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Goal: Modular Galois representations

Let f = q +
+∞∑
n=2

anq
n ∈ Sk

(
Γ1(N), ε

)
, k > 2, be a newform

with coefficient field Kf = Q(an, n > 2).

Pick a prime l of Kf above some ` ∈ N.

Theorem (Deligne, Serre)

There exists a Galois representation

ρf ,l : Gal(Q/Q) −→ GL2(Fl),

which is unramified outside `N , and such that the image of
any Frobenius element at p - `N has characteristic polynomial

x2 − x + ε(p)pk−1 ∈ Fl[x ].

Goal : compute ρf ,l.
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Modular Galois representations in Jacobians

Under reasonable hypotheses, ρf ,l is afforded by a Galois-stable
piece T ⊆ J[`], where J is the Jacobian of the modular
curve X1(N ′),

N ′ =

{
N if k = 2,
`N if k > 2.
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More general case

Suppose we know a “nice” curve C/Q such that some
Galois-stable F`-subspace T ⊆ J[`] affords some interesting
Galois representation ρ, where J = Jac(C ).

To isolate T ⊂ J[`], we assume that for one good
prime p 6= `, we know

χρ(x) = det
(
x − Frobp |T

)
∈ F`[x ]

and
L(x) = det

(
x − Frobp |J

)
∈ Z[x ],

and that
gcd(χρ, L/χρ) = 1 ∈ F`[x ].
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A p-adic strategy

1 Find q = pa such that T ⊆ J(Fq)[`],

2 Generate Fq-points of T until we get an F`-basis,

3 Lift this basis from J(Fq) to J(Zq/p
e), e � 1,

4 Form all linear combinations of these points
in T ⊆ J(Zq/p

e)[`],

5 F (x) =
∏

t∈T
(
x − θ(t)

)
, where θ : J 99K A1,

6 Identify F (x) ∈ Q[x ].
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Getting a basis of T

Idea: J(Fq) // // J(Fq)[`∞] // // J(Fq)[`] // // T .

#J(Fq) = Res
(
L(x), xa − 1

)
= `bM .

 ∀t ∈ J(Fq), M · t ∈ J(Fq)[`∞].

L(x) = χρ(x)ψ(x) ∈ F`[x ]

 ∀t ∈ J(Fq)[`], ψ(Frobp) · t ∈ T .
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Reminder: line bundles

Let OC = regular functions on C .

Definition

A line bundle on C is a locally free OC -module.

Example 1

Differential forms: for all P ∈ C , there exists ω such that the
other differential forms are of the form f ω near P for some
function f on C which is regular near P .

Example 2

If C is a modular curve, then for all k ∈ N, modular forms of
weight k form a line bundle over C .
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Makdisi’s algorithms

Fix a line bundle L on C of degree d0 �g 1, and n�d0 1
points P1, · · · ,Pn ∈ C (Qq) along with local trivialisations
of L at the Pi .

Nicolas Mascot Modular Galois representations p-adically



Makdisi’s algorithms

Fix a line bundle L on C of degree d0 �g 1, and n�d0 1
points P1, · · · ,Pn ∈ C (Qq) along with local trivialisations
of L at the Pi .

A basis v1, v2, · · · of the global section space H0(L) can
be represented by the matrixs1(P1) s2(P1) · · ·

...
...

s1(Pn) s2(Pn) · · ·

 .

We can deduce a matrix representing H0(L⊗2), because
Riemann-Roch & our assumptions ensure that the
multiplication map

H0(L)⊗ H0(L) 7−→ H0(L⊗2)

is surjective.
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Makdisi’s algorithms

Fix a line bundle L on C of degree d0 �g 1, and n�d0 1
points P1, · · · ,Pn ∈ C (Qq) along with local trivialisations
of L at the Pi .

A point [D]− [L] ∈ J is represented by the subspace

W = H0
(
L⊗2(−D)

)
⊂ H0

(
L⊗2

)
,

i.e. by the matrixw1(P1) w2(P1) · · ·
...

...
w1(Pn) w2(Pn) · · ·

 ,

where w1,w2, · · · is a basis of W .
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Group law

Let a = [A]− [L], b = [B]− [L] ∈ J represented
by H0

(
L⊗2(−A)

)
, H0

(
L⊗2(−B)

)
.

Algorithm (Makdisi, 2004)

1 H0
(
L⊗2(−A)

)
⊗ H0

(
L⊗2(−B)

)
// // H0

(
L⊗4(−A− B)

)
.

2 H0
(
L⊗3(−A− B)

)
=
{
s ∈ H0

(
L⊗3

)
| s · H0

(
L) ⊂ H0

(
L⊗4(−A− B)

)}
3 Take f ∈ H0

(
L⊗3(−A− B)

)
.

Observation: given any section s of L⊗3, f /s is a function
whose divisor is A + B + C − 3[L]
 c := [C ]− [L] = [A] + [B]− 2[L] = −(a + b) ∈ J .

4 H0
(
L⊗2(−C )

)
=
{
s ∈ H0

(
L⊗2

)
| s · H0

(
L⊗3(−A− B)

)
⊂ f · H0

(
L⊗2

)}
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Modular curves

Curves Points

Pairs (E , α)

X (N)

����

where α : (Z/NZ)2 ' E [N]

and eN(α(1, 0), α(0, 1)) = ζN

Pairs (E ,P)

X1(N)

����

where P ∈ E

has exact order N

X (1) Elliptic curves E

where ζN is a fixed primitive N-th root of 1.
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Makdisi for X (N)

Need line bundle L:
Pick L whose sections are modular forms of weight 2.

Need points P1, · · · ,Pn to evaluate forms at:
Fix (E , α), take the

(E , α ◦ γ)

for γ ∈ SL2(Z/NZ)/± 1.

Still need to “evaluate” a basis of the pace of forms of
weight 2 at the Pi ...
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Algebraic modular forms

Let k ∈ N, and R a commutative ring such that 6N ∈ R×.

by (x , y) 7→ (u2x , u3y), A′ = u4A, B ′ = u6B , ω′ = u−1ω.
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Algebraic modular forms

Let k ∈ N, and R a commutative ring such that 6N ∈ R×.

Definition

An algebraic modular form of weight k for X (N) over R is a
rule f assigning a value to isomorphism classes of triples
(E/R , α, ω) where ω generates the differential forms on E/R

,
and such that

f (E , α, uω) = u−k f (E , α, ω)

for all u ∈ R×.

by (x , y) 7→ (u2x , u3y), A′ = u4A, B ′ = u6B , ω′ = u−1ω.
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Algebraic modular forms

Definition

An algebraic modular form of weight k for X (N) over R is a
rule f assigning a value to triples (E/R , α, ω), such that

f (E , α, uω) = u−k f (E , α, ω)

for all u ∈ R×.

Short Weierstrass

(E) : y 2 = x3 + Ax + B

 ω = dx/2y .

Isomorphic to

(E ′) : y 2 = x3 + A′x + B ′

by (x , y) 7→ (u2x , u3y), A′ = u4A, B ′ = u6B , ω′ = u−1ω.
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Algebraic modular forms

Definition

An algebraic modular form of weight k for X (N) over R is a
rule f assigning a value to pairs (E/R , α), such that

f (E ′, α) = uk f (E , α)

for all u ∈ R×.

Short Weierstrass
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Algebraic modular forms

Definition

An algebraic modular form of weight k for X (N) over R is a
rule f assigning a value to pairs (E/R , α), such that

f (E ′, α) = uk f (E , α)

for all u ∈ R×.

Examples

E 7→ A is a modular form of weight 4.

E 7→ ∆ := −64A3 − 432B2 is a modular form of weight 12.

by (x , y) 7→ (u2x , u3y), A′ = u4A, B ′ = u6B , ω′ = u−1ω.
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Makdisi’s moduli-friendly forms

α : (Z/NZ)2 ' E [N]

For v ,w ∈ (Z/NZ)2 such that v ,w , v + w are all nonzero, let

λv ,w : (E , α) 7−→ slope of line joining α(v) to α(w).

Theorem (Makdisi, 2011)

1 λv ,w is a modular form of weight 1 for X (N).

2 The R-algebra generated by the λv ,w contains all modular
forms for X (N), except cuspforms of weight 1.

3 The λv ,w are moduli-friendly!
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Construction of a p-adic model of Jac
(
X (N)

)
1 Pick p - 6`N and A,B ∈ Z such that

a = lcm
(
[Fp(E [N]),Fp] , ord ρf ,l(Frobp)

)
is small, where (E) : y 2 = x3 + Ax + B .

2 Let N =
∏

i l
vi
i . For each i , find a basis

〈Qi ,Ri〉 = E [lvii ]/Fq,

then lift it to Zq using ψl
vi
i

(x) ∈ Q[x ].

Let Q =
∑

i Qi , R =
∑

i Ri  (E , α)/Zq.
3 Let Pγ = (E , α ◦ γ) ∈ X (N) for γ ∈ SL2(Z/NZ)/± 1.

4 Form the matrix
(
λv ,w (Pγ)

)
{Pγ}×{(v ,w)}

.

 We can compute in the Jacobian of X (N)/R just by
looking at one E/R!
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Example 1

Let

f = q + (−i − 1)q2 + (i − 1)q3 + O(q4) ∈ S2

(
Γ1(16)

)
and

l = (5, i − 2).

We choose p = 43, because ρf ,l(Frob43) has order only 4.

We catch ρf ,l in the 5-torsion of the Jacobian of X1(16)
(genus 2).
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Example 2

Let

f = ∆ = q − 24q2 + 252q3 + O(q4) ∈ S12

(
Γ1(1)

)
and

l = 17.

We choose p = 47, because ρf ,l(Frob47) has order only 4.

We catch ρf ,l in the 17-torsion of the Jacobian of X1(17)
(genus 5).
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Optimisation

We do not have to evaluate the forms at all the Pγ.

We can replace L, which gives all modular forms of weight 2,
by modular forms of weight 2 that vanish at some cusps.
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The Galois action on cusps

Moduli interpretation of cusps of X1(N): a point of order N
on a Néron polygon.

1

P1

∞ ∼ 0

ζN
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The complex-analytic method

Algebraic model: Analytic model:

Divisors on

Abel-Jacobi∫
%%
Jacobian = Cg/Λee

modular curves Easy torsion

Modular forms represented by q-expansions.
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Comparison with the complex-analytic method

Genus p-adic Complex

2 3s on 4 cores 5m on 64 cores
13 11m on 64 cores 12h on 64 cores
26 11h on 64 cores 3d on ≈100 cores
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Comparison with the complex-analytic method

ρf ,l is afforded by⋂
n∈N

ker(Tn − an(f ) mod l) ⊂ Jac[`].

However, the p-adic method carves it out by using the
characteristic polynomial of Frobp, which cannot do better
than ⋂

n∈N

ker(Tn − an(f ) mod l)∞ ⊂ Jac[`].
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Future work

Implement Hecke action

Improve random generation of points on the Jacobian

Generalise to Shimura curves and Hilbert modular forms

Missing ingredient: analogue of Makdisi’s λv ,w .
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Any questions ?

Thank you !
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