Apéry-Like Recursions and Modular Forms

Henri Cohen

Bordeaux, November 5, 2019

LFANT INRIA, IMB, Université de Bordeaux

Apéry Recursions

In his proof of the irrationality of $\zeta(2)$ and $\zeta(3)$, Apéry introduced the following recursions:

$$
\begin{aligned}
(n+1)^{2} u_{n+1}-\left(11 n^{2}+11 n+3\right) u_{n}-n^{2} u_{n-1} & =0 \\
(n+1)^{3} u_{n+1}-(2 n+1)\left(17 n^{2}+17 n+5\right) u_{n}+n^{3} u_{n-1} & =0,
\end{aligned}
$$

both with $u_{-1}=0, u_{0}=1$.
Remarkable fact: all the u_{n} are integers (a priori they could have a denominator $n!^{2}$ or $n!^{3}$ respectively), and this plays an essential part in Apéry's proofs.

Second Remarkable fact: when suitably interpreted, in both cases the generating function $\sum_{n>0} u_{n} t^{n}$ is a modular function (of weight 1 and 2 respectively), fact discovered by F. Beukers.

Apéry Recursions

In his proof of the irrationality of $\zeta(2)$ and $\zeta(3)$, Apéry introduced the following recursions:

$$
\begin{aligned}
(n+1)^{2} u_{n+1}-\left(11 n^{2}+11 n+3\right) u_{n}-n^{2} u_{n-1} & =0 \\
(n+1)^{3} u_{n+1}-(2 n+1)\left(17 n^{2}+17 n+5\right) u_{n}+n^{3} u_{n-1} & =0,
\end{aligned}
$$

both with $u_{-1}=0, u_{0}=1$.
Remarkable fact: all the u_{n} are integers (a priori they could have a denominator $n!^{2}$ or $n!^{3}$ respectively), and this plays an essential part in Apéry's proofs.

> Second Remarkable fact: when suitably interpreted, in both cases the generating function $\sum_{n>0} u_{n} t^{n}$ is a modular function (of weight 1 and 2 respectively), fact discovered by F. Beukers.

Apéry Recursions

In his proof of the irrationality of $\zeta(2)$ and $\zeta(3)$, Apéry introduced the following recursions:

$$
\begin{aligned}
(n+1)^{2} u_{n+1}-\left(11 n^{2}+11 n+3\right) u_{n}-n^{2} u_{n-1} & =0 \\
(n+1)^{3} u_{n+1}-(2 n+1)\left(17 n^{2}+17 n+5\right) u_{n}+n^{3} u_{n-1} & =0,
\end{aligned}
$$

both with $u_{-1}=0, u_{0}=1$.
Remarkable fact: all the u_{n} are integers (a priori they could have a denominator $n!^{2}$ or $n!^{3}$ respectively), and this plays an essential part in Apéry's proofs.
Second Remarkable fact: when suitably interpreted, in both cases the generating function $\sum_{n \geq 0} u_{n} t^{n}$ is a modular function (of weight 1 and 2 respectively), fact discovered by F. Beukers.

Goal of Talk

Goal of talk: find other recursions having the same properties. Initial research due to D. Zagier, but continued by many people.

One remarkable consequence of this work is that the recursion for $\zeta(3)$ (that we will call a degree three recursion) can in fact be automatically deduced from a degree two recursion.

Goal of Talk

Goal of talk: find other recursions having the same properties. Initial research due to D. Zagier, but continued by many people.

One remarkable consequence of this work is that the recursion for $\zeta(3)$ (that we will call a degree three recursion) can in fact be automatically deduced from a degree two recursion.

Initial Search for Recursions I

Focus first on recursions of degree two, and to simplify shape of differential equation, recursions of the type

$$
(n+1)^{2} u_{n+1}-\left(a n^{2}+a n+b\right) u_{n}+c n^{2} u_{n-1}=0
$$

with $u_{-1}=0, u_{0}=1$, so that $u_{1}=b$.
Note changing u_{n} into u_{n} / D^{n} is equivalent to changing (a, b, c) into ($\left.D a, D b, D^{2} c\right)$. Thus, may assume that sequence u_{n} is primitive (no $D>1$ with $D^{n} \mid u_{n}$) and $u_{1} \geq 0(D=-1)$. We can do a reasonable search for $\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{Z}^{3}$ with $u_{1} \geq 0$. We note experimentally that this leads to a, b, c all integral (not clear a priori). Thus, loop instead on ($a, b=u_{1}$

Initial Search for Recursions I

Focus first on recursions of degree two, and to simplify shape of differential equation, recursions of the type

$$
(n+1)^{2} u_{n+1}-\left(a n^{2}+a n+b\right) u_{n}+c n^{2} u_{n-1}=0
$$

with $u_{-1}=0, u_{0}=1$, so that $u_{1}=b$.
Note changing u_{n} into u_{n} / D^{n} is equivalent to changing (a, b, c) into ($D a, D b, D^{2} c$). Thus, may assume that sequence u_{n} is primitive (no $D>1$ with $D^{n} \mid u_{n}$) and $u_{1} \geq 0(D=-1)$.
We can do a reasonable search for $\left(U_{1}, U_{2}, U_{3}\right) \in \mathbb{Z}^{3}$ with
$u_{1} \geq 0$. We note experimentally that this leads to a, b, c all
integral (not clear a priori). Thus, loop instead on

Initial Search for Recursions |

Focus first on recursions of degree two, and to simplify shape of differential equation, recursions of the type

$$
(n+1)^{2} u_{n+1}-\left(a n^{2}+a n+b\right) u_{n}+c n^{2} u_{n-1}=0
$$

with $u_{-1}=0, u_{0}=1$, so that $u_{1}=b$.
Note changing u_{n} into u_{n} / D^{n} is equivalent to changing (a, b, c) into ($D a, D b, D^{2} c$). Thus, may assume that sequence u_{n} is primitive (no $D>1$ with $D^{n} \mid u_{n}$) and $u_{1} \geq 0(D=-1$).
We can do a reasonable search for $\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{Z}^{3}$ with $u_{1} \geq 0$. We note experimentally that this leads to a, b, c all integral (not clear a priori). Thus, loop instead on $\left(a, b=u_{1}, u_{2}\right) \in \mathbb{Z}^{3}$.

Initial Search for Recursions II

After a few minutes search, find a reasonably large number of (possible) primitive solutions, for instance for $|a| \leq 250$, $0 \leq u_{1}=b \leq 100$, and $\left|u_{2}\right| \leq 1000$ we find 34 solutions. Analysis of solutions:

Initial Search for Recursions II

After a few minutes search, find a reasonably large number of (possible) primitive solutions, for instance for $|a| \leq 250$, $0 \leq u_{1}=b \leq 100$, and $\left|u_{2}\right| \leq 1000$ we find 34 solutions. Analysis of solutions:

- Terminating sequences: i.e., $u_{n}=0$ for n large. Easy to see corresponds to $(a, b, c)=(-1, k(k+1), 0)$ for $k \in \mathbb{Z}_{\geq 1}$. Six sequences in our list. $u_{n}=\binom{k}{n}\binom{k+n}{n}$, generating function $F(t)=\sum_{n \geq 0} u_{n} t^{n}=P_{k}(1-2 t), P_{k}$ Legendre polynomial.
Example:
$(a, b, c)=(-1,20,0): u=(1,20,90,140,70,0,0,0, \ldots)$
- More general Hypergeometric solutions: $c=0$, so u_{n+1} / u_{n} is a simple rational function. Not all give integral solutions: need $(a, b, c)=\left(-Q q^{2}, Q p(p+q), 0\right)$ with $\operatorname{gcd}(p, q)=1, q>0$, and $Q=\prod_{\ell \mid q}{ }^{\lceil 2 /(\ell-1)\rceil}$ (note: dividing by $Q q^{2}$ gives again $(-1, k(k+1), 0)$ with $k=p / q)$. Eleven additional sequences among our list.

Example:
$(a, b, c)=(16,4,0): u=(1,4,36,400,4900,63504, \ldots)$

Initial Search for Recursions IV

- Polynomial solutions, i.e., u_{n} is a polynomial in n. Easy to show by identification of leading coefficients in recursion that $(a, b, c)=\left(2, k^{2}+k+1,1\right)$. Eight more sequences.
Example:
$(a, b, c)=(2,7,1): u=(1,7,19,37,61,91,127, \ldots)$

Initial Search for Recursions V

- Once again replacing k by p / q and scaling leads to $(a, b, c)=\left(2 Q q^{2}, Q\left(p^{2}+p q+q^{2}\right), Q^{2} q^{4}\right)$, which Zagier calls Legendrian sequences. Three more sequences.

Example:
$(a, b, c)=(32,12,256): u=(1,12,164,2352,34596, \ldots)$
We have thus explained 28 out of the 34 sequences found, and
all the above families are infinite and trivially parametrized.
There remains six unexplained sequences which we thus call
sporadic. A much larger search for several hours does not give
any additional sequences than the four infinite families plus the
six sporadic sequences.

Initial Search for Recursions V

- Once again replacing k by p / q and scaling leads to $(a, b, c)=\left(2 Q q^{2}, Q\left(p^{2}+p q+q^{2}\right), Q^{2} q^{4}\right)$, which Zagier calls Legendrian sequences. Three more sequences.

Example:
$(a, b, c)=(32,12,256): u=(1,12,164,2352,34596, \ldots)$
We have thus explained 28 out of the 34 sequences found, and all the above families are infinite and trivially parametrized. There remains six unexplained sequences which we thus call sporadic. A much larger search for several hours does not give any additional sequences than the four infinite families plus the six sporadic sequences.

The six sporadic solutions are:
$(a, b, c)=(7,2,-8): u=(1,2,10,56,346,2252, \ldots)$.
$(a, b, c)=(9,3,27): u=(1,3,8,21,9,-297, \ldots)$.
$(a, b, c)=(10,3,9): u=(1,3,15,93,639,4653, \ldots)$.
$(a, b, c)=(11,3,-1): u=(1,3,19,147,1251,11253, \ldots)$
(Apéry's sequence).
$(a, b, c)=(12,4,32): u=(1,4,20,112,676,4304, \ldots)$.
$(a, b, c)=(17,6,72): u=(1,6,42,312,2394,18756, \ldots)$.

Auxiliary Sequences I

In each case can define an auxiliary sequence v_{n} with $v_{0}=0$ and $v_{1}=1$ and the same recursion, and look at the convergence of v_{n} / u_{n}. For the four infinite families, either nonconvergent or slow convergent with known limits. Since same recursion, explicit continued fraction.

Other surprising fact: like in Apéry, all these auxiliary v_{n} have a
denominator which does not grow like $n!^{2}$, but only like d_{n}^{2}
(essentially $e^{2 n}$, where $d_{n}=\operatorname{Icm}(1,2, \ldots, n)$.

Auxiliary Sequences I

In each case can define an auxiliary sequence v_{n} with $v_{0}=0$ and $v_{1}=1$ and the same recursion, and look at the convergence of v_{n} / u_{n}. For the four infinite families, either nonconvergent or slow convergent with known limits. Since same recursion, explicit continued fraction.

Other surprising fact: like in Apéry, all these auxiliary v_{n} have a denominator which does not grow like $n!^{2}$, but only like d_{n}^{2} (essentially $e^{2 n}$), where $d_{n}=\operatorname{Icm}(1,2, \ldots, n)$.

Auxiliary Sequences II

For the continued fraction corresponding to the six sporadic sequences, five converge, and exponentially fast (like $1 / \alpha^{n}$ with $\left.\alpha=\left(a+\sqrt{a^{2}-4 c}\right)^{2} /(4 c)\right)$ to a rational number times $\zeta(2)$, NOT, $L\left(\chi_{-3}, 2\right), \zeta(2), L\left(\chi_{-4}, 2\right)$, and $L\left(\chi_{-3}, 2\right)$ respectively, but unfortunately only the Apéry sequence for $\zeta(2)$ proves irrationality (needs convergence at least in $e^{4 n}$); note that irrationality of $L\left(\chi_{D}, 2\right)$ with $D<0$ is unknown.

Auxiliary Sequences III

However, all five give nice continued fractions. In addition to Apéry's continued fraction for $\zeta(2)$ we have

$$
L\left(\chi_{-3}, 2\right)=\frac{2}{P(1)-\frac{9 \cdot 1^{4}}{P(2)-\frac{9 \cdot 2^{4}}{P(3)-\ddots}}}
$$

with $P(n)=10 n^{2}-10 n+3$ (convergence in 9^{-n}), and

$$
L\left(\chi_{-4}, 2\right)=\frac{1 / 2}{P(1)-\frac{2 \cdot 1^{4}}{P(2)-\frac{2 \cdot 2^{4}}{P(3)-\ddots}}}
$$

with $P(n)=3 n^{2}-3 n+1\left(\right.$ convergence in $\left.2^{-n}\right)$.

Modular Properties I

Important theorem: if $t(\tau)$ is (nonconstant) modular of weight 0 and $f(\tau)$ modular of weight k, then locally (for instance around $\tau=i \infty)$ if one expresses f in terms of t as $f(\tau)=F(t(\tau))$, then F satisfies a linear differential equation of order $k+1$ with algebraic coefficients, and even polynomial coefficients if t is a Hauptmodul, i.e., generates the field of modular functions.
We prove this in weight $k=1$ because we need the $D E$.

Modular Properties I

Important theorem: if $t(\tau)$ is (nonconstant) modular of weight 0 and $f(\tau)$ modular of weight k, then locally (for instance around $\tau=i \infty)$ if one expresses f in terms of t as $f(\tau)=F(t(\tau))$, then F satisfies a linear differential equation of order $k+1$ with algebraic coefficients, and even polynomial coefficients if t is a Hauptmodul, i.e., generates the field of modular functions.

We prove this in weight $k=1$ because we need the $D E$.

Modular Properties II

Thus, let $t(\tau)$ be modular of weight 0 and $f(\tau)$ modular of weight 1 . Let as usual $D=(1 /(2 \pi i)) d / d \tau=q d / d q$ with $q=e^{2 \pi i \tau}$. Then $D(t) / f^{2}$ is modular of weight 0 , and since the field of modular functions has transcendence degree 1, there exists an algebraic function α such that $D(t) / f^{2}=\alpha(t)$.

Immediate computation then shows $\alpha d F / d t=D(t) / f^{2}$, then $(d / d t)(\alpha d F / d t)=-F(t) \beta(t)$, so DE, where $F^{\prime}=d F / d t$:

Modular Properties II

Thus, let $t(\tau)$ be modular of weight 0 and $f(\tau)$ modular of weight 1. Let as usual $D=(1 /(2 \pi i)) d / d \tau=q d / d q$ with $q=e^{2 \pi i \tau}$. Then $D(t) / f^{2}$ is modular of weight 0 , and since the field of modular functions has transcendence degree 1, there exists an algebraic function α such that $D(t) / f^{2}=\alpha(t)$.
Similarly, one checks that $2 D(f)^{2}-f D^{2}(f)$ is modular of weight 6 (essentially equal to the RC bracket $[f, f]_{2}$), so there exists an algebraic function β with $\left(2 D(f)^{2}-f D^{2}(f)\right) /\left(f^{4} D(t)\right)=\beta(t)$.

Immediate computation then shows $\alpha d F / d t=D(t) / f^{2}$, then

Modular Properties II

Thus, let $t(\tau)$ be modular of weight 0 and $f(\tau)$ modular of weight 1 . Let as usual $D=(1 /(2 \pi i)) d / d \tau=q d / d q$ with $q=e^{2 \pi i \tau}$. Then $D(t) / f^{2}$ is modular of weight 0 , and since the field of modular functions has transcendence degree 1 , there exists an algebraic function α such that $D(t) / f^{2}=\alpha(t)$.
Similarly, one checks that $2 D(f)^{2}-f D^{2}(f)$ is modular of weight 6 (essentially equal to the RC bracket $[f, f]_{2}$), so there exists an algebraic function β with $\left(2 D(f)^{2}-f D^{2}(f)\right) /\left(f^{4} D(t)\right)=\beta(t)$.
Immediate computation then shows $\alpha d F / d t=D(t) / f^{2}$, then $(d / d t)(\alpha d F / d t)=-F(t) \beta(t)$, so DE, where $F^{\prime}=d F / d t$:

$$
\left(\alpha F^{\prime}\right)^{\prime}+\beta F=0 .
$$

Modular Properties III

Let $F(t)=\sum_{n \geq 0} u_{n} t^{n}$ be the generating function. Easy to check that the recursion
$(n+1)^{2} u_{n+1}-\left(a n^{2}+a n+b\right) u_{n}+c n^{2} u_{n-1}=0$ implies the DE

$$
\left(t\left(1-a t+c t^{2}\right) F^{\prime}\right)^{\prime}+(-b+c t) F=0 .
$$

Exactly of the above form with $\alpha(t)=t\left(1-\boldsymbol{a t}+\boldsymbol{c} t^{2}\right)$ and $\beta(t)=-b+c t$.

Modular Properties III

Let $F(t)=\sum_{n \geq 0} u_{n} t^{n}$ be the generating function. Easy to check that the recursion
$(n+1)^{2} u_{n+1}-\left(a n^{2}+a n+b\right) u_{n}+c n^{2} u_{n-1}=0$ implies the DE

$$
\left(t\left(1-a t+c t^{2}\right) F^{\prime}\right)^{\prime}+(-b+c t) F=0
$$

Exactly of the above form with $\alpha(t)=t\left(1-a t+c t^{2}\right)$ and $\beta(t)=-b+c t$.

Note $D(t) /\left(\alpha(t) F(t(\tau))^{2}\right)=1$ and $D(t)=(d t / d \tau) /(2 \pi i)$, so $2 \pi i \tau=\int d t /\left(\alpha(t) F(t)^{2}\right)$. In our case $\alpha(t)=t+O\left(t^{2}\right)$ and $F(t)=1+O(t)$, so

$$
2 \pi i \tau=\int_{0}^{t}\left(\frac{1}{\alpha(x) F(x)^{2}}-\frac{1}{x}\right) d x+\log (C t)
$$

for some constant C.

Modular Properties IV

We may choose t so that $t(\tau)=q+O\left(q^{2}\right)$ so $C=1$ and

$$
q=t \exp \left(\int_{0}^{t}\left(\frac{F(x)^{-2}}{1-a x+c x^{2}}-1\right) \frac{d x}{x}\right) .
$$

Using $F(x)=1+b x+O\left(x^{2}\right)$ we find

$q=t+(a-2 b) t^{2}+O\left(t^{3}\right)$, this can be inverted $t=T(q)$, hence $f=F(T(q))$ is our desired modular function of weight 1.

Modular Properties IV

We may choose t so that $t(\tau)=q+O\left(q^{2}\right)$ so $C=1$ and

$$
q=t \exp \left(\int_{0}^{t}\left(\frac{F(x)^{-2}}{1-a x+c x^{2}}-1\right) \frac{d x}{x}\right)
$$

Using $F(x)=1+b x+O\left(x^{2}\right)$ we find
$q=t+(a-2 b) t^{2}+O\left(t^{3}\right)$, this can be inverted $t=T(q)$, hence $f=F(T(q))$ is our desired modular function of weight 1.

Modular Properties V

Possible Pari/GP script:

```
findmodular(a,b,c,L=16)=
{ my(V=vector(L+1),un=1,unm1=0,unp1,F,t,f);
    V[1]=1;
    for(n=0,L-1,
    unp1=((a*n*(n+1)+b)*un-c*n`2*unm1)/(n+1)^2;
    unm1=un;un=unp1;V[n+2]=un
    );
    F=Ser(V);
    t=serreverse(x*exp(intformal((1/(F^2*(1-a*x+c*x^2))-1)/x)
    f=subst(F,x,t);
    [t,f];
}
```


Modular Example I

First sporadic example: $(a, b, c)=(7,2,-8)$, we find
$t=x-3 x^{2}+3 x^{3}+5 x^{4}-18 x^{5}+15 x^{6}+24 x^{7}-75 x^{8}+57 x^{9}+\cdots$
$f=1+2 x+4 x^{2}+2 x^{3}+2 x^{4}+4 x^{6}+4 x^{7}+4 x^{8}+2 x^{9}+\cdots$
Easily recognized as eta quotients

$$
t(\tau)=\frac{\eta(\tau)^{3} \eta(6 \tau)^{9}}{\eta(2 \tau)^{3} \eta(3 \tau)^{9}} \quad \text { and } \quad f(\tau)=\frac{\eta(2 \tau) \eta(3 \tau)^{6}}{\eta(\tau)^{2} \eta(6 \tau)^{3}} \text {. }
$$

In this way, we find that 12 out of our initial 34 sequences (including all six sporadic ones) have a similar modular interpretation, but not necessarily as eta quotients.

Modular Example I

First sporadic example: $(a, b, c)=(7,2,-8)$, we find
$t=x-3 x^{2}+3 x^{3}+5 x^{4}-18 x^{5}+15 x^{6}+24 x^{7}-75 x^{8}+57 x^{9}+\cdots$
$f=1+2 x+4 x^{2}+2 x^{3}+2 x^{4}+4 x^{6}+4 x^{7}+4 x^{8}+2 x^{9}+\cdots$
Easily recognized as eta quotients

$$
t(\tau)=\frac{\eta(\tau)^{3} \eta(6 \tau)^{9}}{\eta(2 \tau)^{3} \eta(3 \tau)^{9}} \quad \text { and } \quad f(\tau)=\frac{\eta(2 \tau) \eta(3 \tau)^{6}}{\eta(\tau)^{2} \eta(6 \tau)^{3}} \text {. }
$$

In this way, we find that 12 out of our initial 34 sequences (including all six sporadic ones) have a similar modular interpretation, but not necessarily as eta quotients.

Modular Example II

For instance, for Apéry's example we find that

$$
t(\tau)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{5\left(\frac{n}{5}\right)}
$$

(which is not an eta quotient but satisfies the degree two algebraic equation $\left.\left(1-11 t-t^{2}\right) / t=(\eta(\tau) / \eta(5 \tau))^{6}\right)$, and

$$
f^{2}(\tau)=\frac{\eta(5 \tau)^{5}}{\eta(\tau) t(\tau)} .
$$

Degree Three Recursions I

Previous search generalized Apéry recursion for $\zeta(2)$. We now generalize Apéry recursion for $\zeta(3)$. Consider degree three recursions of following specific shape (can be slightly more general, see below):

$$
(n+1)^{3} u_{n+1}-(2 n+1)\left(a n^{2}+a n+b\right) u_{n}+c n^{3} u_{n-1}=0,
$$

again with $u_{-1}=0, u_{0}=1$, so $u_{1}=b$. As before, small search on $\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{Z}^{3}$ implies $(a, b, c) \in \mathbb{Z}^{3}$ (with one trivial exception $(a, b, c)=(-1 / 3,2,0)$ which gives the terminating sequence $u=(1,2,1,0,0,0, \ldots))$, so again we loop on $\left(a, b=u_{1}, u_{2}\right) \in \mathbb{Z}^{3}$ with $b \geq 0$.

> After looping for $|a| \leq 500,0 \leq b \leq 120$, and $|c| \leq 4000$ we find
> 31 solutions, and easily check that we have 4 Terminating, 9
> Hypergeometric, 7 Polynomial, and 5 Legendrian sequences, leaving 6 sporadic solutions, and no more after a much larger

Degree Three Recursions I

Previous search generalized Apéry recursion for $\zeta(2)$. We now generalize Apéry recursion for $\zeta(3)$. Consider degree three recursions of following specific shape (can be slightly more general, see below):

$$
(n+1)^{3} u_{n+1}-(2 n+1)\left(a n^{2}+a n+b\right) u_{n}+c n^{3} u_{n-1}=0,
$$

again with $u_{-1}=0, u_{0}=1$, so $u_{1}=b$. As before, small search on $\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{Z}^{3}$ implies $(a, b, c) \in \mathbb{Z}^{3}$ (with one trivial exception $(a, b, c)=(-1 / 3,2,0)$ which gives the terminating sequence $u=(1,2,1,0,0,0, \ldots))$, so again we loop on $\left(a, b=u_{1}, u_{2}\right) \in \mathbb{Z}^{3}$ with $b \geq 0$.
After looping for $|a| \leq 500,0 \leq b \leq 120$, and $|c| \leq 4000$ we find 31 solutions, and easily check that we have 4 Terminating, 9 Hypergeometric, 7 Polynomial, and 5 Legendrian sequences, leaving 6 sporadic solutions, and no more after a much larger search.

Degree Three Recursions II

The six sporadic solutions are:
$(a, b, c)=(7,3,81): u=(1,3,9,3,-279,-2997, \ldots)$.
$(a, b, c)=(9,3,-27): u=(1,3,27,309,4059,57753, \ldots)$.
$(a, b, c)=(10,4,64): u=(1,4,28,256,2716,31504, \ldots)$.
$(a, b, c)=(11,5,125): u=(1,5,35,275,2275,19255, \ldots)$.
$(a, b, c)=(12,4,16): u=(1,4,40,544,8536,145504, \ldots)$.
$(a, b, c)=(17,5,1): u=(1,5,73,1445,33001,819005, \ldots)$.
(Apéry's sequence).

Degree Three Recursions III

Once again we can define an auxiliary sequence v_{n} with $v_{0}=0$ and $v_{1}=1$ and the same recursion, and look at the convergence of v_{n} / u_{n}. For the four infinite families, either nonconvergent or slow convergent with known limits. Again the denominator of v_{n} does not grow too fast, like $d_{n}^{3} \approx e^{3 n}$.

> For the continued fractions associated with the six sporadic solutions, four converge, and exponentially fast, to a rational number times NOT, $\pi^{3} \sqrt{3}, \zeta(3), \zeta(3)$, NOT, and $\zeta(3)$ respectively, but again unfortunately only the Apery sequence for $\zeta(3)$ proves irrationality (that of $\pi^{3} \sqrt{3}$ is of course well-known).

Degree Three Recursions III

Once again we can define an auxiliary sequence v_{n} with $v_{0}=0$ and $v_{1}=1$ and the same recursion, and look at the convergence of v_{n} / u_{n}. For the four infinite families, either nonconvergent or slow convergent with known limits. Again the denominator of v_{n} does not grow too fast, like $d_{n}^{3} \approx e^{3 n}$.
For the continued fractions associated with the six sporadic solutions, four converge, and exponentially fast, to a rational number times NOT, $\pi^{3} \sqrt{3}, \zeta(3), \zeta(3)$, NOT, and $\zeta(3)$ respectively, but again unfortunately only the Apéry sequence for $\zeta(3)$ proves irrationality (that of $\pi^{3} \sqrt{3}$ is of course well-known).

Degree Three Recursions IV

Note nice continued fraction for $\pi^{3} \sqrt{3}$:

$$
\frac{4 \pi^{3} \sqrt{3}}{243}=\frac{1}{P(1)+\frac{3 \cdot 1^{6}}{P(2)+\frac{3 \cdot 2^{6}}{P(3)+\ddots}}}
$$

with $P(n)=6 n^{3}-9 n^{2}+5 n-1$.
Similar to the Apéry continued fraction for $\zeta(3)$:

Degree Three Recursions IV

Note nice continued fraction for $\pi^{3} \sqrt{3}$:

$$
\frac{4 \pi^{3} \sqrt{3}}{243}=\frac{1}{P(1)+\frac{3 \cdot 1^{6}}{P(2)+\frac{3 \cdot 2^{6}}{P(3)+\ddots}}}
$$

with $P(n)=6 n^{3}-9 n^{2}+5 n-1$.
Similar to the Apéry continued fraction for $\zeta(3)$:

$$
\frac{\zeta(3)}{6}=\frac{1}{P(1)-\frac{1^{6}}{P(2)-\frac{2^{6}}{P(3)-\ddots}}}
$$

with $P(n)=34 n^{3}-51 n^{2}+27 n-5$.

Modular Properties I

Recursions of degree two correspond to modular forms of weight 1 , and those of degree three to modular forms of weight 2. More difficult. However, amazing identity discovered rather recently. For instance, look again at the six sporadic (a, b, c) in degree two:
$\left(a_{2}, b_{2}, c_{2}\right)=(7,2,-8),(9,3,27),(10,3,9),(11,3,-1)$, $(12,4,32)$, and ($17,6,72$).
and in degree three:
$\left(a_{3}, b_{3}, c_{3}\right)=(7,3,81),(9,3,-27),(10,4,64),(11,5,125)$, ($12,4,16$), and ($17,5,1$).
Notice immediately that $a_{3}=a_{2}$, almost immediately that

Modular Properties I

Recursions of degree two correspond to modular forms of weight 1 , and those of degree three to modular forms of weight 2. More difficult. However, amazing identity discovered rather recently. For instance, look again at the six sporadic (a, b, c) in degree two:
$\left(a_{2}, b_{2}, c_{2}\right)=(7,2,-8),(9,3,27),(10,3,9),(11,3,-1)$, $(12,4,32)$, and ($17,6,72$).
and in degree three:
$\left(a_{3}, b_{3}, c_{3}\right)=(7,3,81),(9,3,-27),(10,4,64),(11,5,125)$,
($12,4,16$), and ($17,5,1$).
Notice immediately that $a_{3}=a_{2}$, almost immediately that

Modular Properties I

Recursions of degree two correspond to modular forms of weight 1 , and those of degree three to modular forms of weight 2. More difficult. However, amazing identity discovered rather recently. For instance, look again at the six sporadic (a, b, c) in degree two:
$\left(a_{2}, b_{2}, c_{2}\right)=(7,2,-8),(9,3,27),(10,3,9),(11,3,-1)$, $(12,4,32)$, and ($17,6,72$).
and in degree three:
$\left(a_{3}, b_{3}, c_{3}\right)=(7,3,81),(9,3,-27),(10,4,64),(11,5,125)$,
($12,4,16$), and ($17,5,1$).
Notice immediately that $a_{3}=a_{2}$,
almost immediately that

Modular Properties I

Recursions of degree two correspond to modular forms of weight 1 , and those of degree three to modular forms of weight 2. More difficult. However, amazing identity discovered rather recently. For instance, look again at the six sporadic (a, b, c) in degree two:
$\left(a_{2}, b_{2}, c_{2}\right)=(7,2,-8),(9,3,27),(10,3,9),(11,3,-1)$, $(12,4,32)$, and ($17,6,72$).
and in degree three:
$\left(a_{3}, b_{3}, c_{3}\right)=(7,3,81),(9,3,-27),(10,4,64),(11,5,125)$, ($12,4,16$), and ($17,5,1$).
Notice immediately that $a_{3}=a_{2}$, almost immediately that $b_{3}=a_{2}-2 b_{2}$,

Modular Properties I

Recursions of degree two correspond to modular forms of weight 1 , and those of degree three to modular forms of weight 2. More difficult. However, amazing identity discovered rather recently. For instance, look again at the six sporadic (a, b, c) in degree two:
$\left(a_{2}, b_{2}, c_{2}\right)=(7,2,-8),(9,3,27),(10,3,9),(11,3,-1)$, $(12,4,32)$, and ($17,6,72$).
and in degree three:
$\left(a_{3}, b_{3}, c_{3}\right)=(7,3,81),(9,3,-27),(10,4,64),(11,5,125)$, ($12,4,16$), and ($17,5,1$).
Notice immediately that $a_{3}=a_{2}$, almost immediately that $b_{3}=a_{2}-2 b_{2}$, and that $c_{3}=a_{2}^{2}-4 c_{2}$.

Modular Properties II

Remarkable identity proved by G. Almkvist, D. van Straten, and W. Zudilin:

Assume u_{n} degree two as above, i.e., $u_{-1}=0, u_{0}=1$, and $(n+1)^{2} u_{n+1}-\left(a n^{2}+a n+b\right) u_{n}+c n^{2} u_{n-1}=0$, and $U(t)=\sum_{n \geq 0} u_{n} t^{n}$ generating function.
Define a sequence w_{n} of degree three by $w_{-1}=0, w_{0}=1$, and $(n+1)^{3} w_{n+1}-(2 n+1)\left(a n^{2}+a n+a-2 b\right) w_{n}+\left(a^{2}-4 c\right) n^{3} w_{n-1}=0$, and $W(t)=\sum_{n \geq 0} w_{n} t^{n}$ generating function. Identity

$$
U(t)^{2}=\frac{1}{1-a t+c t^{2}} W\left(\frac{-t}{1-a t+c t^{2}}\right)
$$

Modular Properties III

Note: this is similar to Clausen identity of the shape ${ }_{2} F_{1}^{2}={ }_{3} F_{2}$ since weight 1 corresponds to ${ }_{2} F_{1}$ and weight 2 to ${ }_{3} F_{2}$.

Proved exactly in the same way: show that both sides satisfy the same linear differential equation of order three with same initial conditions. Clausen can be proved in a few lines. The above needs 2 pages for the complete details, or the use of a CAS.

Modular Properties IV

Integrality properties are essentially equivalent. Surprising consequence: up to scaling, all recursions of degree three follow from those of degree two and the above theorem. In particular, Apéry's recursion for $\zeta(3)$ follows from a much simpler one in degree two.

Other consequence: can immediately deduce modular
parametrizations of degree three recursions from those of
degree two. For instance, if u_{n} is the Apéry sequence for $\zeta(3)$, we have

Modular Properties IV

Integrality properties are essentially equivalent. Surprising consequence: up to scaling, all recursions of degree three follow from those of degree two and the above theorem. In particular, Apéry's recursion for $\zeta(3)$ follows from a much simpler one in degree two.

Other consequence: can immediately deduce modular parametrizations of degree three recursions from those of degree two. For instance, if u_{n} is the Apéry sequence for $\zeta(3)$, we have

$$
\sum_{n \geq 0} u_{n}\left(\frac{\eta(\tau) \eta(6 \tau)}{\eta(2 \tau) \eta(3 \tau)}\right)^{12 n}=\frac{(\eta(2 \tau) \eta(3 \tau))^{7}}{(\eta(\tau) \eta(6 \tau))^{5}}
$$

More General Degree Three Recursions I

S. Cooper has suggested the study of the slightly more general recursion

$$
(n+1)^{3} w_{n+1}-(2 n+1)\left(a n^{2}+a n+b\right) w_{n}+\left(c n^{3}+d n\right) w_{n-1}=0
$$

again with $u_{-1}=0, u_{0}=1$, so $u_{1}=b$. Motivation: if u_{n} satisfies the usual degree two recursion as before, then $w_{n}=\binom{2 n}{n} u_{n}$ satisfies

$$
(n+1)^{3} w_{n+1}-(2 n+1)\left(2 a n^{2}+2 a n+2 b\right) w_{n}+\left(16 c n^{3}-4 c n\right) w_{n-1}=0
$$ and there is a similar Clausen-type identity for $\sum_{n \geq 0} w_{n} t^{n}$.

More General Degree Three Recursions II

A similar search finds two additional sporadic sequences and more modular parametrizations. This gives for instance the following CF:

$$
\pi^{2}=\frac{42}{P(1)+\frac{1^{3} \cdot 2 \cdot 3 \cdot 4}{P(2)+\frac{2^{3} \cdot 5 \cdot 6 \cdot 7}{P(3)+\frac{3^{3} \cdot 8 \cdot 9 \cdot 10}{P(4)+\ddots}}}}
$$

with $P(n)=26 n^{3}-39 n^{2}+21 n-4$.
Note that this combined with the arithmetic properties of u_{n} and v_{n} proves irrationality of π^{2} with a better irrationality measure than Apéry's initial continued fraction.

More General Degree Three Recursions II

A similar search finds two additional sporadic sequences and more modular parametrizations. This gives for instance the following CF:

$$
\pi^{2}=\frac{42}{P(1)+\frac{1^{3} \cdot 2 \cdot 3 \cdot 4}{P(2)+\frac{2^{3} \cdot 5 \cdot 6 \cdot 7}{P(3)+\frac{3^{3} \cdot 8 \cdot 9 \cdot 10}{P(4)+\ddots}}}}
$$

with $P(n)=26 n^{3}-39 n^{2}+21 n-4$.
Note that this combined with the arithmetic properties of u_{n} and v_{n} proves irrationality of π^{2} with a better irrationality measure than Apéry's initial continued fraction.

Thank you for your attention.

