V is abelian but has exponent 9 rather than 3, so the wild relation takes the form

$$x_0^{\sigma} \langle x_0, \tau \rangle^{-1} = x_1^p.$$

In order to get a nontrivial x_1 , we need to find x_0 with $x_0^{\sigma}\langle x_0, \tau \rangle^{-1}$ of order 3. Such x_0 exist, but they all have the property that $x_0^{\sigma}\langle x_0, \tau \rangle^{-1}$ is a multiple of x_0 , preventing x_1 from spanning the rest of V.

Minimally unrealizable G with nonabelian V, p=3

Label	Description	G/W	V/W
486G146	$(\mathbb{F}_3^4 \rtimes C_3) \rtimes C_2$	54G13	$1^2 \oplus 1$
648G218	$(C_{27} \rtimes C_3) \times D_8$	72G37	1^2
648G219	$(\mathbb{F}_3^3 \rtimes C_3) \times D_8$	72G37	1^2
648G220	$((C_9 \times C_3) \rtimes C_3) \times D_8$	72G37	1^2
648G221	$((C_9 \times C_3) \rtimes C_3) \times D_8$	72G37	1^2
972G816	$(\mathbb{F}_3^2 \times (\mathbb{F}_3^2 \rtimes C_3)) \rtimes (C_2^2)$	324G170	$1^2 \oplus 1 \oplus 1$
1458G613	$((C_{81} \times C_3) \rtimes C_3) \rtimes C_2$	18G4	1^2
1458G640	$(C_9^2 \rtimes C_9) \rtimes C_2$	18G4	1^2

Sketch for *G* not *p*-realizable

Proof.

To prove that G is not p-realizable, we show that a map $\operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p) \to G$ cannot possibly be surjective. In any attempt at surjectivity, we need to choose $(\sigma,\tau) \in T_G$. Having done so, we must generate all of V, which is equivalent to generating V/W. There are only three ways to produce elements of V: the image of x_0 , the image of x_1 and a power of σ . When G is x_0 -constrained, x_0 must map to $0 \in V/W$. When G is strongly split, every power of σ lying in V also lies in W. So there are $1 + n_{G,ss} + n_{G,xc}$ generators available.

The action of G/V on V/W spreads out these generators: we can get anything in the G/V submodule spanned by them. But when $n > 1 + n_{G,ss} + n_{G,xc}$, this submodule can't possibly be everything.

Sketch for G p-realizable

Proof.

We show that when W=1 and V is a sum of distinct irreducibles, then G is p-realizable. In this case, the relations simplify and we can just choose to map x_0 to 1 and x_1 to an element projecting nontrivially on each irreducible G/V-submodule of V. The resulting homomorphism is surjective.

References

- [1] J. Neukirch, A. Schmidt, K. Wingberg. *Cohomology of number fields*. Springer, Berlin, 2015, pg 419.
- [2] J.-P. Serre. Local fields. Springer, Berlin, 1979, pg 67.
- [3] I. Shafarevich. On p-extensions. Mat. Sb. 20 (1947), no. 62, 351–363.