Making McEliece and Regev meet

Gilles Zémor based on common work with C. Aguilar, O. Blazy, J-C. Deneuville, P. Gaborit

Bordeaux Mathematics Institute

March 21, 2019, Oberwolfach

the McEliece paridigm

Choose a code C that comes with a decodable algorithm, and publish a random generator matrix \mathbf{G}.
trapdoor encryption primitive:

$$
\begin{aligned}
\mathcal{M}=\{0,1\}^{m} & \rightarrow\{0,1\}^{n} \\
\mathbf{m} & \mapsto \mathbf{m G}+\mathbf{e}
\end{aligned}
$$

for \mathbf{e} random vector of small weight t.
Public matrix G should "look like" generator matrix of random code.

Decrypt with hidden decoding algorithm.
Historical instantiation: use a random Goppa code for C.

MDPC codes

Modern variant Misoczki, Tillich, Sendrier, Barreto 2012. Use for C a Moderate Density Parity-Check code.

$$
\mathbf{H}=\left[\begin{array}{ccccc}
111100 & \cdots & 000 & \cdots & 000 \\
& & \vdots & &
\end{array}\right]
$$

Codewords $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]$ satisfy (somewhat) low-weight parity-check equations $\sigma(\mathbf{x})=\mathbf{H x}^{T}=0$

$$
x_{3}+x_{7}+x_{23}=0
$$

If received vector y satisfies, say:

$$
\begin{aligned}
& y_{3}+y_{7}+y_{23}=1 \\
& y_{3}+y_{5}+y_{11}=1
\end{aligned}
$$

then flip the value of y_{3}.

Decoding MDPC codes

Bit flipping algorithm: if flipping the value of a bit decreases the syndrome weight, then flip its value. Repeat.
The higher the weight w of the parity-checks, the lower the weight t of decodable error vectors: wt $\leq n$

On the other hand, the lower the weight w of the parity-checks, the easier it is to recover them from an arbitrary parity-check matrix of the code. Method: guess $n / 2$ coordinates that are 0 . Cost: 2^{w}.

Same algorithm as Information Set Decoding for random codes. Decoding t errors similarly costs 2^{t} guesses.
Meet in the middle. Choose $w=t \approx \sqrt{n}$.

the Alekhnovich cryptosystem

Public: random matrix \mathbf{H}, together with vector \mathbf{y}

Encryption of $m \in \mathbb{F}_{2}$, output $\mathcal{C}(m)$ equal to:

- if $m=0$: uniform random vector \mathbf{u} of \mathbb{F}_{2}^{n}
- if $m=1$: vector $\mathbf{c}+\mathbf{e}$ where \mathbf{e} of weight t and \mathbf{c} codeword of code define by parity-check matrix \mathbf{H} and \mathbf{y}.
Notice: $\langle\mathbf{c}+\mathbf{e}, \varepsilon\rangle=\langle\mathbf{e}, \varepsilon\rangle$, probably 0 if \mathbf{e} and ε of small enough weight.

So decryption: compute $\langle\mathcal{C}(m), \varepsilon\rangle$. If 0 declare $m=1$ otherwise declare $m=0$. Correct $\sim 3 / 4$ of the time.

Security

Assumption: difficult to distinguish whether \mathbf{y} is

- random at distance t from code generated by rows of \mathbf{H},
- uniformly random.

Reduces to difficulty of decoding random codes.
Security argument:

- Attacker must continue to decrypt when \mathbf{y} is uniformly random,
- and when $\mathbf{c}+\mathbf{e}$ is replace by uniformly random vector.

But then decryption is exactly the decision problem: our asymption says exactly that it is not possible to solve.

Reducing to decoding random codes

Ingredients:
Trick: if you can solve the decision (guessing) problem, you have a device that, given $\mathbf{y}=\mathbf{s H}+\varepsilon$, computes, for any choice of $r,\langle s, r\rangle$ better than ($1 / 2,1 / 2$)-guessing.
Accessing s now becomes the decoding problem from a noisy codeword of a Reed-Muller code of order 1. Possible in sub-linear time. Goldreich-Levin theorem.

Regev version (binary)

Public: random matrix \mathbf{H}, together with vector \mathbf{y}

Encryption of $m \in \mathbb{F}_{2}$, output

$$
\mathcal{C}(m)=\left(\sigma(\mathbf{e})=\mathbf{H e}^{\top}, \mathbf{z}=m+\langle\mathbf{e}, \mathbf{y}\rangle\right)
$$

for e random of small weight t.
Decryption:

$$
\mathbf{z}+\langle\mathbf{s}, \sigma(\mathbf{e})\rangle=m+\langle\mathbf{e}, \boldsymbol{\varepsilon}\rangle .
$$

Both \mathbf{e} and ε of weight $<\sqrt{n}$.

Vector version

Public: random matrix \mathbf{H} and $\ell \times n$ matrix \mathbf{Y}. Auxilliary code $C \subset \mathbb{F}_{2}^{k}$.

$$
\begin{aligned}
& \mathbf{H}=\left[\begin{array}{lll}
\\
\mathbf{Y}=\left[\begin{array}{lll}
& \\
& \mathbf{S H}+\mathbf{E}
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

Encryption of $\mathbf{m} \in C \subset \mathbb{F}_{2}^{\ell}$, output

$$
\mathcal{C}(m)=\left(\sigma(\mathbf{e})=\mathbf{H e} \mathbf{e}^{T}, \mathbf{z}=\mathbf{m}+\mathbf{Y} \mathbf{e}^{T}\right)
$$

for $\mathbf{e} \in \mathbb{F}_{2}^{n}$ random of small weight $t<\sqrt{n}$.
Decryption:

$$
\mathbf{z}+\mathbf{S} \sigma(\mathbf{e})^{T}=\mathbf{m}+\mathbf{E e}^{T}
$$

Security argument: same.

Variation: Alekhnovich meets MDPC-McEliece

Public: random matrix $\left[\begin{array}{l}\mathbf{H} \\ \mathbf{Y}\end{array}\right]$. No auxiliary code.

$$
\begin{aligned}
& \mathbf{H}=[\\
& \mathbf{Y}=\left[\begin{array}{ll}
& \\
\mathbf{S H}+\mathbf{E}
\end{array}\right]
\end{aligned}
$$

C code whose parity-check matrix is $\left[\begin{array}{l}\mathbf{H} \\ \mathbf{y}\end{array}\right]$. Generator matrix \mathbf{G}.
Encryption primitive: $\mathbf{m} \mapsto \mathcal{C}(\mathbf{m})=\mathbf{m G}+\mathbf{e}$ for \mathbf{e} vector of low weight t.
Decryption: compute $\mathbf{E C}(\mathbf{m})^{T}$, the \mathbf{E}-syndrome of $\mathrm{C}(\mathbf{m})$. Equal to Ee^{\top}. Use bit-flip (MDPC) decoding !

Reduces to MDPC-McEliece when $\mathbf{H}=0$.

Towards greater efficiency, double-circulant codes

Codes with parity-check (or generator) matrices of the form

$$
\mathbf{H}=\left[\begin{array}{lll}
\mathbf{I}_{n} & \mid & \operatorname{rot}(\mathbf{h})] .
\end{array}\right.
$$

Equivalently, code invariant by simultaneous cyclic shifts of coordinates $1 \cdots n$ and $n+1 \cdots 2 n$.

Long history. Hold many records for minimum distance. Above GV bound (by a non-exponential factor), [Gaborit Z. 2008].

No known decoding algorithm improves significantly over decoding random codes. As for wider class of quasi-cyclic codes.

Boosts MDPC-McEliece. Use double-circulant MDPC code. Defined by a vector \mathbf{h}, means needs n bits instead of n^{2}.

With a random double circulant code

Public key: G generator matrix of auxiliary code C of length n.

- $\mathbf{H}=\left[\begin{array}{l|l}\mathbf{I}_{n} & \operatorname{rot}(\mathbf{h})\end{array}\right]$.
- Syndrome σ of a vector $[\mathbf{x}, \mathbf{y}]$ of low weight (t, t).

$$
\begin{aligned}
\sigma(\mathbf{x}, \mathbf{y})=\mathbf{H}\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right] & =\mathbf{x}^{T}+\operatorname{rot}(\mathbf{h}) \mathbf{y}^{T} \\
& =(\mathbf{x}+\mathbf{h} \cdot \mathbf{y})^{T} \\
\sigma & =\mathbf{x}+\mathbf{h y}
\end{aligned}
$$

hy: polynomial multiplication in $\mathbb{F}_{2}[X] /\left(X^{n}+1\right)$.
Encryption: $\mathbf{r}_{1}, \mathbf{r}_{2}, \varepsilon$ of low weight.

$$
\left(\boldsymbol{\lambda}=\sigma\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\mathbf{r}_{1}+\mathbf{h} \mathbf{r}_{2}, \boldsymbol{\rho}=\mathbf{m} \mathbf{G}+\boldsymbol{\sigma} \mathbf{r}_{2}+\boldsymbol{\varepsilon}\right)
$$

Decryption:

$$
\rho+\lambda \mathbf{y}=\mathbf{m G}+\mathbf{y r}_{1}+\mathbf{x r}_{2}+\varepsilon
$$

Codeword of C plus (somewhat) small noise.

Security

Public key: regular error-correcting code C,

- $\mathbf{H}=\left[\begin{array}{lll}\mathbf{I}_{n} & \operatorname{rot}(\mathbf{h})\end{array}\right]$.
- $\sigma(\mathbf{x}, \mathbf{y})=\mathbf{H}\left[\begin{array}{l}\mathbf{x} \\ \mathbf{y}\end{array}\right]$. Attacker must continue to decrypt when \mathbf{x}, \mathbf{y} uniformly random (instead of low-weight).

Encryption:

$$
\left(\boldsymbol{\lambda}=\sigma\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\mathbf{r}_{1}+\mathbf{h} \mathbf{h}_{2}, \boldsymbol{\rho}=\mathbf{m} \mathbf{G}+\boldsymbol{\sigma} \mathbf{r}_{2}+\boldsymbol{\varepsilon}\right)
$$

Rewrite as:

$$
\left[\begin{array}{l}
\lambda \\
\rho
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathbf{m G}
\end{array}\right]+\left[\begin{array}{ccc}
\mathbf{I}_{n} & 0 & \operatorname{rot}(\mathbf{h}) \\
0 & \mathbf{I}_{n} & \operatorname{rot}(\sigma)
\end{array}\right]\left[\begin{array}{c}
\mathbf{r}_{1} \\
\varepsilon \\
\mathbf{r}_{2}
\end{array}\right] .
$$

So attack must continue to work when $\mathbf{r}_{1}, \mathbf{r}_{2}, \varepsilon$ are also replaced by uniform. Otherwise we can distinguish between uniform and uniform of small distance from triple circulant quasi-cyclic code.

Note that presence of noise vector ε is essential.

New idea

Vector ε important for security argument, but otherwise underused. Why not use it to carry information?

Decoder knows \mathbf{x}, \mathbf{y}, so low-weight $\mathbf{r}_{1}, \mathbf{r}_{2}$ can be recovered from

$$
\mathbf{x r}_{2}+\mathbf{y r}_{1}=\left[\begin{array}{ll}
\operatorname{rot}(\mathbf{x}) & \operatorname{rot}(\mathbf{y})
\end{array}\right]\left[\begin{array}{l}
\mathbf{r}_{2} \\
\mathbf{r}_{1}
\end{array}\right]
$$

and from

$$
\mathbf{x r}_{2}+\mathbf{y \mathbf { r } _ { 1 }}+\boldsymbol{\varepsilon}=\left[\begin{array}{lll}
\operatorname{rot}(\mathbf{x}) & \operatorname{rot}(\mathbf{y}) & \mathbf{I}_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{r}_{2} \\
\mathbf{r}_{1} \\
\varepsilon
\end{array}\right]
$$

New key-exchange protocol: Ourobouros

- Alice sends \mathbf{h} and $\sigma(\mathbf{x}, \mathbf{y})=\mathbf{x}+\mathbf{h y}$ for secret \mathbf{x}, \mathbf{y} of low weight.
- Bob sends
- $\sigma(\mathbf{r})=\mathbf{r}_{1}+\mathbf{h} \mathbf{r}_{2}$ for secret $\mathbf{r}=\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ of low weight.
- $\boldsymbol{\beta}=(\mathbf{x}+\mathbf{h y}) \mathbf{r}_{2}+\varepsilon+f($ hash $(\mathbf{r}))$
where ε is secret to be exchanged, and f transforms input into (pseudo)-random noise of low weight.
- Alice computes

$$
\mathbf{y}\left(\mathbf{r}_{1}+\mathbf{h r _ { 2 }}\right)+\boldsymbol{\beta}
$$

which equals

$$
\mathbf{x r}_{2}+\mathbf{y r} \mathbf{r}_{1}+\varepsilon+\mathbf{e}
$$

which Alice decodes to recover $\mathbf{r}=\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ from which she accesses exchanged key ε.

Security

Identical argument to previous protocol, namely, once \mathbf{x}, \mathbf{y} are changed to uniform random, then

$$
\mathbf{x r _ { 2 }}+\mathbf{y r} \mathbf{r}_{1}+\mathbf{e}
$$

cannot be distinguished from uniform random.
Low weight vector $\mathbf{e}=f($ hash $(\mathbf{r}))$ plays exactly the same role that was played before by ε.

The three variants based on quasi-cyclic codes make up the BIKE suite proposal to NIST.

Extension to Rank metric

The rank metric is defined in finite extensions.
Code C is simply $[n, k]$ linear code over $\mathbb{F}_{Q}=\mathbb{F}_{q^{m}}$, extension of \mathbb{F}_{q}.
Elements of \mathbb{F}_{Q} can be seen as m-tuples of elements of \mathbb{F}_{q}.
Norm of an \mathbb{F}_{Q}-vector is simply its rank viewed as an $m \times n$-matrix.

Distance between \mathbf{x} and \mathbf{y} is simply the rank of $\mathbf{x}-\mathbf{y}$.
Decoding problem is NP-hard (under probabilistic reductions, Gaborit Z. 2016).

the Support connection

The support of a word $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ of rank r is a space E of $\operatorname{dim} r$ such that $\forall x_{i}, x_{i} \in E$.

- how does one recover a word associated to a given syndrome?

1) find the support (at worst, guess !)
2) solve a system from the syndrome equations to recover the $x_{i} \in E$.
This is information set decoding.
remark: for Hamming metric, Newton binomial, for rank distance, Gaussian binomial: \rightarrow complexity grows faster. \Rightarrow rank metric induces smaller parameters for a given complexity.

Low Rank Parity Check Codes

LDPC: parity-check matrix with low weights (ie: small support) \rightarrow equivalent for rank metric : dual with small rank support

Definition
A Low Rank Parity Check (LRPC) code of rank d, length n and dimension k over $\mathbb{F}_{q^{m}}$ is a code with $(n-k) \times n$ parity check matrix $\mathbf{H}=\left(h_{i j}\right)$ such that the sub-vector space of $\mathbb{F}_{q^{m}}$ generated by its coefficients $h_{i j}$ has dimension at most d. We call this dimension the weight of \mathbf{H}.

In other terms: all coefficients $h_{i j}$ of \mathbf{H} belong to the same 'low' vector space $F=\left\langle F_{1}, F_{2}, \cdots, F_{d}\right\rangle$ of $\mathbb{F}_{q^{m}}$ of dimension d.

Concluding comments

- Quasi-cyclic codes need $X^{n}-1$ to avoid small factors. $1+X+\cdots+X^{n-1}$ irreducible.
- In rank metric, $X^{n}+a, a \in \mathbb{F}_{q}$.
- Lack of Decision to Search reduction.

