Lattices, Abelian varieties and curves

Jacques Martinet

Université de Bordeaux, IMB

Talence, January 28, 2020

This talk completes a talk delivered in March 23, 2019 at Marseille-Luminy, under the title

Automorphisms of Lattices. Application to Curves, at the meeting

Cohomology of Arithmetic Groups, Lattices and Number Theory: Geometric and Computational Viewpoint, CIRM, 25-29 March 2019.

Complex Abelian Varieties from a Euclidean viewpoint

These are the complex tori $\mathbb{T}:=\mathbb{C}^{g} / \Lambda$ on which there exists g algebraically independent meromorphic functions, a property equivalent to the existence of a projective embedding, and also to the fact that they carry the structure of an algebraic variety, and above all, to the existence of

Riemann form on \mathbb{T},

that is a positive, definite Hermitian form on \mathbb{C}^{g}, the polarization, whose imaginary part is integral on the lattice.
Such a form is well-defined by its real part, which gives \mathbb{C}^{g} the structure of a Euclidean space E (and also by its imaginary part, which is alternating).

Complex Abelian Varieties from a Euclidean viewpoint

These are the complex tori $\mathbb{T}:=\mathbb{C}^{g} / \Lambda$ on which there exists g algebraically independent meromorphic functions, a property equivalent to the existence of a projective embedding, and also to the fact that they carry the structure of an algebraic variety, and above all, to the existence of

Riemann form on \mathbb{T},

that is a positive, definite Hermitian form on \mathbb{C}^{g}, the polarization, whose imaginary part is integral on the lattice.
Such a form is well-defined by its real part, which gives \mathbb{C}^{g} the structure of a Euclidean space E (and also by its imaginary part, which is alternating).
To $x \mapsto i x$ corresponds $\pm u=u^{ \pm 1} \in \operatorname{End}(E)$ with $u^{2}=-\mathrm{Id}$, and the integrality property above reads

$$
\forall x, y \in \Lambda \mid x \cdot u(y) \in \mathbb{Z} \Longleftrightarrow u(\Lambda) \subset \Lambda^{*} .
$$

Given (E, Λ), a polarization is now a linear map $u \in \operatorname{End}(E)$ such that

$$
u^{2}=-\mathrm{Id} \text { and } u(\Lambda) \subset \Lambda^{*} .
$$

and this is called principal when $u(\Lambda)=\Lambda^{*}$. We shall only consider Principally Polarized Abelian Varieties, PPAV for short.

Jacobians

We shall only need a formal definition, particular case of the more general notion of an Albanese variety attached to a compact, connected complex manifold (or to a projective algebraic variety).

Jacobians

We shall only need a formal definition, particular case of the more general notion of an Albanese variety attached to a compact, connected complex manifold (or to a projective algebraic variety).
In the setting of Riemann surfaces, its construction as a torus \mathbb{C}^{g} / \wedge makes use of integrals defining the "periods"; in the setting of algebraic curves (Weil, over any field), it makes use of classes of degree-zero divisors on a curve.

Jacobians

We shall only need a formal definition, particular case of the more general notion of an Albanese variety attached to a compact, connected complex manifold (or to a projective algebraic variety).
In the setting of Riemann surfaces, its construction as a torus \mathbb{C}^{g} / \wedge makes use of integrals defining the "periods"; in the setting of algebraic curves (Weil, over any field), it makes use of classes of degree-zero divisors on a curve.

If the automorphism group of a lattice \wedge is "large enough", we may hope that Λ should be algebraic, i.e., that it gets a Gram matrix with entries in a number field when rescaled to a rational minimum.

Using this device we may obtain explicit examples of Jacobians up to scale. This will be achieved in this talk for a few curves of genus 2 and 3.

Torelli's Theorem

Analytic theory: Ruggiero Torelli (1913).
Algebraic geometry: André Weil (1957); special proofs for genera 2, 3, 4.
\Longrightarrow dichotomy for 2-dimensional PPAVs:
either products of elliptic curves or Jacobians.

Torelli's Theorem

Analytic theory: Ruggiero Torelli (1913).
Algebraic geometry: André Weil (1957); special proofs for genera 2, 3, 4.
\Longrightarrow dichotomy for 2-dimensional PPAVs:
either products of elliptic curves or Jacobians.
Serre's formulation (in an appendix to a paper by Kristin Lauter).
Notation. $\left(f: C \rightarrow C^{\prime}\right) \rightarrow\left(F_{J}: \mathrm{Jac}(C) \rightarrow \mathrm{Jac}\left(C^{\prime}\right)\right)$.
Theorem. Let $\mathcal{C}, \mathcal{C}^{\prime}$ be curves of genus $g \geq 2$, with polarized Jacobians $(J, u),\left(J^{\prime}, u^{\prime}\right)$, and let $F: J \rightarrow J^{\prime}$ be an isomorphism of polarized Abelian varieties. Then:

1. If \mathcal{C} is hyperelliptic, there exists a unique isomorphism $f: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ such that $f_{J}=F$.
2. If \mathcal{C} is not hyperelliptic, there exists an isomorphism $f: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ and an integer $e= \pm 1$ such that $F=e \cdot f_{J}$, and (F, e) is uniquely defined by f.

In particular, in case 1 (resp. 2), $\operatorname{Aut}(\operatorname{Jac}(\mathcal{C})) \simeq \operatorname{Aut}(\mathcal{C})$ $(\operatorname{resp} . \operatorname{Aut}(\operatorname{Jac}(\mathcal{C})) \simeq \operatorname{Aut}(\mathcal{C}) \times\{ \pm \operatorname{ld}\}$.

Hyperbolic geometry

By the Riemann uniformization theorem, the universal covering of a Riemann surface S of genus $g \geq 2$ is the upper half-plane H, of which S can viewed as a quotient by a group of automorphisms.
These data can be interpreted in the setting of hyperbolic geometry, groups of automorphisms of S being characterized as the finite quotients of some finitely presented group.
Such a group has a presentation of the form:

- Generators: $a_{1}, b_{1}, \ldots, a_{g}, b_{g}, c_{1}, \ldots, c_{r}$;
- Relations: $\Pi\left[a_{i}, b_{i}\right] \cdot \Pi c_{j}=1 ; c_{j}^{m_{j}}=1, i=1, \ldots, r$.

Hyperbolic geometry

By the Riemann uniformization theorem, the universal covering of a Riemann surface S of genus $g \geq 2$ is the upper half-plane H, of which S can viewed as a quotient by a group of automorphisms.
These data can be interpreted in the setting of hyperbolic geometry, groups of automorphisms of S being characterized as the finite quotients of some finitely presented group.

Such a group has a presentation of the form:

- Generators: $a_{1}, b_{1}, \ldots, a_{g}, b_{g}, c_{1}, \ldots, c_{r}$;
- Relations: $\Pi\left[a_{i}, b_{i}\right] \cdot \Pi c_{j}=1 ; c_{j}^{m_{j}}=1, i=1, \ldots, r$.

With these methods one can more or less decide whether a given finite group G is A group of automorphisms of some curve, but G need not be THE group of automorphisms of some curve.

Hyperbolic geometry

By the Riemann uniformization theorem, the universal covering of a Riemann surface S of genus $g \geq 2$ is the upper half-plane H, of which S can viewed as a quotient by a group of automorphisms.

These data can be interpreted in the setting of hyperbolic geometry, groups of automorphisms of S being characterized as the finite quotients of some finitely presented group.
Such a group has a presentation of the form:

- Generators: $a_{1}, b_{1}, \ldots, a_{g}, b_{g}, c_{1}, \ldots, c_{r}$;
- Relations: $\Pi\left[a_{i}, b_{i}\right] \cdot \Pi c_{j}=1 ; c_{j}^{m_{j}}=1, i=1, \ldots, r$.

With these methods one can more or less decide whether a given finite group G is A group of automorphisms of some curve, but G need not be THE group of automorphisms of some curve.

One can prove bounds for the order of automorphism groups.
Hurwitz: $|\operatorname{Aut}(C)| \leq 84(g-1)$.
If this bound is not sharp: $|\operatorname{Aut}(C)| \leq 48(g-1), \ldots$

The Craig Lattices

Data. p : an odd prime; $n=p-1 ; \zeta=e^{2 \pi i / p} ; K=\mathbb{Q}(\zeta) \subset \mathbb{C}$;
$\mathfrak{P}=(1-\zeta) \subset \mathbb{Z}_{K} ; T$: the bilinear form $\frac{1}{p} \operatorname{Tr}_{K / \mathbb{Q}}(x \bar{y})$ on K.
$\mathbb{A}_{n}^{(i)}$ is \mathfrak{P}^{i} viewed as a lattice in $E:=\mathbb{R} \otimes K .\left[\mathbb{A}_{p-1}^{(1)}\right.$ is the root lattice \mathbb{A}_{p-1}.]

The Craig Lattices

Data. p : an odd prime; $n=p-1 ; \zeta=e^{2 \pi i / p} ; K=\mathbb{Q}(\zeta) \subset \mathbb{C}$;
$\mathfrak{P}=(1-\zeta) \subset \mathbb{Z}_{K} ; T$: the bilinear form $\frac{1}{p} \operatorname{Tr}_{K / \mathbb{Q}}(x \bar{y})$ on K.
$\mathbb{A}_{n}^{(i)}$ is \mathfrak{P}^{i} viewed as a lattice in $E:=\mathbb{R} \otimes K .\left[\mathbb{A}_{p-1}^{(1)}\right.$ is the root lattice $\left.\mathbb{A}_{p-1} \cdot\right]$
Remarks. Up to scale,

1. $i \mapsto i+\frac{p-1}{2}$ is a period.
2. $i \mapsto \frac{p+1}{2}-i$ is a duality,

2' and in particular, $\mathbb{A}_{p-1}^{(p+3) / 4}$ is symplectic.
[Use multiplication by the Gauss sum $S=\sum_{i=1}^{p-1}\left(\frac{p}{i}\right) \zeta^{i}$; note that $S^{2}=-p$.]

The Craig Lattices

Data. p : an odd prime; $n=p-1 ; \zeta=e^{2 \pi i / p} ; K=\mathbb{Q}(\zeta) \subset \mathbb{C}$;
$\mathfrak{P}=(1-\zeta) \subset \mathbb{Z}_{K} ; T$: the bilinear form $\frac{1}{p} \operatorname{Tr}_{K / \mathbb{Q}}(x \bar{y})$ on K.
$\mathbb{A}_{n}^{(i)}$ is \mathfrak{P}^{i} viewed as a lattice in $E:=\mathbb{R} \otimes K .\left[\mathbb{A}_{p-1}^{(1)}\right.$ is the root lattice \mathbb{A}_{p-1}.]
Remarks. Up to scale,

1. $i \mapsto i+\frac{p-1}{2}$ is a period.
2. $i \mapsto \frac{p+1}{2}-i$ is a duality,

2' and in particular, $\mathbb{A}_{p-1}^{(p+3) / 4}$ is symplectic.
[Use multiplication by the Gauss sum $S=\sum_{i=1}^{p-1}\left(\frac{p}{i}\right) \zeta^{i}$; note that $S^{2}=-p$.]
Theorem (CRAIG). $\min A_{n}^{(i)} \geq 2 i$.
Theorem (ELKIES). Equality holds if $i=\frac{p+3}{4}$.
Proof. Identify $i=\frac{p+1}{4}$ with a Mordell-Weil lattice over a global function fields !

$\operatorname{dim} \Lambda=6,|\operatorname{Aut}(\Lambda)| \supset C_{7}(1)$

Gram matrices depend on two parameters:

$$
A=\left(\begin{array}{l}
2 t_{1} t_{2} t_{7} t_{3} t_{2} \\
t_{1} t_{1} t_{1} t_{2} t_{3} \\
t_{2} t_{1} t_{1} t_{1} t_{3} t_{3} \\
t_{3} t_{1} t_{1} 2 t_{1} \\
t_{3} t_{3} t_{2} t_{2} t_{1} \\
t_{2} t_{3} t_{3} t_{2} t_{1} t_{1}
\end{array}\right) \text { where } t_{1}+t_{2}+t_{3}=-1,
$$

for parameters t_{i} such that $\min A=2$.
These conditions define a hexagonal domain \mathcal{D} with vertices $A_{1}, B_{1}, A_{2}, B_{2}, A_{3}, B_{3}$, representing alternatively the Craig lattices $\mathbb{A}_{6}^{(1)} \simeq \mathbb{A}_{6}$ and $\mathbb{A}_{6}^{(2)}$.

$\operatorname{dim} \Lambda=6,|\operatorname{Aut}(\Lambda)| \supset C_{7}(1)$

Gram matrices depend on two parameters:

$$
A=\left(\begin{array}{l}
2 t_{1} t_{2} t_{3} t_{3} t_{2} \\
t_{1} t_{1} t_{1} t_{2} t_{3} \\
t_{2} t_{2} t_{1} t_{1} t_{3} t_{3} \\
t_{3} t_{1} t_{1} 2 t_{2} \\
t_{3} t_{3} t_{2} t_{2} t_{1} \\
t_{2} t_{3} t_{3} t_{2} t_{1} t_{1}
\end{array}\right) \text { where } t_{1}+t_{2}+t_{3}=-1,
$$

for parameters t_{i} such that $\min A=2$.
These conditions define a hexagonal domain \mathcal{D} with vertices $A_{1}, B_{1}, A_{2}, B_{2}, A_{3}, B_{3}$, representing alternatively the Craig lattices $\mathbb{A}_{6}^{(1)} \simeq \mathbb{A}_{6}$ and $\mathbb{A}_{6}^{(2)}$.
Automorphisms. $\operatorname{Aut}\left(\mathbb{A}_{6}\right)=\operatorname{Aut}\left(\mathbb{A}_{6}^{*}\right)=\{ \pm \mathrm{Id}\} \times S_{7}$;
Aut $\left(\mathbb{A}_{6}^{(2)}\right)=\{ \pm \mathrm{Id}\} \times \mathrm{PGL}_{2}(7)$, better understood as $\{ \pm \mathrm{ld}\} \times\left(\mathrm{PSL}_{3}(2) \cdot 2\right) ; \operatorname{Aut}^{+}\left(\mathbb{A}_{6}^{(2)}\right) \simeq\{ \pm \mathrm{ld}\} \times \mathrm{PSL}_{3}(2)$.
$\mathbb{A}_{6}^{(2)}$: unique symplectic structure, with centralizer $\{ \pm \mathrm{Id}\} \times \mathrm{PSL}_{3}(2)$. \Longrightarrow defines a PPAV with automorphism group this centralizer.

$\operatorname{dim} \Lambda=6,|\operatorname{Aut}(\Lambda)| \supset C_{7}(2)$

Orbits under $\pm \sigma$. Three at vertices, two on edges, one in $\operatorname{Int}(\mathcal{D})$.

$\operatorname{dim} \Lambda=6,|\operatorname{Aut}(\Lambda)| \supset C_{7}(2)$

Orbits under $\pm \sigma$. Three at vertices, two on edges, one in $\operatorname{Int}(\mathcal{D})$. Automorphisms. Aut $=D_{14}$ and Aut ${ }^{+}=C_{14}$, except for \mathbb{A}_{6} and $\mathbb{A}_{6}^{*}\left(2 \times S_{7}\right)$ and $\mathbb{A}_{6}^{(2)}\left(2 \times\left(\mathrm{PSL}_{3}(2) \cdot 2 \simeq 2 \times \mathrm{PSL}_{2}(7)\right)\right.$.

$\operatorname{dim} \Lambda=6,|\operatorname{Aut}(\Lambda)| \supset C_{7}(2)$

Orbits under $\pm \sigma$. Three at vertices, two on edges, one in $\operatorname{Int}(\mathcal{D})$.
Automorphisms. Aut $=D_{14}$ and Aut ${ }^{+}=C_{14}$, except for \mathbb{A}_{6} and $\mathbb{A}_{6}^{*}\left(2 \times S_{7}\right)$ and $\mathbb{A}_{6}^{(2)}\left(2 \times\left(\mathrm{PSL}_{3}(2) \cdot 2 \simeq 2 \times \mathrm{PSL}_{2}(7)\right)\right.$.
Duality. 3 to 1 from A_{i} to $A_{0}:\left(-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}\right)$, representing \mathbb{A}_{6}^{*} indeed the barycenter of the A_{i} 's (and of the B_{i} 's), 1 to 1 on $B_{i}, 2$ to 1 on edges, 1 to $1 \operatorname{in} \operatorname{lnt}(\mathcal{D})$ except 1 to 3 at A_{0} and 1 to 2 on the images of pairs $A-B-A$ of edges.

$\operatorname{dim} \Lambda=6,|\operatorname{Aut}(\Lambda)| \supset C_{7}(2)$

Orbits under $\pm \sigma$. Three at vertices, two on edges, one in $\operatorname{Int}(\mathcal{D})$.
Automorphisms. Aut $=D_{14}$ and Aut ${ }^{+}=C_{14}$, except for \mathbb{A}_{6} and $\mathbb{A}_{6}^{*}\left(2 \times S_{7}\right)$ and $\mathbb{A}_{6}^{(2)}\left(2 \times\left(\mathrm{PSL}_{3}(2) \cdot 2 \simeq 2 \times \mathrm{PSL}_{2}(7)\right)\right.$.
Duality. 3 to 1 from A_{i} to $A_{0}:\left(-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}\right)$, representing \mathbb{A}_{6}^{*} indeed the barycenter of the A_{i} 's (and of the B_{i} 's), 1 to 1 on $B_{i}, 2$ to 1 on edges, 1 to $1 \operatorname{in} \operatorname{lnt}(\mathcal{D})$ except 1 to 3 at A_{0} and 1 to 2 on the images of pairs $A-B-A$ of edges.
These are arcs of hyperbola connecting the B_{i} 's to A_{0}. Example:

$$
t_{1}^{2}-4 t_{1} t_{2}-3 t_{2}^{2}-3 t_{1}-8 t_{2}-3=0
$$

or

$$
t_{1}=\frac{-3 t^{2}-50 t+25}{-6 t^{2}+40 t+50}, \quad t_{2}=\frac{17 t^{2}-20 t-25}{-6 t^{2}+40 t+50}
$$

Note that $0 \mapsto\left(\frac{1}{2},-\frac{1}{2}\right)$ and $1 \mapsto\left(-\frac{1}{3},-\frac{1}{3}\right)$.

$\operatorname{dim} \Lambda=6,|\operatorname{Aut}(\Lambda)| \supset C_{7}(3)$

Known matrices in \mathcal{D} for symplectic lattices: B_{i}, representatives for $\mathbb{A}_{6}^{(2)}$. Any other isodual lattice must lie in $\operatorname{lnt}(\mathcal{D})$, off the arcs of hyperbolas. Choose a connected components $\mathcal{D}^{\prime} \subset \mathcal{D}$ of this complementary set, and guess in \mathcal{D}^{\prime} on one matrix M the set of minimal vectors of M^{-1}. This then holds in the whole connected component
It turns out that we may choose

$$
\pm\left\{e_{3}^{*},-e_{1}^{*}+e_{4}^{*},-e_{2}^{*}+e_{5}^{*},-e_{3}^{*}+e_{6}^{*},-e_{4}^{*}, e_{1}^{*}-e_{5}^{*}, e_{2}^{*}-e_{6}^{*}\right\}
$$

(seven vectors adding to zero). Corresponding parameters (adding to -1):

$$
u_{1}=e_{3}^{*} \cdot\left(-e_{1}^{*}+e_{4}^{*}\right), u_{2}=e_{3}^{*} \cdot\left(-e_{2}^{*}+e_{5}^{*}\right), u_{3}=e_{3}^{*} \cdot\left(-e_{3}^{*}+e_{6}^{*}\right) .
$$

We obtain

$$
u_{1}=\frac{-5 t_{1}^{2}-8 t_{1} t_{2}+t_{2}^{2}+t_{1}-2 t_{2}+1}{t_{1}^{2}+3 t_{1} t_{2}+4 t_{2}^{2}+4 t_{1}+6 t_{2}-3} \text { and } u_{2}=\frac{2 t_{1}^{2}+6 t_{2} t_{1}+t_{2}^{2}+t_{1}+5 t_{2}+1}{t_{1}^{2}+3 t_{1} t_{2}+4 t_{2}^{2}+4 t_{1}+6 t_{2}-3} .
$$

Solving the system $\left\{u_{1}=t_{1}, u_{2}=t_{2}\right\}$, we find

$$
t_{1}=-\left(1+6 \theta+\theta^{2}\right) / 2=-0.176 \ldots t_{2}=\theta=-0.109 \ldots,
$$

where $\theta=-1-2 \cos (4 \pi / 7)$, the only choice for which $\left(t_{1}, t_{2}\right) \in \mathcal{D}$.

PPAV for $\operatorname{dim} \Lambda=6,|\operatorname{Aut}(\Lambda)| \supset C_{7}$

With the data above we may associate a similarity class of lattices, with field of definition $\mathbb{Q}\left(2 \cos \frac{2 \pi}{7}\right) \subset \mathbb{C}$, having a unique class of symplectic isodualities. Let Λ_{0} be such a lattice. We have proved that there exist
exactly two isomorphism classes of PPAVs having an automorphism of order 7.

PPAV for $\operatorname{dim} \Lambda=6,|\operatorname{Aut}(\Lambda)| \supset C_{7}$

With the data above we may associate a similarity class of lattices, with field of definition $\mathbb{Q}\left(2 \cos \frac{2 \pi}{7}\right) \subset \mathbb{C}$, having a unique class of symplectic isodualities. Let Λ_{0} be such a lattice. We have proved that there exist
exactly two isomorphism classes of PPAVs having an automorphism of order 7.

Consider the projective curves H (hyperelliptic) and K (Klein's quartic):

$$
H: y^{2} z^{5}=x^{7}+z^{7}, \quad K: x^{3} y+y^{3} z+z^{3} x=0
$$

and their respective automorphisms of order 7

$$
\sigma_{1}:(x, y, z) \mapsto(\zeta x, y, z) \text { and } \sigma_{2}:(x, y, z) \mapsto\left(\zeta x, \zeta^{4} y, \zeta^{2} z\right)
$$

PPAV for $\operatorname{dim} \Lambda=6,|\operatorname{Aut}(\Lambda)| \supset C_{7}$

With the data above we may associate a similarity class of lattices, with field of definition $\mathbb{Q}\left(2 \cos \frac{2 \pi}{7}\right) \subset \mathbb{C}$, having a unique class of symplectic isodualities. Let Λ_{0} be such a lattice. We have proved that there exist
exactly two isomorphism classes of PPAVs having an automorphism of order 7.

Consider the projective curves H (hyperelliptic) and K (Klein's quartic):

$$
H: y^{2} z^{5}=x^{7}+z^{7}, \quad K: x^{3} y+y^{3} z+z^{3} x=0,
$$

and their respective automorphisms of order 7

$$
\sigma_{1}:(x, y, z) \mapsto(\zeta x, y, z) \text { and } \sigma_{2}:(x, y, z) \mapsto\left(\zeta x, \zeta^{4} y, \zeta^{2} z\right) .
$$

Observe that K has an automorphism of order 3 , whereas \mid Aut $^{+}\left(\Lambda_{0}\right) \mid=14$.
This shows that there are two curves having an automorphism of order 7:
H, with lattice Λ_{0} and $\operatorname{Aut}(H)=C_{14}$, and K, with lattice $\mathbb{A}_{6}^{(2)}$. In this latter case,
the Hurwitz bound shows that $\operatorname{Aut}(K)$ has index 2 in $\operatorname{Aut}^{+}\left(\mathbb{A}_{6}^{(2)}\right)$, hence is equal to $\mathrm{PSL}_{3}(2)$, since this group is simple.

Of course all that concerns K was known to Klein !

$|G|=9$

We again find a hexagonal domain, but for which A_{i}, B_{i} represent alternatively the perfect lattices \mathbb{E}_{6} and \mathbb{E}_{6}^{*}.
Lattices having a dual containing two orbits of minimal vectors lie on six arcs of conics connecting consecutive vertices. Their complementary set in $\operatorname{lnt}(\mathcal{D})$ is the union of six, pairwise equivalent connected components which do not contain any isodual lattice, and of the connected component of the origin, which represents $\Lambda=\mathbb{A}_{2} \perp \mathbb{A}_{2} \perp \mathbb{A}_{2}$, its only isodual lattice.

Thus $\mathcal{E}_{4} \times \mathcal{E}_{4} \times \mathcal{E}_{4}$ is the only PPAV having an automorphism of order 9 .
In particular there do not exist curves of genus 3 having an automorphism of order 9.

Dimension 4 : an overview

We intend to make a somewhat crude classification of the possible actions of a group $G \subset \mathbb{S O}(E)$.
Reducible lattices, some of which define product of elliptic curves, are considered apart.
Next there is not a lot to say about "small" groups: G 2-elementary $\Longrightarrow\left|\operatorname{Aut}^{+}(\Lambda)\right| \leq 8,\left|\operatorname{Aut}_{u}(\Lambda)\right| \leq 4$.
Now let G contain an element σ of order $m \geq 3$. Then $\varphi(m) \leq 4$. $\varphi(m)=4: m=5$ or $10,8,12$. $\varphi(m)=2: m=3,4$.

Dimension 4 : an overview

We intend to make a somewhat crude classification of the possible actions of a group $G \subset \mathbb{S O}(E)$.
Reducible lattices, some of which define product of elliptic curves, are considered apart.
Next there is not a lot to say about "small" groups: G 2-elementary $\Longrightarrow\left|\operatorname{Aut}^{+}(\Lambda)\right| \leq 8,\left|\operatorname{Aut}_{u}(\Lambda)\right| \leq 4$.
Now let G contain an element σ of order $m \geq 3$. Then $\varphi(m) \leq 4$. $\varphi(m)=4: m=5$ or $10,8,12$.
$\varphi(m)=2: m=3,4$.
One must consider more closely minimal polynomials of σ (alias canonical decompositions of the representation over \mathbb{Q}). Negating σ if need be we are left with
Cyclotomic: $\phi_{5}, \phi_{8}, \phi_{12} ; \phi_{3}, \phi_{4}$. Non-cyclo.: $X^{3}-1,\left(X^{2}+1\right)(X-1)\left(\right.$ and $\left.\left(X^{2}+X+1\right)\left(X^{2}+1\right)\right)$.

Dimension 4 : an overview

We intend to make a somewhat crude classification of the possible actions of a group $G \subset \mathbb{S O}(E)$.
Reducible lattices, some of which define product of elliptic curves, are considered apart.
Next there is not a lot to say about "small" groups: G 2-elementary $\Longrightarrow\left|\operatorname{Aut}^{+}(\Lambda)\right| \leq 8,\left|\operatorname{Aut}_{u}(\Lambda)\right| \leq 4$.
Now let G contain an element σ of order $m \geq 3$. Then $\varphi(m) \leq 4$.
$\varphi(m)=4: m=5$ or $10,8,12$.
$\varphi(m)=2: m=3,4$.
One must consider more closely minimal polynomials of σ (alias canonical decompositions of the representation over \mathbb{Q}). Negating σ if need be we are left with
Cyclotomic: $\phi_{5}, \phi_{8}, \phi_{12} ; \phi_{3}, \phi_{4}$.
Non-cyclo.: $X^{3}-1,\left(X^{2}+1\right)(X-1)\left(\right.$ and $\left.\left(X^{2}+X+1\right)\left(X^{2}+1\right)\right)$.
In this latter case, only scaled copies of $\mathbb{A}_{2} \otimes \mathbb{A}_{2}$ and \mathbb{D}_{4}, and orthogonal sums of 2-dimensional lattices (some with two non-equivalent polarizations) are isodual.

Dimension 4, G of order 5

Consider the matrices

$$
A(t)=\left(\begin{array}{cccc}
2 & t & -t-1 & -t-1 \\
t & 2 & t & -t-1 \\
-t-1 & t & 2 & t \\
-t-1 & -t-1 & t & 2
\end{array}\right) \text {, and } P=\left(\begin{array}{cccc}
0 & -1 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 1 & 0
\end{array}\right),
$$

and the Moebius transformation $\alpha: t \mapsto \frac{2 t+1}{t-2}$. Then the map

$$
\left[-\frac{1}{2}, 0\right] \rightarrow \operatorname{Sym}_{4}(\mathbb{R}): t \mapsto A(t)
$$

parametrizes the set of 4-dimensional lattices of minimum 2 having an automorphism σ of order 5 . On $\left(-\frac{1}{2}, 0\right)$ the group $\operatorname{Aut}(\Lambda)$ is dihedral of order 20. We have

$$
{ }^{t} P A(\alpha(t)) P=5 \frac{1-t-t^{2}}{2+t} A(t)^{-1} \text { and }{ }^{t} P=-P,
$$

so that duality exchanges t and $\alpha(t)$. The unique isodual lattice corresponds to the value $\theta:=2-\sqrt{5}$ of t. This defines a unique PPAV,

Dimension 4, G of order 5

Consider the matrices

$$
A(t)=\left(\begin{array}{cccc}
2 & t & -t-1 & -t-1 \\
t & 2 & t & -1-1 \\
-t-1 & t & 2 & t \\
-t-1 & -t-1 & t & 2
\end{array}\right) \text {, and } P=\left(\begin{array}{cccc}
0 & -1 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 1 & 0
\end{array}\right),
$$

and the Moebius transformation $\alpha: t \mapsto \frac{2 t+1}{t-2}$. Then the map

$$
\left[-\frac{1}{2}, 0\right] \rightarrow \operatorname{Sym}_{4}(\mathbb{R}): t \mapsto A(t)
$$

parametrizes the set of 4-dimensional lattices of minimum 2 having an automorphism σ of order 5 . On $\left(-\frac{1}{2}, 0\right)$ the group $\operatorname{Aut}(\Lambda)$ is dihedral of order 20. We have

$$
{ }^{t} P A(\alpha(t)) P=5 \frac{1-t-t^{2}}{2+t} A(t)^{-1} \text { and }{ }^{t} P=-P,
$$

so that duality exchanges t and $\alpha(t)$. The unique isodual lattice corresponds to the value $\theta:=2-\sqrt{5}$ of t. This defines a unique PPAV, which is the Jacobian of the curve \mathcal{C}_{5} of equation $y^{2}=x^{5}+1$.

Dimension 4, G of order 5

Consider the matrices

$$
A(t)=\left(\begin{array}{cccc}
2 & t & -t-1 & -t-1 \\
t & 2 & t & -1-1 \\
-t-1 & t & 2 & t \\
-t-1 & -t-1 & t & 2
\end{array}\right) \text {, and } P=\left(\begin{array}{cccc}
0 & -1 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 1 & 0
\end{array}\right),
$$

and the Moebius transformation $\alpha: t \mapsto \frac{2 t+1}{t-2}$. Then the map

$$
\left[-\frac{1}{2}, 0\right] \rightarrow \operatorname{Sym}_{4}(\mathbb{R}): t \mapsto A(t)
$$

parametrizes the set of 4-dimensional lattices of minimum 2 having an automorphism σ of order 5 . On $\left(-\frac{1}{2}, 0\right)$ the group $\operatorname{Aut}(\Lambda)$ is dihedral of order 20. We have

$$
{ }^{t} P A(\alpha(t)) P=5 \frac{1-t-t^{2}}{2+t} A(t)^{-1} \text { and }{ }^{t} P=-P,
$$

so that duality exchanges t and $\alpha(t)$. The unique isodual lattice corresponds to the value $\theta:=2-\sqrt{5}$ of t. This defines a unique PPAV,
which is the Jacobian of the curve \mathcal{C}_{5} of equation $y^{2}=x^{5}+1$.
This also shows that $\left|\operatorname{Aut}\left(\mathcal{C}_{5}\right)\right|$ is not larger than $\left|\operatorname{Aut}^{+}(\Lambda)\right|=10$.
$E=\mathbb{R}^{n}$, equipped with its Canonical basis $\mathcal{B}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$.
Lattice $\mathbb{Z}^{n} \subset E$. $\operatorname{Aut}\left(\mathbb{Z}^{n}\right) \simeq 2^{n} . S_{n}$.
Now $n=2 m$ is even. Let \mathcal{E}_{4} of equation $y^{2}=x^{3}+x$.
$u_{i}, i=1,3, \ldots, n-1: \varepsilon_{i} \mapsto \varepsilon_{i+1}, \varepsilon_{i+1} \mapsto-\varepsilon_{i}$, otherwise ε_{j} invariant. $u=\prod_{i} u_{i}$ is a symplectic automorphism, unique up to conjugacy.
$\Longrightarrow \mathbb{Z}^{n}$ defines a unique PPAV, namely \mathcal{E}_{4}^{m},
$\operatorname{Aut}_{u}\left(\mathbb{Z}^{n}\right) \simeq 4^{m} \cdot S_{m} ;$ order: $4,32,384, \ldots$
$\mathbb{D}_{n}, n \geq 4$: the even sublattice of \mathbb{Z}^{n}.
H: Usual quaternions over \mathbb{Q}.
\mathfrak{O} : order $\mathbb{Z}[1, i, j, k]$.
\mathfrak{M} : Hurwitz's order $\left\langle\mathfrak{O}, \omega:=\frac{-1+i+j+k}{2}\right\rangle$.
\mathbb{D}_{4}, embedded into \mathfrak{O}, is the subset of \mathfrak{O} or of \mathfrak{M} of quaternions having an even reduced norm. This identifies \mathbb{D}_{4}^{*} with \mathfrak{M}.
$\mathfrak{M}^{*} \mapsto \mathfrak{M}^{*} /\{ \pm 1\} \simeq A_{4}$ defines the non-trivial double cover \tilde{A}_{4} (or \hat{A}_{4}) of A_{4}.
The left multiplication φ by $(j+k)$ (of square -2) maps \mathbb{D}_{4}^{*} onto \mathbb{D}_{4}.
$\Longrightarrow \frac{1}{\sqrt{2}} \mathbb{D}_{4}$ is symplectic.
Again, this structure is unique up to conjugacy.
Right multiplications by \mathfrak{M}^{*} and conjugacy by $\frac{j+k}{\sqrt{2}}$ commute with φ
$\Longrightarrow \operatorname{Aut}_{\varphi}\left(\mathbb{D}_{4}\right)$ contains a group \mathcal{G} of order 48 , actually the whole automorphism group. This groups extends \tilde{A}_{4}, hence is one of \tilde{S}_{4} or \hat{S}_{4}, indeed $S_{4} \simeq G L_{2}(3)$. [Note that $\mathrm{PGL}_{2}(3) \simeq S_{4}$.]

Dimension 4, G of order 8

Consider the matrices

$$
A(t)=\left(\begin{array}{cccc}
2 & t & 0 & -t \\
t & 2 & t & 0 \\
0 & t & 2 & t \\
-t & 0 & t & 2
\end{array}\right), 0 \leq t \leq 1 \text {, and } P=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) \text {. }
$$

Then the map

$$
[0,1] \rightarrow \operatorname{Sym}_{4}(\mathbb{R}): t \mapsto A(t)
$$

parametrizes the set of 4-dimensional lattices of minimum 2 having an automorphism σ of order 8 . On $(0,1)$ the group $\operatorname{Aut}(\Lambda)$ is dihedral of order 16. We have

$$
{ }^{t} P A(t) P=A(-t), A(t) A(-t)=2\left(2-t^{2}\right) I_{4}, \text { and }{ }^{t} P=-P,
$$

so that all lattices \wedge_{t} are symplectic. Up to conjugacy, there are two symplectic isodualities, namely u, defined by P, and $v=u \tau \sigma^{2}$, with centralizers $\left\langle\tau \sigma^{2},-\mathrm{Id}\right\rangle \simeq C_{2} \times C_{2}$ and $\left\langle\tau, \sigma^{2}\right\rangle \simeq D_{4}$, respectively. The 2-dimensional PPAVs with lattice $\wedge_{t}, 0<t<1$, do not have automorphisms of order 8 .

The Bolza curve

By the previous three slides there exist exactly two PPAVs having an automorphism of order 8 . One is $\mathcal{E}_{4} \times \mathcal{E}_{4}$. The Bolza curve Bo, defined by the equation

$$
y^{2}=x\left(x^{4}+1\right)
$$

has the automorphism $(x, y) \mapsto\left(\zeta_{8}^{2} x, \zeta_{8} y\right)$. Hence, its Jacobian is the PPAV attached to the uniquely polarized lattice $\frac{1}{\sqrt{2}} \mathbb{D}_{4}$. We have thus proved that $\operatorname{Aut}(B o) \simeq G L_{2}(3)$, though automorphisms of order 3 (known to Bolza) are not visible on the equation above.

Cyclotomic groups of order 3 and 4

To complete the description of all possible automorphisms of curves and of their associated lattices, there only remains to consider
(1) the orthogonal sums of isometric 2-dimensional lattices equipped with a twisted polarization (i.e., exchanging the two components), and
(2) the cyclotomic actions of order 3 and 4.

Case (1) gives rise to curves with automorphism group $\mathbb{C}_{2} \times C_{2}$ except D_{4} if the 2-dimensional lattice has a unique symmetry, and a group of order 24 in the hexagonal case. This group is attained on the curve $y^{2}=x^{6}+1\left(\operatorname{map}(x, y)\right.$ onto $\left(\zeta_{6} x, y\right),(x,-y)$, and $\left(1 / x, y / x^{3}\right)$.)

Case (2) is displayed in the next four slides.

Cyclotomic lattices, σ of order 3 (1)

$\left(t_{1}, t_{2}\right)$	Aut	\pm	\mid orb \mid	Groups
$(1,0)$	$\left(2^{4} \cdot S_{4}\right) \cdot C_{3}$	-	1	$\mathrm{PSL}_{2}(3)$
$(1,-1 / 2)$	$C_{2} \times\left(\left(D_{3} \times D_{3}\right) \cdot C_{2}\right)$	-	1	D_{6}
$(1,-1 / 3)$	$D_{6} \times D_{3}$	-	1	D_{6}
$(0,0)$	$\left(D_{6} \times D_{6}\right) \cdot C_{2}$	-	2	$\left(C_{6} \times C_{6}\right) \cdot C_{2}, C_{3} \cdot D_{4}$
$(1 / 2,0)$	D_{12}	+	3	D_{4}, D_{6} (wwice)
$(1 / 2,-1 / 4)$	$D_{6} \times C_{2}$	+	2	$C_{2} \times C_{2}, D_{6}$
$(1 / 2,-1 / 3)$	D_{6}	+	2	$C_{2} \times C_{2}, D_{6}$

Table: Order 3, W-R

Some lattices:

$$
(1,0): \mathbb{D}_{4} ; \quad(1,-1 / 2): \mathbb{A}_{2} \otimes \mathbb{A}_{2} ; \quad(0,0): \mathbb{A}_{2} \perp \mathbb{A}_{2}
$$

Large groups:

$$
(1,0): 48 ;(0,0): 72,24 .
$$

Cyclotomic lattices, σ of order 3 (2)

$\left(t_{1}, t_{2}\right)$	Aut	\pm	\mid orb \mid	Groups
$(1,0)$	$D_{6} \times D_{3}$	-	1	D_{6}
$(1,-1 / 2)$	$D_{6} \times C_{2}$	+	2	$C_{2} \times C_{2}, D_{6}$
$(1,-1 / 3)$	D_{6}	+	2	$C_{2} \times C_{2}, D_{6}$
$(0,0)$	$D_{6} \times D_{6}$	-	1	D_{6}
$(1 / 2,0)$	D_{6}	+	2	$C_{2} \times C_{2}, D_{6}$
$(1 / 2,-1 / 4)$	D_{6}	+	1	C_{2}
$(1 / 2,-1 / 3)$	C_{6}	+	1	C_{2}

Table: Order 3, non-W-R

Cyclotomic lattices, σ of order 4 (1)

$\left(t_{1}, t_{2}\right)$	Aut	\pm	\mid orb \mid	Groups
$(1,-1)$	$\left(2^{4} \cdot S_{4}\right) \cdot C_{3}$	-	1	$\mathrm{PSL}_{2}(3)$
$(1,0)$	$\left.\left(D_{6} \times D_{6}\right) \cdot C_{2}\right)$	-	2	$\left(C_{6} \times C_{6}\right) \cdot C_{2}, C_{3} \cdot D_{4}$
$(1,-1 / 2)$	D_{12}	+	3	D_{4}, D_{6} (wice)
$(0,0)$	$C_{2}{ }^{4} \cdot S_{4}$	-	1	$\left(C_{4} \times C_{4}\right) \cdot C_{2}$
$(1 / 2,0)$	ord. 32, exp. 4	-	2	D_{4} (wice)
$(1 / 2,-1 / 2)$	D_{8}	+	2	$C_{2} \times C_{2}, D_{4}$
$(1 / 2,-1 / 3)$	D_{4}	+	3	$C_{2} \times C_{2}$ (wwice), D_{4}

Table: Order 4, W-R

Some lattices:

$$
(1,-1): \mathbb{D}_{4} ; \quad(0,0): \mathbb{Z}^{4} .
$$

Large groups:

$$
(1,-1): 48 ;(0,0): 32 .
$$

Cyclotomic lattices, σ of order 4 (2)

$\left(t_{1}, t_{2}\right)$	Aut	\pm	\mid orb \mid	Groups
$(1,-1)$	$D_{4} \cdot D_{4}$	-	1	D_{4}
$(1,0)$	$D_{4} \cdot\left(C_{2} \times C_{2}\right)$	-	2	D_{4} (twice)
$(1,-1 / 2)$	D_{4}	+	3	$C_{2} \times C_{2}$ (wice), D_{4}
$(0,0)$	$D_{4} \times D_{4}$	-	1	D_{4}
$(1 / 2,0)$	D_{4}	+	3	$C_{2} \times C_{2}$ (twice), D_{4}
$(1 / 2,-1 / 2)$	D_{4}	+	1	C_{2}
$(1 / 2,-1 / 3)$	C_{4}	+	2	C_{2} (wice)

Table: Order 4, non-W-R

Automorphisms of curves

Theorem. Let G be one of the groups

$$
C_{2}, C_{2}^{2}, D_{4}, C_{10}, D_{6}, H_{12} \rtimes C_{2} \text {, and } \mathrm{GL}_{2}(3) \text {, }
$$

of orders $2,4,8,10,12,24$, and 48 , respectively.
Then a group is the automorphism group of some curve \mathcal{C} of genus 2 if and only if it belongs to the list above.
Moreover, for each of the orders 10, 24 and 48, the curve \mathcal{C} is unique up to isomorphism, and may be defined by the equations $y^{2}=x^{5}+1, y^{2}=x^{6}+1$ and $y^{2}=x^{5}+x$, respectively.

Proof. Only the last assertion needs a proof.
We observe that, disregarding products of elliptic curves, there are two groups of order divisible by 3 and larger than 12. One of them corresponds to the Bolza curve. There just remains the lattice $\frac{1}{\sqrt{3}}\left(\mathbb{A}_{2} \perp \mathbb{A}_{2}\right)$ with a twisted polarization which accounts for the curve $y^{2}=x^{6}+1$.

