Apéry-Like Recursions and Modular Forms

Henri Cohen

Bordeaux, November 5, 2019

LFANT INRIA, IMB, Université de Bordeaux

Henri Cohen Apéry-Like Recursions and Modular Forms

In his proof of the irrationality of $\zeta(2)$ and $\zeta(3)$, Apéry introduced the following recursions:

 $(n+1)^2 u_{n+1} - (11n^2 + 11n + 3)u_n - n^2 u_{n-1} = 0$ (n+1)³ u_{n+1} - (2n+1)(17n^2 + 17n + 5)u_n + n^3 u_{n-1} = 0,

both with $u_{-1} = 0$, $u_0 = 1$.

Remarkable fact: all the u_n are integers (a priori they could have a denominator $n!^2$ or $n!^3$ respectively), and this plays an essential part in Apéry's proofs.

Second Remarkable fact: when suitably interpreted, in both cases the generating function $\sum_{n\geq 0} u_n t^n$ is a modular function (of weight 1 and 2 respectively), fact discovered by F. Beukers.

・ロット (雪) () () () ()

In his proof of the irrationality of $\zeta(2)$ and $\zeta(3)$, Apéry introduced the following recursions:

 $(n+1)^2 u_{n+1} - (11n^2 + 11n + 3)u_n - n^2 u_{n-1} = 0$ (n+1)³ u_{n+1} - (2n+1)(17n^2 + 17n + 5)u_n + n^3 u_{n-1} = 0,

both with $u_{-1} = 0$, $u_0 = 1$.

Remarkable fact: all the u_n are integers (a priori they could have a denominator $n!^2$ or $n!^3$ respectively), and this plays an essential part in Apéry's proofs.

Second Remarkable fact: when suitably interpreted, in both cases the generating function $\sum_{n\geq 0} u_n t^n$ is a modular function (of weight 1 and 2 respectively), fact discovered by F. Beukers.

ヘロン 人間 とくほ とくほ とう

In his proof of the irrationality of $\zeta(2)$ and $\zeta(3)$, Apéry introduced the following recursions:

 $(n+1)^2 u_{n+1} - (11n^2 + 11n + 3)u_n - n^2 u_{n-1} = 0$ (n+1)³ u_{n+1} - (2n+1)(17n^2 + 17n + 5)u_n + n^3 u_{n-1} = 0,

both with $u_{-1} = 0$, $u_0 = 1$.

Remarkable fact: all the u_n are integers (a priori they could have a denominator $n!^2$ or $n!^3$ respectively), and this plays an essential part in Apéry's proofs.

Second Remarkable fact: when suitably interpreted, in both cases the generating function $\sum_{n\geq 0} u_n t^n$ is a modular function (of weight 1 and 2 respectively), fact discovered by F. Beukers.

ヘロン ヘアン ヘビン ヘビン

Goal of talk: find other recursions having the same properties. Initial research due to D. Zagier, but continued by many people.

One remarkable consequence of this work is that the recursion for $\zeta(3)$ (that we will call a degree three recursion) can in fact be automatically deduced from a degree two recursion.

伺き くほき くほう

Goal of talk: find other recursions having the same properties. Initial research due to D. Zagier, but continued by many people.

One remarkable consequence of this work is that the recursion for $\zeta(3)$ (that we will call a degree three recursion) can in fact be automatically deduced from a degree two recursion.

Focus first on recursions of degree two, and to simplify shape of differential equation, recursions of the type

 $(n+1)^2 u_{n+1} - (an^2 + an + b)u_n + cn^2 u_{n-1} = 0$

with $u_{-1} = 0$, $u_0 = 1$, so that $u_1 = b$.

Note changing u_n into u_n/D^n is equivalent to changing (a, b, c) into (Da, Db, D^2c) . Thus, may assume that sequence u_n is primitive (no D > 1 with $D^n | u_n$) and $u_1 \ge 0$ (D = -1).

We can do a reasonable search for $(u_1, u_2, u_3) \in \mathbb{Z}^3$ with $u_1 \ge 0$. We note experimentally that this leads to a, b, c all integral (not clear a priori). Thus, loop instead on $(a, b = u_1, u_2) \in \mathbb{Z}^3$.

・ロト ・ 理 ト ・ ヨ ト ・

Focus first on recursions of degree two, and to simplify shape of differential equation, recursions of the type

 $(n+1)^2 u_{n+1} - (an^2 + an + b)u_n + cn^2 u_{n-1} = 0$

with $u_{-1} = 0$, $u_0 = 1$, so that $u_1 = b$.

Note changing u_n into u_n/D^n is equivalent to changing (a, b, c) into (Da, Db, D^2c) . Thus, may assume that sequence u_n is primitive (no D > 1 with $D^n | u_n$) and $u_1 \ge 0$ (D = -1).

We can do a reasonable search for $(u_1, u_2, u_3) \in \mathbb{Z}^3$ with $u_1 \ge 0$. We note experimentally that this leads to a, b, c all integral (not clear a priori). Thus, loop instead on $(a, b = u_1, u_2) \in \mathbb{Z}^3$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Focus first on recursions of degree two, and to simplify shape of differential equation, recursions of the type

 $(n+1)^2 u_{n+1} - (an^2 + an + b)u_n + cn^2 u_{n-1} = 0$

with $u_{-1} = 0$, $u_0 = 1$, so that $u_1 = b$.

Note changing u_n into u_n/D^n is equivalent to changing (a, b, c) into (Da, Db, D^2c) . Thus, may assume that sequence u_n is primitive (no D > 1 with $D^n | u_n$) and $u_1 \ge 0$ (D = -1).

We can do a reasonable search for $(u_1, u_2, u_3) \in \mathbb{Z}^3$ with $u_1 \ge 0$. We note experimentally that this leads to *a*, *b*, *c* all integral (not clear a priori). Thus, loop instead on $(a, b = u_1, u_2) \in \mathbb{Z}^3$.

イロト 不得 とくほ とくほ とうほ

After a few minutes search, find a reasonably large number of (possible) primitive solutions, for instance for $|a| \le 250$, $0 \le u_1 = b \le 100$, and $|u_2| \le 1000$ we find 34 solutions. Analysis of solutions:

• Terminating sequences: i.e., $u_n = 0$ for n large. Easy to see corresponds to (a, b, c) = (-1, k(k + 1), 0) for $k \in \mathbb{Z}_{\geq 1}$. Six sequences in our list. $u_n = \binom{k}{n}\binom{k+n}{n}$, generating function $F(t) = \sum_{n \geq 0} u_n t^n = P_k(1 - 2t)$, P_k Legendre polynomial.

Example:

(a, b, c) = (-1, 20, 0): u = (1, 20, 90, 140, 70, 0, 0, 0, ...)

ヘロア 人間 アメヨア 人口 ア

After a few minutes search, find a reasonably large number of (possible) primitive solutions, for instance for $|a| \le 250$, $0 \le u_1 = b \le 100$, and $|u_2| \le 1000$ we find 34 solutions. Analysis of solutions:

• Terminating sequences: i.e., $u_n = 0$ for *n* large. Easy to see corresponds to (a, b, c) = (-1, k(k + 1), 0) for $k \in \mathbb{Z}_{\geq 1}$. Six sequences in our list. $u_n = \binom{k}{n}\binom{k+n}{n}$, generating function $F(t) = \sum_{n \geq 0} u_n t^n = P_k(1 - 2t)$, P_k Legendre polynomial.

Example:

(a, b, c) = (-1, 20, 0): u = (1, 20, 90, 140, 70, 0, 0, 0, ...)

・ 同 ト ・ ヨ ト ・ ヨ ト …

• More general Hypergeometric solutions: c = 0, so u_{n+1}/u_n is a simple rational function. Not all give integral solutions: need $(a, b, c) = (-Qq^2, Qp(p+q), 0)$ with gcd(p,q) = 1, q > 0, and $Q = \prod_{\ell \mid q} \ell^{\lceil 2/(\ell-1) \rceil}$ (note: dividing by Qq^2 gives again (-1, k(k+1), 0) with k = p/q). Eleven additional sequences among our list.

Example:

(a, b, c) = (16, 4, 0): u = (1, 4, 36, 400, 4900, 63504, ...)

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Polynomial solutions, i.e., u_n is a polynomial in n. Easy to show by identification of leading coefficients in recursion that $(a, b, c) = (2, k^2 + k + 1, 1)$. Eight more sequences.

Example:

(a, b, c) = (2, 7, 1): u = (1, 7, 19, 37, 61, 91, 127, ...)

通 とく ヨ とく ヨ とう

• Once again replacing k by p/q and scaling leads to $(a, b, c) = (2Qq^2, Q(p^2 + pq + q^2), Q^2q^4)$, which Zagier calls Legendrian sequences. Three more sequences.

Example: (*a*, *b*, *c*) = (32, 12, 256): u = (1, 12, 164, 2352, 34596, ...)

We have thus explained 28 out of the 34 sequences found, and all the above families are infinite and trivially parametrized. There remains six unexplained sequences which we thus call sporadic. A much larger search for several hours does not give any additional sequences than the four infinite families plus the six sporadic sequences.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

• Once again replacing k by p/q and scaling leads to $(a, b, c) = (2Qq^2, Q(p^2 + pq + q^2), Q^2q^4)$, which Zagier calls Legendrian sequences. Three more sequences.

Example:

(a, b, c) = (32, 12, 256): u = (1, 12, 164, 2352, 34596, ...)

We have thus explained 28 out of the 34 sequences found, and all the above families are infinite and trivially parametrized. There remains six unexplained sequences which we thus call sporadic. A much larger search for several hours does not give any additional sequences than the four infinite families plus the six sporadic sequences.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The six sporadic solutions are:

(a, b, c) = (7, 2, -8): u = (1, 2, 10, 56, 346, 2252, ...). (a, b, c) = (9, 3, 27): u = (1, 3, 8, 21, 9, -297, ...). (a, b, c) = (10, 3, 9): u = (1, 3, 15, 93, 639, 4653, ...). (a, b, c) = (11, 3, -1): u = (1, 3, 19, 147, 1251, 11253, ...)(Apéry's sequence).

(a, b, c) = (12, 4, 32): u = (1, 4, 20, 112, 676, 4304, ...).

(a, b, c) = (17, 6, 72): u = (1, 6, 42, 312, 2394, 18756, ...).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

In each case can define an auxiliary sequence v_n with $v_0 = 0$ and $v_1 = 1$ and the same recursion, and look at the convergence of v_n/u_n . For the four infinite families, either nonconvergent or slow convergent with known limits. Since same recursion, explicit continued fraction.

Other surprising fact: like in Apéry, all these auxiliary v_n have a denominator which does not grow like $n!^2$, but only like d_n^2 (essentially e^{2n}), where $d_n = \text{lcm}(1, 2, ..., n)$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

In each case can define an auxiliary sequence v_n with $v_0 = 0$ and $v_1 = 1$ and the same recursion, and look at the convergence of v_n/u_n . For the four infinite families, either nonconvergent or slow convergent with known limits. Since same recursion, explicit continued fraction.

Other surprising fact: like in Apéry, all these auxiliary v_n have a denominator which does not grow like $n!^2$, but only like d_n^2 (essentially e^{2n}), where $d_n = \text{lcm}(1, 2, ..., n)$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

For the continued fraction corresponding to the six sporadic sequences, five converge, and exponentially fast (like $1/\alpha^n$ with $\alpha = (a + \sqrt{a^2 - 4c})^2/(4c)$) to a rational number times $\zeta(2)$, NOT, $L(\chi_{-3}, 2), \zeta(2), L(\chi_{-4}, 2)$, and $L(\chi_{-3}, 2)$ respectively, but unfortunately only the Apéry sequence for $\zeta(2)$ proves irrationality (needs convergence at least in e^{4n}); note that irrationality of $L(\chi_D, 2)$ with D < 0 is unknown.

ヘロン 人間 とくほ とくほ とう

Auxiliary Sequences III

However, all five give nice continued fractions. In addition to Apéry's continued fraction for $\zeta(2)$ we have

$$L(\chi_{-3}, 2) = \frac{2}{P(1) - \frac{9 \cdot 1^4}{P(2) - \frac{9 \cdot 2^4}{P(3) - \ddots}}}$$

with $P(n) = 10n^2 - 10n + 3$ (convergence in 9^{-n}), and

$$L(\chi_{-4}, 2) = \frac{1/2}{P(1) - \frac{2 \cdot 1^4}{P(2) - \frac{2 \cdot 2^4}{P(3) - \frac{1}{2} \cdot 2^4}}}$$

with $P(n) = 3n^2 - 3n + 1$ (convergence in 2^{-n}).

Important theorem: if $t(\tau)$ is (nonconstant) modular of weight 0 and $f(\tau)$ modular of weight *k*, then locally (for instance around $\tau = i\infty$) if one expresses *f* in terms of *t* as $f(\tau) = F(t(\tau))$, then *F* satisfies a linear differential equation of order k + 1 with algebraic coefficients, and even polynomial coefficients if *t* is a Hauptmodul, i.e., generates the field of modular functions.

We prove this in weight k = 1 because we need the DE.

く 同 と く ヨ と く ヨ と

Important theorem: if $t(\tau)$ is (nonconstant) modular of weight 0 and $f(\tau)$ modular of weight *k*, then locally (for instance around $\tau = i\infty$) if one expresses *f* in terms of *t* as $f(\tau) = F(t(\tau))$, then *F* satisfies a linear differential equation of order k + 1 with algebraic coefficients, and even polynomial coefficients if *t* is a Hauptmodul, i.e., generates the field of modular functions.

We prove this in weight k = 1 because we need the DE.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Thus, let $t(\tau)$ be modular of weight 0 and $f(\tau)$ modular of weight 1. Let as usual $D = (1/(2\pi i))d/d\tau = qd/dq$ with $q = e^{2\pi i \tau}$. Then $D(t)/f^2$ is modular of weight 0, and since the field of modular functions has transcendence degree 1, there exists an algebraic function α such that $D(t)/f^2 = \alpha(t)$.

Similarly, one checks that $2D(f)^2 - fD^2(f)$ is modular of weight 6 (essentially equal to the RC bracket $[f, f]_2$), so there exists an algebraic function β with $(2D(f)^2 - fD^2(f))/(f^4D(t)) = \beta(t)$.

Immediate computation then shows $\alpha dF/dt = D(t)/f^2$, then $(d/dt)(\alpha dF/dt) = -F(t)\beta(t)$, so DE, where F' = dF/dt:

 $(\alpha F')' + \beta F = \mathbf{0} \; .$

・ロト ・ 理 ト ・ ヨ ト ・

Thus, let $t(\tau)$ be modular of weight 0 and $f(\tau)$ modular of weight 1. Let as usual $D = (1/(2\pi i))d/d\tau = qd/dq$ with $q = e^{2\pi i \tau}$. Then $D(t)/f^2$ is modular of weight 0, and since the field of modular functions has transcendence degree 1, there exists an algebraic function α such that $D(t)/f^2 = \alpha(t)$.

Similarly, one checks that $2D(f)^2 - fD^2(f)$ is modular of weight 6 (essentially equal to the RC bracket $[f, f]_2$), so there exists an algebraic function β with $(2D(f)^2 - fD^2(f))/(f^4D(t)) = \beta(t)$.

Immediate computation then shows $\alpha dF/dt = D(t)/f^2$, then $(d/dt)(\alpha dF/dt) = -F(t)\beta(t)$, so DE, where F' = dF/dt:

 $(\alpha F')' + \beta F = \mathbf{0} \; .$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Thus, let $t(\tau)$ be modular of weight 0 and $f(\tau)$ modular of weight 1. Let as usual $D = (1/(2\pi i))d/d\tau = qd/dq$ with $q = e^{2\pi i \tau}$. Then $D(t)/f^2$ is modular of weight 0, and since the field of modular functions has transcendence degree 1, there exists an algebraic function α such that $D(t)/f^2 = \alpha(t)$.

Similarly, one checks that $2D(f)^2 - fD^2(f)$ is modular of weight 6 (essentially equal to the RC bracket $[f, f]_2$), so there exists an algebraic function β with $(2D(f)^2 - fD^2(f))/(f^4D(t)) = \beta(t)$.

Immediate computation then shows $\alpha dF/dt = D(t)/f^2$, then $(d/dt)(\alpha dF/dt) = -F(t)\beta(t)$, so DE, where F' = dF/dt:

 $(\alpha F')' + \beta F = \mathbf{0} .$

・ロト ・ 理 ト ・ ヨ ト ・

Modular Properties III

Let $F(t) = \sum_{n \ge 0} u_n t^n$ be the generating function. Easy to check that the recursion

 $(n+1)^2 u_{n+1} - (an^2 + an + b)u_n + cn^2 u_{n-1} = 0$ implies the DE

 $(t(1 - at + ct^2)F')' + (-b + ct)F = 0$.

Exactly of the above form with $\alpha(t) = t(1 - at + ct^2)$ and $\beta(t) = -b + ct$.

Note $D(t)/(\alpha(t)F(t(\tau))^2) = 1$ and $D(t) = (dt/d\tau)/(2\pi i)$, so $2\pi i\tau = \int dt/(\alpha(t)F(t)^2)$. In our case $\alpha(t) = t + O(t^2)$ and F(t) = 1 + O(t), so

$$2\pi i\tau = \int_0^t \left(\frac{1}{\alpha(x)F(x)^2} - \frac{1}{x}\right) dx + \log(Ct)$$

for some constant *C*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Modular Properties III

Let $F(t) = \sum_{n \ge 0} u_n t^n$ be the generating function. Easy to check that the recursion

 $(n+1)^2 u_{n+1} - (an^2 + an + b)u_n + cn^2 u_{n-1} = 0$ implies the DE

 $(t(1 - at + ct^2)F')' + (-b + ct)F = 0$.

Exactly of the above form with $\alpha(t) = t(1 - at + ct^2)$ and $\beta(t) = -b + ct$.

Note $D(t)/(\alpha(t)F(t(\tau))^2) = 1$ and $D(t) = (dt/d\tau)/(2\pi i)$, so $2\pi i\tau = \int dt/(\alpha(t)F(t)^2)$. In our case $\alpha(t) = t + O(t^2)$ and F(t) = 1 + O(t), so

$$2\pi i au = \int_0^t \left(rac{1}{lpha(x)F(x)^2} - rac{1}{x}
ight) dx + \log(Ct)$$

for some constant C.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

We may choose t so that $t(\tau) = q + O(q^2)$ so C = 1 and

$$q = t \exp\left(\int_0^t \left(\frac{F(x)^{-2}}{1 - ax + cx^2} - 1\right) \frac{dx}{x}\right) .$$

Using $F(x) = 1 + bx + O(x^2)$ we find $q = t + (a - 2b)t^2 + O(t^3)$, this can be inverted t = T(q), hence f = F(T(q)) is our desired modular function of weight 1.

ヘロン 人間 とくほ とくほ とう

We may choose t so that $t(\tau) = q + O(q^2)$ so C = 1 and

$$q = t \exp\left(\int_0^t \left(\frac{F(x)^{-2}}{1 - ax + cx^2} - 1\right) \frac{dx}{x}\right) .$$

Using $F(x) = 1 + bx + O(x^2)$ we find $q = t + (a - 2b)t^2 + O(t^3)$, this can be inverted t = T(q), hence f = F(T(q)) is our desired modular function of weight 1.

(雪) (ヨ) (ヨ)

Modular Properties V

```
Possible Pari/GP script:
```

```
findmodular(a,b,c,L=16)=
{ my(V=vector(L+1),un=1,unm1=0,unp1,F,t,f);
 V[1]=1:
  for(n=0.L-1.
    unp1=((a*n*(n+1)+b)*un-c*n^2*unm1)/(n+1)^2;
    unm1=un;un=unp1;V[n+2]=un
  );
  F=Ser(V);
  t=serreverse(x*exp(intformal((1/(F^2*(1-a*x+c*x^2))-1)/x))
  f=subst(F,x,t);
  [t,f]:
}
```

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

Modular Example I

First sporadic example: (a, b, c) = (7, 2, -8), we find

 $t = x - 3x^{2} + 3x^{3} + 5x^{4} - 18x^{5} + 15x^{6} + 24x^{7} - 75x^{8} + 57x^{9} + \cdots$ $f = 1 + 2x + 4x^{2} + 2x^{3} + 2x^{4} + 4x^{6} + 4x^{7} + 4x^{8} + 2x^{9} + \cdots$

Easily recognized as eta quotients

$$t(\tau) = rac{\eta(\tau)^3 \eta(6\tau)^9}{\eta(2\tau)^3 \eta(3\tau)^9}$$
 and $f(\tau) = rac{\eta(2\tau)\eta(3\tau)^6}{\eta(\tau)^2 \eta(6\tau)^3}$.

In this way, we find that 12 out of our initial 34 sequences (including all six sporadic ones) have a similar modular interpretation, but not necessarily as eta quotients.

ヘロト ヘアト ヘビト ヘビト

Modular Example I

First sporadic example: (a, b, c) = (7, 2, -8), we find

 $t = x - 3x^{2} + 3x^{3} + 5x^{4} - 18x^{5} + 15x^{6} + 24x^{7} - 75x^{8} + 57x^{9} + \cdots$ $f = 1 + 2x + 4x^{2} + 2x^{3} + 2x^{4} + 4x^{6} + 4x^{7} + 4x^{8} + 2x^{9} + \cdots$

Easily recognized as eta quotients

$$t(\tau) = rac{\eta(\tau)^3 \eta(6\tau)^9}{\eta(2\tau)^3 \eta(3\tau)^9}$$
 and $f(\tau) = rac{\eta(2\tau) \eta(3\tau)^6}{\eta(\tau)^2 \eta(6\tau)^3}$.

In this way, we find that 12 out of our initial 34 sequences (including all six sporadic ones) have a similar modular interpretation, but not necessarily as eta quotients.

(4回) (日) (日)

For instance, for Apéry's example we find that

$$t(\tau) = q \prod_{n \ge 1} (1 - q^n)^{5\left(\frac{n}{5}\right)}$$

(which is not an eta quotient but satisfies the degree two algebraic equation $(1 - 11t - t^2)/t = (\eta(\tau)/\eta(5\tau))^6$), and

$$f^2(au) = rac{\eta(5 au)^5}{\eta(au)t(au)} \; .$$

프 🖌 🖌 프 🕨

Degree Three Recursions I

Previous search generalized Apéry recursion for $\zeta(2)$. We now generalize Apéry recursion for $\zeta(3)$. Consider degree three recursions of following specific shape (can be slightly more general, see below):

 $(n+1)^3 u_{n+1} - (2n+1)(an^2 + an + b)u_n + cn^3 u_{n-1} = 0$,

again with $u_{-1} = 0$, $u_0 = 1$, so $u_1 = b$. As before, small search on $(u_1, u_2, u_3) \in \mathbb{Z}^3$ implies $(a, b, c) \in \mathbb{Z}^3$ (with one trivial exception (a, b, c) = (-1/3, 2, 0) which gives the terminating sequence u = (1, 2, 1, 0, 0, 0, ...)), so again we loop on $(a, b = u_1, u_2) \in \mathbb{Z}^3$ with $b \ge 0$.

After looping for $|a| \le 500$, $0 \le b \le 120$, and $|c| \le 4000$ we find 31 solutions, and easily check that we have 4 Terminating, 9 Hypergeometric, 7 Polynomial, and 5 Legendrian sequences, leaving 6 sporadic solutions, and no more after a much larger search.

Degree Three Recursions I

Previous search generalized Apéry recursion for $\zeta(2)$. We now generalize Apéry recursion for $\zeta(3)$. Consider degree three recursions of following specific shape (can be slightly more general, see below):

 $(n+1)^3 u_{n+1} - (2n+1)(an^2 + an + b)u_n + cn^3 u_{n-1} = 0$,

again with $u_{-1} = 0$, $u_0 = 1$, so $u_1 = b$. As before, small search on $(u_1, u_2, u_3) \in \mathbb{Z}^3$ implies $(a, b, c) \in \mathbb{Z}^3$ (with one trivial exception (a, b, c) = (-1/3, 2, 0) which gives the terminating sequence u = (1, 2, 1, 0, 0, 0, ...)), so again we loop on $(a, b = u_1, u_2) \in \mathbb{Z}^3$ with $b \ge 0$.

After looping for $|a| \le 500$, $0 \le b \le 120$, and $|c| \le 4000$ we find 31 solutions, and easily check that we have 4 Terminating, 9 Hypergeometric, 7 Polynomial, and 5 Legendrian sequences, leaving 6 sporadic solutions, and no more after a much larger search. The six sporadic solutions are:

(a, b, c) = (7, 3, 81): u = (1, 3, 9, 3, -279, -2997, ...). (a, b, c) = (9, 3, -27): u = (1, 3, 27, 309, 4059, 57753, ...). (a, b, c) = (10, 4, 64): u = (1, 4, 28, 256, 2716, 31504, ...). (a, b, c) = (11, 5, 125): u = (1, 5, 35, 275, 2275, 19255, ...). (a, b, c) = (12, 4, 16): u = (1, 4, 40, 544, 8536, 145504, ...). (a, b, c) = (17, 5, 1): u = (1, 5, 73, 1445, 33001, 819005, ...).(Apéry's sequence).

< 回 > < 回 > < 回 > … 回

Once again we can define an auxiliary sequence v_n with $v_0 = 0$ and $v_1 = 1$ and the same recursion, and look at the convergence of v_n/u_n . For the four infinite families, either nonconvergent or slow convergent with known limits. Again the denominator of v_n does not grow too fast, like $d_n^3 \approx e^{3n}$.

For the continued fractions associated with the six sporadic solutions, four converge, and exponentially fast, to a rational number times NOT, $\pi^3\sqrt{3}$, $\zeta(3)$, $\zeta(3)$, NOT, and $\zeta(3)$ respectively, but again unfortunately only the Apéry sequence for $\zeta(3)$ proves irrationality (that of $\pi^3\sqrt{3}$ is of course well-known).

・ロト ・ 理 ト ・ ヨ ト ・

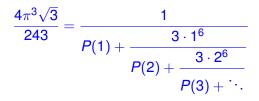
Once again we can define an auxiliary sequence v_n with $v_0 = 0$ and $v_1 = 1$ and the same recursion, and look at the convergence of v_n/u_n . For the four infinite families, either nonconvergent or slow convergent with known limits. Again the denominator of v_n does not grow too fast, like $d_n^3 \approx e^{3n}$.

For the continued fractions associated with the six sporadic solutions, four converge, and exponentially fast, to a rational number times NOT, $\pi^3\sqrt{3}$, $\zeta(3)$, $\zeta(3)$, NOT, and $\zeta(3)$ respectively, but again unfortunately only the Apéry sequence for $\zeta(3)$ proves irrationality (that of $\pi^3\sqrt{3}$ is of course well-known).

ヘロン ヘアン ヘビン ヘビン

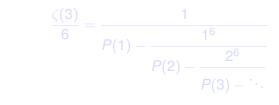
Degree Three Recursions IV

Note nice continued fraction for $\pi^3\sqrt{3}$:



with $P(n) = 6n^3 - 9n^2 + 5n - 1$.

Similar to the Apéry continued fraction for $\zeta(3)$:

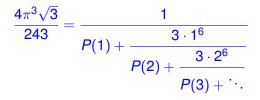


with $P(n) = 34n^3 - 51n^2 + 27n - 5$.

(日)

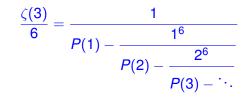
Degree Three Recursions IV

Note nice continued fraction for $\pi^3\sqrt{3}$:



with $P(n) = 6n^3 - 9n^2 + 5n - 1$.

Similar to the Apéry continued fraction for $\zeta(3)$:



with $P(n) = 34n^3 - 51n^2 + 27n - 5$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 = めへで

 $(a_2, b_2, c_2) = (7, 2, -8), (9, 3, 27), (10, 3, 9), (11, 3, -1), (12, 4, 32), and (17, 6, 72).$

and in degree three: $(a_3, b_3, c_3) = (7, 3, 81), (9, 3, -27), (10, 4, 64), (11, 5, 125), (12, 4, 16), and (17, 5, 1).$

Notice immediately that $a_3 = a_2$, almost immediately that $b_3 = a_2 - 2b_2$, and that $c_3 = a_2^2 - 4c_2$.

 $(a_2, b_2, c_2) = (7, 2, -8), (9, 3, 27), (10, 3, 9), (11, 3, -1), (12, 4, 32), and (17, 6, 72).$

and in degree three: $(a_3, b_3, c_3) = (7, 3, 81), (9, 3, -27), (10, 4, 64), (11, 5, 125), (12, 4, 16), and (17, 5, 1).$

Notice immediately that $a_3 = a_2$, almost immediately that $b_3 = a_2 - 2b_2$, and that $c_3 = a_2^2 - 4c_2$.

 $(a_2, b_2, c_2) = (7, 2, -8), (9, 3, 27), (10, 3, 9), (11, 3, -1), (12, 4, 32), and (17, 6, 72).$

and in degree three: $(a_3, b_3, c_3) = (7, 3, 81), (9, 3, -27), (10, 4, 64), (11, 5, 125), (12, 4, 16), and (17, 5, 1).$

Notice immediately that $a_3 = a_2$, almost immediately that $b_3 = a_2 - 2b_2$, and that $c_3 = a_2^2 - 4c_2$.

 $(a_2, b_2, c_2) = (7, 2, -8), (9, 3, 27), (10, 3, 9), (11, 3, -1), (12, 4, 32), and (17, 6, 72).$

and in degree three: $(a_3, b_3, c_3) = (7, 3, 81), (9, 3, -27), (10, 4, 64), (11, 5, 125), (12, 4, 16), and (17, 5, 1).$

Notice immediately that $a_3 = a_2$, almost immediately that $b_3 = a_2 - 2b_2$, and that $c_3 = a_2^2 - 4c_2$.

 $(a_2, b_2, c_2) = (7, 2, -8), (9, 3, 27), (10, 3, 9), (11, 3, -1), (12, 4, 32), and (17, 6, 72).$

and in degree three: $(a_3, b_3, c_3) = (7, 3, 81), (9, 3, -27), (10, 4, 64), (11, 5, 125), (12, 4, 16), and (17, 5, 1).$

Notice immediately that $a_3 = a_2$, almost immediately that $b_3 = a_2 - 2b_2$, and that $c_3 = a_2^2 - 4c_2$.

・ロト ・ 理 ト ・ ヨ ト ・

Remarkable identity proved by G. Almkvist, D. van Straten, and W. Zudilin:

Assume u_n degree two as above, i.e., $u_{-1} = 0$, $u_0 = 1$, and $(n+1)^2 u_{n+1} - (an^2 + an + b)u_n + cn^2 u_{n-1} = 0$, and $U(t) = \sum_{n>0} u_n t^n$ generating function.

Define a sequence w_n of degree three by $w_{-1} = 0$, $w_0 = 1$, and

 $(n+1)^3 w_{n+1} - (2n+1)(an^2 + an + a - 2b)w_n + (a^2 - 4c)n^3 w_{n-1} = 0$

and $W(t) = \sum_{n \ge 0} w_n t^n$ generating function. Identity

$$U(t)^{2} = \frac{1}{1 - at + ct^{2}} W\left(\frac{-t}{1 - at + ct^{2}}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Note: this is similar to Clausen identity of the shape ${}_2F_1^2 = {}_3F_2$ since weight 1 corresponds to ${}_2F_1$ and weight 2 to ${}_3F_2$.

Proved exactly in the same way: show that both sides satisfy the same linear differential equation of order three with same initial conditions. Clausen can be proved in a few lines. The above needs 2 pages for the complete details, or the use of a CAS. Integrality properties are essentially equivalent. Surprising consequence: up to scaling, all recursions of degree three follow from those of degree two and the above theorem. In particular, Apéry's recursion for $\zeta(3)$ follows from a much simpler one in degree two.

Other consequence: can immediately deduce modular parametrizations of degree three recursions from those of degree two. For instance, if u_n is the Apéry sequence for $\zeta(3)$, we have

$$\sum_{n>0} u_n \left(\frac{\eta(\tau)\eta(6\tau)}{\eta(2\tau)\eta(3\tau)} \right)^{12n} = \frac{(\eta(2\tau)\eta(3\tau))^7}{(\eta(\tau)\eta(6\tau))^5}$$

ヘロア ヘビア ヘビア・

Integrality properties are essentially equivalent. Surprising consequence: up to scaling, all recursions of degree three follow from those of degree two and the above theorem. In particular, Apéry's recursion for $\zeta(3)$ follows from a much simpler one in degree two.

Other consequence: can immediately deduce modular parametrizations of degree three recursions from those of degree two. For instance, if u_n is the Apéry sequence for $\zeta(3)$, we have

$$\sum_{n\geq 0} u_n \left(\frac{\eta(\tau)\eta(6\tau)}{\eta(2\tau)\eta(3\tau)}\right)^{12n} = \frac{(\eta(2\tau)\eta(3\tau))^7}{(\eta(\tau)\eta(6\tau))^5}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

S. Cooper has suggested the study of the slightly more general recursion

 $(n+1)^3 w_{n+1} - (2n+1)(an^2 + an + b)w_n + (cn^3 + dn)w_{n-1} = 0,$

again with $u_{-1} = 0$, $u_0 = 1$, so $u_1 = b$. Motivation: if u_n satisfies the usual degree two recursion as before, then $w_n = {\binom{2n}{n}} u_n$ satisfies

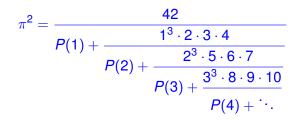
 $(n+1)^3 w_{n+1} - (2n+1)(2an^2 + 2an + 2b)w_n + (16cn^3 - 4cn)w_{n-1} = 0$

and there is a similar Clausen-type identity for $\sum_{n>0} w_n t^n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

More General Degree Three Recursions II

A similar search finds two additional sporadic sequences and more modular parametrizations. This gives for instance the following CF:



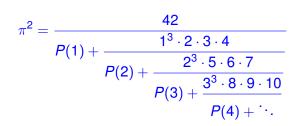
with $P(n) = 26n^3 - 39n^2 + 21n - 4$.

Note that this combined with the arithmetic properties of u_n and v_n proves irrationality of π^2 with a better irrationality measure than Apéry's initial continued fraction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

More General Degree Three Recursions II

A similar search finds two additional sporadic sequences and more modular parametrizations. This gives for instance the following CF:



with $P(n) = 26n^3 - 39n^2 + 21n - 4$.

Note that this combined with the arithmetic properties of u_n and v_n proves irrationality of π^2 with a better irrationality measure than Apéry's initial continued fraction.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Thank you for your attention.

Henri Cohen Apéry-Like Recursions and Modular Forms

프 > 프