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Apéry Recursions

In his proof of the irrationality of ζ(2) and ζ(3), Apéry
introduced the following recursions:

(n + 1)2un+1 − (11n2 + 11n + 3)un − n2un−1 = 0

(n + 1)3un+1 − (2n + 1)(17n2 + 17n + 5)un + n3un−1 = 0 ,

both with u−1 = 0, u0 = 1.

Remarkable fact: all the un are integers (a priori they could
have a denominator n!2 or n!3 respectively), and this plays an
essential part in Apéry’s proofs.

Second Remarkable fact: when suitably interpreted, in both
cases the generating function

∑
n≥0 untn is a modular function

(of weight 1 and 2 respectively), fact discovered by F. Beukers.
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Goal of Talk

Goal of talk: find other recursions having the same properties.
Initial research due to D. Zagier, but continued by many people.

One remarkable consequence of this work is that the recursion
for ζ(3) (that we will call a degree three recursion) can in fact
be automatically deduced from a degree two recursion.

Henri Cohen Apéry-Like Recursions and Modular Forms



Goal of Talk

Goal of talk: find other recursions having the same properties.
Initial research due to D. Zagier, but continued by many people.

One remarkable consequence of this work is that the recursion
for ζ(3) (that we will call a degree three recursion) can in fact
be automatically deduced from a degree two recursion.
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Initial Search for Recursions I

Focus first on recursions of degree two, and to simplify shape
of differential equation, recursions of the type

(n + 1)2un+1 − (an2 + an + b)un + cn2un−1 = 0

with u−1 = 0, u0 = 1, so that u1 = b.

Note changing un into un/Dn is equivalent to changing (a,b, c)
into (Da,Db,D2c). Thus, may assume that sequence un is
primitive (no D > 1 with Dn | un) and u1 ≥ 0 (D = −1).

We can do a reasonable search for (u1,u2,u3) ∈ Z3 with
u1 ≥ 0. We note experimentally that this leads to a, b, c all
integral (not clear a priori). Thus, loop instead on
(a,b = u1,u2) ∈ Z3.
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Initial Search for Recursions II

After a few minutes search, find a reasonably large number of
(possible) primitive solutions, for instance for |a| ≤ 250,
0 ≤ u1 = b ≤ 100, and |u2| ≤ 1000 we find 34 solutions.
Analysis of solutions:

• Terminating sequences: i.e., un = 0 for n large. Easy to see
corresponds to (a,b, c) = (−1, k(k + 1),0) for k ∈ Z≥1. Six
sequences in our list. un =

(k
n

)(k+n
n

)
, generating function

F (t) =
∑

n≥0 untn = Pk (1− 2t), Pk Legendre polynomial.

Example:
(a,b, c) = (−1,20,0): u = (1,20,90,140,70,0,0,0, . . . )
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Initial Search for Recursions III

• More general Hypergeometric solutions: c = 0, so un+1/un is
a simple rational function. Not all give integral solutions: need
(a,b, c) = (−Qq2,Qp(p + q),0) with gcd(p,q) = 1, q > 0, and
Q =

∏
`|q `

d2/(`−1)e (note: dividing by Qq2 gives again
(−1, k(k + 1),0) with k = p/q). Eleven additional sequences
among our list.

Example:
(a,b, c) = (16,4,0): u = (1,4,36,400,4900,63504, . . . )
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Initial Search for Recursions IV

• Polynomial solutions, i.e., un is a polynomial in n. Easy to
show by identification of leading coefficients in recursion that
(a,b, c) = (2, k2 + k + 1,1). Eight more sequences.

Example:
(a,b, c) = (2,7,1): u = (1,7,19,37,61,91,127, . . . )
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Initial Search for Recursions V

• Once again replacing k by p/q and scaling leads to
(a,b, c) = (2Qq2,Q(p2 + pq + q2),Q2q4), which Zagier calls
Legendrian sequences. Three more sequences.

Example:
(a,b, c) = (32,12,256): u = (1,12,164,2352,34596, . . . )

We have thus explained 28 out of the 34 sequences found, and
all the above families are infinite and trivially parametrized.
There remains six unexplained sequences which we thus call
sporadic. A much larger search for several hours does not give
any additional sequences than the four infinite families plus the
six sporadic sequences.
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Initial Search for Recursions VI

The six sporadic solutions are:

(a,b, c) = (7,2,−8): u = (1,2,10,56,346,2252, . . . ).

(a,b, c) = (9,3,27): u = (1,3,8,21,9,−297, . . . ).

(a,b, c) = (10,3,9): u = (1,3,15,93,639,4653, . . . ).

(a,b, c) = (11,3,−1): u = (1,3,19,147,1251,11253, . . . )
(Apéry’s sequence).

(a,b, c) = (12,4,32): u = (1,4,20,112,676,4304, . . . ).

(a,b, c) = (17,6,72): u = (1,6,42,312,2394,18756, . . . ).
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Auxiliary Sequences I

In each case can define an auxiliary sequence vn with v0 = 0
and v1 = 1 and the same recursion, and look at the
convergence of vn/un. For the four infinite families, either
nonconvergent or slow convergent with known limits. Since
same recursion, explicit continued fraction.

Other surprising fact: like in Apéry, all these auxiliary vn have a
denominator which does not grow like n!2, but only like d2

n
(essentially e2n), where dn = lcm(1,2, ...,n).
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Auxiliary Sequences II

For the continued fraction corresponding to the six sporadic
sequences, five converge, and exponentially fast (like 1/αn with
α = (a +

√
a2 − 4c)2/(4c)) to a rational number times ζ(2),

NOT, L(χ−3,2), ζ(2), L(χ−4,2), and L(χ−3,2) respectively, but
unfortunately only the Apéry sequence for ζ(2) proves
irrationality (needs convergence at least in e4n); note that
irrationality of L(χD,2) with D < 0 is unknown.
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Auxiliary Sequences III

However, all five give nice continued fractions. In addition to
Apéry’s continued fraction for ζ(2) we have

L(χ−3,2) =
2

P(1)− 9 · 14

P(2)− 9 · 24

P(3)− . . .

with P(n) = 10n2 − 10n + 3 (convergence in 9−n), and

L(χ−4,2) =
1/2

P(1)− 2 · 14

P(2)− 2 · 24

P(3)− . . .

with P(n) = 3n2 − 3n + 1 (convergence in 2−n).
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Modular Properties I

Important theorem: if t(τ) is (nonconstant) modular of weight 0
and f (τ) modular of weight k , then locally (for instance around
τ = i∞) if one expresses f in terms of t as f (τ) = F (t(τ)), then
F satisfies a linear differential equation of order k + 1 with
algebraic coefficients, and even polynomial coefficients if t is a
Hauptmodul, i.e., generates the field of modular functions.

We prove this in weight k = 1 because we need the DE.
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Modular Properties II

Thus, let t(τ) be modular of weight 0 and f (τ) modular of
weight 1. Let as usual D = (1/(2πi))d/dτ = qd/dq with
q = e2πiτ . Then D(t)/f 2 is modular of weight 0, and since the
field of modular functions has transcendence degree 1, there
exists an algebraic function α such that D(t)/f 2 = α(t).

Similarly, one checks that 2D(f )2 − fD2(f ) is modular of weight
6 (essentially equal to the RC bracket [f , f ]2), so there exists an
algebraic function β with (2D(f )2 − fD2(f ))/(f 4D(t)) = β(t).

Immediate computation then shows αdF/dt = D(t)/f 2, then
(d/dt)(αdF/dt) = −F (t)β(t), so DE, where F ′ = dF/dt :

(αF ′)′ + βF = 0 .
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Modular Properties III

Let F (t) =
∑

n≥0 untn be the generating function. Easy to check
that the recursion
(n + 1)2un+1 − (an2 + an + b)un + cn2un−1 = 0 implies the DE

(t(1− at + ct2)F ′)′ + (−b + ct)F = 0 .

Exactly of the above form with α(t) = t(1− at + ct2) and
β(t) = −b + ct .

Note D(t)/(α(t)F (t(τ))2) = 1 and D(t) = (dt/dτ)/(2πi), so
2πiτ =

∫
dt/(α(t)F (t)2). In our case α(t) = t + O(t2) and

F (t) = 1 + O(t), so

2πiτ =

∫ t

0

(
1

α(x)F (x)2 −
1
x

)
dx + log(Ct)

for some constant C.
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Modular Properties IV

We may choose t so that t(τ) = q + O(q2) so C = 1 and

q = t exp
(∫ t

0

(
F (x)−2

1− ax + cx2 − 1
)

dx
x

)
.

Using F (x) = 1 + bx + O(x2) we find
q = t + (a− 2b)t2 +O(t3), this can be inverted t = T (q), hence
f = F (T (q)) is our desired modular function of weight 1.
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Modular Properties V

Possible Pari/GP script:

findmodular(a,b,c,L=16)=

{ my(V=vector(L+1),un=1,unm1=0,unp1,F,t,f);

V[1]=1;

for(n=0,L-1,

unp1=((a*n*(n+1)+b)*un-c*n^2*unm1)/(n+1)^2;

unm1=un;un=unp1;V[n+2]=un

);

F=Ser(V);

t=serreverse(x*exp(intformal((1/(F^2*(1-a*x+c*x^2))-1)/x)));

f=subst(F,x,t);

[t,f];

}
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Modular Example I

First sporadic example: (a,b, c) = (7,2,−8), we find

t = x − 3x2 + 3x3 + 5x4 − 18x5 + 15x6 + 24x7 − 75x8 + 57x9 + · · ·
f = 1 + 2x + 4x2 + 2x3 + 2x4 + 4x6 + 4x7 + 4x8 + 2x9 + · · ·

Easily recognized as eta quotients

t(τ) =
η(τ)3η(6τ)9

η(2τ)3η(3τ)9 and f (τ) =
η(2τ)η(3τ)6

η(τ)2η(6τ)3 .

In this way, we find that 12 out of our initial 34 sequences
(including all six sporadic ones) have a similar modular
interpretation, but not necessarily as eta quotients.
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Modular Example II

For instance, for Apéry’s example we find that

t(τ) = q
∏
n≥1

(1− qn)5
(n

5

)
(which is not an eta quotient but satisfies the degree two
algebraic equation (1− 11t − t2)/t = (η(τ)/η(5τ))6), and

f 2(τ) =
η(5τ)5

η(τ)t(τ)
.
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Degree Three Recursions I

Previous search generalized Apéry recursion for ζ(2). We now
generalize Apéry recursion for ζ(3). Consider degree three
recursions of following specific shape (can be slightly more
general, see below):

(n + 1)3un+1 − (2n + 1)(an2 + an + b)un + cn3un−1 = 0 ,

again with u−1 = 0, u0 = 1, so u1 = b. As before, small search
on (u1,u2,u3) ∈ Z3 implies (a,b, c) ∈ Z3 (with one trivial
exception (a,b, c) = (−1/3,2,0) which gives the terminating
sequence u = (1,2,1,0,0,0, . . . )), so again we loop on
(a,b = u1,u2) ∈ Z3 with b ≥ 0.

After looping for |a| ≤ 500, 0 ≤ b ≤ 120, and |c| ≤ 4000 we find
31 solutions, and easily check that we have 4 Terminating, 9
Hypergeometric, 7 Polynomial, and 5 Legendrian sequences,
leaving 6 sporadic solutions, and no more after a much larger
search.
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Degree Three Recursions II

The six sporadic solutions are:

(a,b, c) = (7,3,81): u = (1,3,9,3,−279,−2997, . . . ).

(a,b, c) = (9,3,−27): u = (1,3,27,309,4059,57753, . . . ).

(a,b, c) = (10,4,64): u = (1,4,28,256,2716,31504, . . . ).

(a,b, c) = (11,5,125): u = (1,5,35,275,2275,19255, . . . ).

(a,b, c) = (12,4,16): u = (1,4,40,544,8536,145504, . . . ).

(a,b, c) = (17,5,1): u = (1,5,73,1445,33001,819005, . . . ).
(Apéry’s sequence).
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Degree Three Recursions III

Once again we can define an auxiliary sequence vn with v0 = 0
and v1 = 1 and the same recursion, and look at the
convergence of vn/un. For the four infinite families, either
nonconvergent or slow convergent with known limits. Again the
denominator of vn does not grow too fast, like d3

n ≈ e3n.

For the continued fractions associated with the six sporadic
solutions, four converge, and exponentially fast, to a rational
number times NOT, π3

√
3, ζ(3), ζ(3), NOT, and ζ(3)

respectively, but again unfortunately only the Apéry sequence
for ζ(3) proves irrationality (that of π3

√
3 is of course

well-known).
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Degree Three Recursions IV

Note nice continued fraction for π3
√

3:

4π3
√

3
243

=
1

P(1) +
3 · 16

P(2) +
3 · 26

P(3) +
. . .

with P(n) = 6n3 − 9n2 + 5n − 1.

Similar to the Apéry continued fraction for ζ(3):

ζ(3)
6

=
1

P(1)− 16

P(2)− 26

P(3)− . . .

with P(n) = 34n3 − 51n2 + 27n − 5.
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Henri Cohen Apéry-Like Recursions and Modular Forms



Modular Properties I

Recursions of degree two correspond to modular forms of
weight 1, and those of degree three to modular forms of weight
2. More difficult. However, amazing identity discovered rather
recently. For instance, look again at the six sporadic (a,b, c) in
degree two:

(a2,b2, c2) = (7,2,−8), (9,3,27), (10,3,9), (11,3,−1),
(12,4,32), and (17,6,72).

and in degree three:
(a3,b3, c3) = (7,3,81), (9,3,−27), (10,4,64), (11,5,125),
(12,4,16), and (17,5,1).

Notice immediately that a3 = a2, almost immediately that
b3 = a2 − 2b2, and that c3 = a2

2 − 4c2.
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Modular Properties II

Remarkable identity proved by G. Almkvist, D. van Straten, and
W. Zudilin:
Assume un degree two as above, i.e., u−1 = 0, u0 = 1, and
(n + 1)2un+1 − (an2 + an + b)un + cn2un−1 = 0, and
U(t) =

∑
n≥0 untn generating function.

Define a sequence wn of degree three by w−1 = 0, w0 = 1, and

(n+1)3wn+1−(2n+1)(an2+an+a−2b)wn+(a2−4c)n3wn−1 = 0 ,

and W (t) =
∑

n≥0 wntn generating function. Identity

U(t)2 =
1

1− at + ct2 W
(

−t
1− at + ct2

)
.
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Modular Properties III

Note: this is similar to Clausen identity of the shape 2F 2
1 = 3F2

since weight 1 corresponds to 2F1 and weight 2 to 3F2.

Proved exactly in the same way: show that both sides satisfy
the same linear differential equation of order three with same
initial conditions. Clausen can be proved in a few lines. The
above needs 2 pages for the complete details, or the use of a
CAS.
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Modular Properties IV

Integrality properties are essentially equivalent. Surprising
consequence: up to scaling, all recursions of degree three
follow from those of degree two and the above theorem. In
particular, Apéry’s recursion for ζ(3) follows from a much
simpler one in degree two.

Other consequence: can immediately deduce modular
parametrizations of degree three recursions from those of
degree two. For instance, if un is the Apéry sequence for ζ(3),
we have ∑

n≥0

un

(
η(τ)η(6τ)
η(2τ)η(3τ)

)12n

=
(η(2τ)η(3τ))7

(η(τ)η(6τ))5 .
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More General Degree Three Recursions I

S. Cooper has suggested the study of the slightly more general
recursion

(n+1)3wn+1− (2n+1)(an2 +an+b)wn +(cn3 +dn)wn−1 = 0 ,

again with u−1 = 0, u0 = 1, so u1 = b. Motivation: if un satisfies
the usual degree two recursion as before, then wn =

(2n
n

)
un

satisfies

(n+1)3wn+1−(2n+1)(2an2+2an+2b)wn+(16cn3−4cn)wn−1 = 0 ,

and there is a similar Clausen-type identity for
∑

n≥0 wntn.
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More General Degree Three Recursions II

A similar search finds two additional sporadic sequences and
more modular parametrizations. This gives for instance the
following CF:

π2 =
42

P(1) +
13 · 2 · 3 · 4

P(2) +
23 · 5 · 6 · 7

P(3) +
33 · 8 · 9 · 10

P(4) +
. . .

with P(n) = 26n3 − 39n2 + 21n − 4.

Note that this combined with the arithmetic properties of un and
vn proves irrationality of π2 with a better irrationality measure
than Apéry’s initial continued fraction.
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Thank you for your attention.
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