Modular Galois representations *p*-adically using Makdisi's moduli-friendly forms

Nicolas Mascot

Trinity College Dublin

LFANT seminar IMB September 22nd 2020

Goal: Modular Galois representations

Let
$$f = q + \sum_{n=2}^{r} a_n q^n \in S_k(\Gamma_1(N), \varepsilon)$$
, $k \ge 2$, be a newform with coefficient field $K_f = \mathbb{Q}(a_n, n \ge 2)$.

Pick a prime l of K_f above some $\ell \in \mathbb{N}$.

 $+\infty$

Goal: Modular Galois representations

Let
$$f = q + \sum_{n=2}^{\infty} a_n q^n \in S_k(\Gamma_1(N), \varepsilon)$$
, $k \ge 2$, be a newform with coefficient field $K_f = \mathbb{Q}(a_n, n \ge 2)$.

Pick a prime \mathfrak{l} of K_f above some $\ell \in \mathbb{N}$.

Theorem (Deligne, Serre)

 $+\infty$

There exists a Galois representation

$$\rho_{f,\mathfrak{l}}\colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\longrightarrow \operatorname{GL}_2(\mathbb{F}_{\mathfrak{l}}),$$

which is unramified outside ℓN , and such that the image of any Frobenius element at $p \nmid \ell N$ has characteristic polynomial

$$x^2 - a_p x + \varepsilon(p) p^{k-1} \in \mathbb{F}_{\mathfrak{l}}[x].$$

Goal: Modular Galois representations

Let
$$f = q + \sum_{n=2} a_n q^n \in S_k(\Gamma_1(N), \varepsilon)$$
, $k \ge 2$, be a newform with coefficient field $K_f = \mathbb{Q}(a_n, n \ge 2)$.

Pick a prime \mathfrak{l} of K_f above some $\ell \in \mathbb{N}$.

Theorem (Deligne, Serre)

 $+\infty$

There exists a Galois representation

$$\rho_{f,\mathfrak{l}} \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{F}_{\mathfrak{l}}),$$

which is unramified outside ℓN , and such that the image of any Frobenius element at $p \nmid \ell N$ has characteristic polynomial

$$x^2 - \frac{\partial p}{\partial p} x + \varepsilon(p) p^{k-1} \in \mathbb{F}_{\mathfrak{l}}[x].$$

Goal : compute $\rho_{f,l}$.

Under reasonable hypotheses, $\rho_{f,l}$ is afforded by a Galois-stable piece $T \subseteq J[\ell]$, where J is the Jacobian of the modular curve $X_1(N')$,

$$\mathcal{N}' = \left\{ egin{array}{cc} \mathcal{N} & ext{if } k=2, \ \ell \mathcal{N} & ext{if } k>2. \end{array}
ight.$$

More general case

Suppose we know a "nice" curve C/\mathbb{Q} such that some Galois-stable \mathbb{F}_{ℓ} -subspace $T \subseteq J[\ell]$ affords some interesting Galois representation ρ , where $J = \operatorname{Jac}(C)$.

More general case

Suppose we know a "nice" curve C/\mathbb{Q} such that some Galois-stable \mathbb{F}_{ℓ} -subspace $T \subseteq J[\ell]$ affords some interesting Galois representation ρ , where $J = \operatorname{Jac}(C)$.

To isolate $T \subset J[\ell]$, we assume that for one good prime $p \neq \ell$, we know

$$\chi_{
ho}(x) = \det \left(x - \operatorname{Frob}_{
ho} |_{\mathcal{T}}
ight) \in \mathbb{F}_{\ell}[x]$$

and

$$L(x) = \det (x - \operatorname{Frob}_{\rho}|_J) \in \mathbb{Z}[x],$$

and that

$$gcd(\chi_{\rho}, L/\chi_{\rho}) = 1 \in \mathbb{F}_{\ell}[x].$$

A *p*-adic strategy

- Find $q = p^a$ such that $T \subseteq J(\mathbb{F}_q)[\ell]$,
- **2** Generate \mathbb{F}_q -points of T until we get an \mathbb{F}_{ℓ} -basis,
- 3 Lift this basis from $J(\mathbb{F}_q)$ to $J(\mathbb{Z}_q/p^e)$, $e \gg 1$,
- Form all linear combinations of these points in T ⊆ J(Z_q/p^e)[ℓ],

③
$$F(x) = \prod_{t \in T} (x - \theta(t))$$
, where $\theta : J \dashrightarrow \mathbb{A}^1$,

• Identify $F(x) \in \mathbb{Q}[x]$.

Getting a basis of T

Idea:
$$J(\mathbb{F}_q) \longrightarrow J(\mathbb{F}_q)[\ell^{\infty}] \longrightarrow J(\mathbb{F}_q)[\ell] \longrightarrow T$$
.

•
$$\#J(\mathbb{F}_q) = \operatorname{Res} (L(x), x^a - 1) = \ell^b M.$$

 $\rightsquigarrow \forall t \in J(\mathbb{F}_q), \ M \cdot t \in J(\mathbb{F}_q)[\ell^{\infty}].$

Getting a basis of T

Idea:
$$J(\mathbb{F}_q) \longrightarrow J(\mathbb{F}_q)[\ell^{\infty}] \longrightarrow J(\mathbb{F}_q)[\ell] \longrightarrow T$$
.

•
$$\#J(\mathbb{F}_q) = \operatorname{Res} (L(x), x^a - 1) = \ell^b M.$$

 $\rightsquigarrow \forall t \in J(\mathbb{F}_q), \ M \cdot t \in J(\mathbb{F}_q)[\ell^{\infty}].$

•
$$L(x) = \chi_{\rho}(x)\psi(x) \in \mathbb{F}_{\ell}[x]$$

 $\rightsquigarrow \forall t \in J(\mathbb{F}_q)[\ell], \ \psi(\operatorname{Frob}_{\rho}) \cdot t \in T.$

Reminder: line bundles

Let \mathcal{O}_C = regular functions on C.

Definition

A line bundle on C is a locally free \mathcal{O}_C -module.

Reminder: line bundles

Let \mathcal{O}_C = regular functions on C.

Definition

A line bundle on C is a locally free \mathcal{O}_C -module.

Example 1

Differential forms: for all $P \in C$, there exists ω such that the other differential forms are of the form $f\omega$ near P for some function f on C which is regular near P.

Reminder: line bundles

Let \mathcal{O}_C = regular functions on C.

Definition

A line bundle on C is a locally free \mathcal{O}_C -module.

Example 1

Differential forms: for all $P \in C$, there exists ω such that the other differential forms are of the form $f\omega$ near P for some function f on C which is regular near P.

Example 2

If C is a modular curve, then for all $k \in \mathbb{N}$, modular forms of weight k form a line bundle over C.

Fix a line bundle L on C of degree d₀ ≫_g 1, and n ≫_{d₀} 1 points P₁, · · · , P_n ∈ C(Q_q) along with local trivialisations of L at the P_i.

Makdisi's algorithms

- Fix a line bundle L on C of degree d₀ ≫_g 1, and n ≫_{d₀} 1 points P₁, · · · , P_n ∈ C(Q_q) along with local trivialisations of L at the P_i.
- A basis v_1, v_2, \cdots of the global section space $H^0(\mathcal{L})$ can be represented by the matrix

$$\begin{pmatrix} s_1(P_1) & s_2(P_1) & \cdots \\ \vdots & \vdots & \\ s_1(P_n) & s_2(P_n) & \cdots \end{pmatrix}$$

Makdisi's algorithms

- Fix a line bundle L on C of degree d₀ ≫_g 1, and n ≫_{d₀} 1 points P₁, · · · , P_n ∈ C(Q_q) along with local trivialisations of L at the P_i.
- A basis v_1, v_2, \cdots of the global section space $H^0(\mathcal{L})$ can be represented by the matrix

$$\begin{pmatrix} s_1(P_1) & s_2(P_1) & \cdots \\ \vdots & \vdots & \\ s_1(P_n) & s_2(P_n) & \cdots \end{pmatrix}$$

We can deduce a matrix representing $H^0(\mathcal{L}^{\otimes 2})$, because Riemann-Roch & our assumptions ensure that the multiplication map

$$H^0(\mathcal{L})\otimes H^0(\mathcal{L})\longmapsto H^0(\mathcal{L}^{\otimes 2})$$

is surjective.

Makdisi's algorithms

- Fix a line bundle L on C of degree d₀ ≫_g 1, and n ≫_{d₀} 1 points P₁, · · · , P_n ∈ C(Q_q) along with local trivialisations of L at the P_i.
- A point $[D] [\mathcal{L}] \in J$ is represented by the subspace

$$W = H^0(\mathcal{L}^{\otimes 2}(-D)) \subset H^0(\mathcal{L}^{\otimes 2}),$$

i.e. by the matrix

$$\begin{pmatrix} w_1(P_1) & w_2(P_1) & \cdots \\ \vdots & \vdots & \\ w_1(P_n) & w_2(P_n) & \cdots \end{pmatrix},$$

where w_1, w_2, \cdots is a basis of W.

Group law

Let
$$a = [A] - [\mathcal{L}], b = [B] - [\mathcal{L}] \in J$$
 represented
by $H^0(\mathcal{L}^{\otimes 2}(-A)), H^0(\mathcal{L}^{\otimes 2}(-B)).$

Algorithm (Makdisi, 2004)

Modular curves

where ζ_N is a fixed primitive *N*-th root of 1.

Need line bundle \mathcal{L} : Pick \mathcal{L} whose sections are modular forms of weight 2.

```
Need points P_1, \dots, P_n to evaluate forms at:
Fix (E, \alpha), take the
(E, \alpha \circ \gamma)
for \gamma \in SL_2(\mathbb{Z}/N\mathbb{Z})/\pm 1.
```

Still need to "evaluate" a basis of the pace of forms of weight 2 at the $P_{i...}$

Let $k \in \mathbb{N}$, and R a commutative ring such that $6N \in R^{\times}$.

Let $k \in \mathbb{N}$, and R a commutative ring such that $6N \in R^{\times}$.

Definition

An algebraic modular form of weight k for X(N) over R is a rule f assigning a value to isomorphism classes of triples $(E/R, \alpha, \omega)$ where ω generates the differential forms on E/R

Let $k \in \mathbb{N}$, and R a commutative ring such that $6N \in R^{\times}$.

Definition

An algebraic modular form of weight k for X(N) over R is a rule f assigning a value to isomorphism classes of triples $(E/R, \alpha, \omega)$ where ω generates the differential forms on E/R, and such that

$$f(E,\alpha,u\omega) = u^{-k}f(E,\alpha,\omega)$$

for all $u \in R^{\times}$.

Definition

An <u>algebraic modular form</u> of weight k for X(N) over R is a rule f assigning a value to triples $(E/R, \alpha, \omega)$, such that

$$f(E,\alpha,u\omega)=u^{-k}f(E,\alpha,\omega)$$

for all $u \in R^{\times}$.

Definition

An <u>algebraic modular form</u> of weight k for X(N) over R is a rule f assigning a value to triples $(E/R, \alpha, \omega)$, such that

$$f(E,\alpha,u\omega)=u^{-k}f(E,\alpha,\omega)$$

for all $u \in R^{\times}$.

Short Weierstrass

$$(\mathcal{E}) : y^2 = x^3 + Ax + B$$
$$\rightsquigarrow \omega = dx/2y.$$

Definition

An <u>algebraic modular form</u> of weight k for X(N) over R is a rule f assigning a value to triples $(E/R, \alpha, \omega)$, such that

$$f(E,\alpha,u\omega)=u^{-k}f(E,\alpha,\omega)$$

for all $u \in R^{\times}$.

Short Weierstrass

$$(\mathcal{E}) : y^2 = x^3 + Ax + B$$
$$\rightsquigarrow \omega = dx/2y.$$

Isomorphic to

$$(\mathcal{E}') : y^2 = x^3 + A'x + B'$$

by $(x, y) \mapsto (u^2 x, u^3 y), A' = u^4 A, B' = u^6 B, \omega' = u^{-1} \omega.$

Definition

An <u>algebraic modular form</u> of weight k for X(N) over R is a rule f assigning a value to pairs $(\mathcal{E}/R, \alpha)$, such that

$$f(\mathcal{E}',\alpha) = u^k f(\mathcal{E},\alpha)$$

for all $u \in R^{\times}$.

Short Weierstrass

$$(\mathcal{E}) : y^2 = x^3 + Ax + B$$
$$\rightsquigarrow \omega = dx/2y.$$

Isomorphic to

$$(\mathcal{E}') : y^2 = x^3 + A'x + B'$$

by $(x, y) \mapsto (u^2 x, u^3 y), A' = u^4 A, B' = u^6 B, \omega' = u^{-1} \omega.$

Definition

An <u>algebraic modular form</u> of weight k for X(N) over R is a rule f assigning a value to pairs $(\mathcal{E}/R, \alpha)$, such that

$$f(\mathcal{E}',\alpha) = u^k f(\mathcal{E},\alpha)$$

for all $u \in R^{\times}$.

Examples

 $\mathcal{E} \mapsto A$ is a modular form of weight 4.

 $\mathcal{E} \mapsto \Delta \coloneqq -64A^3 - 432B^2$ is a modular form of weight 12.

by $(x, y) \mapsto (u^2 x, u^3 y)$, $A' = u^4 A$, $B' = u^6 B$, $\omega' = u^{-1} \omega$.

 $\alpha: (\mathbb{Z}/N\mathbb{Z})^2 \simeq \mathcal{E}[N]$

For $v, w \in (\mathbb{Z}/N\mathbb{Z})^2$ such that v, w, v + w are all nonzero, let

 $\lambda_{\mathbf{v},\mathbf{w}}: (\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(\mathbf{v})$ to $\alpha(\mathbf{w})$.

 $\alpha: (\mathbb{Z}/N\mathbb{Z})^2 \simeq \mathcal{E}[N]$

For $v, w \in (\mathbb{Z}/N\mathbb{Z})^2$ such that v, w, v + w are all nonzero, let

 $\lambda_{\mathbf{v},\mathbf{w}}: (\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(\mathbf{v})$ to $\alpha(\mathbf{w})$.

Theorem (Makdisi, 2011)

• $\lambda_{v,w}$ is a modular form of weight 1 for X(N).

 $\alpha: (\mathbb{Z}/N\mathbb{Z})^2 \simeq \mathcal{E}[N]$

For $v, w \in (\mathbb{Z}/N\mathbb{Z})^2$ such that v, w, v + w are all nonzero, let

 $\lambda_{\mathbf{v},\mathbf{w}}: (\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(\mathbf{v})$ to $\alpha(\mathbf{w})$.

Theorem (Makdisi, 2011)

- **1** $\lambda_{v,w}$ is a modular form of weight 1 for X(N).
- The R-algebra generated by the λ_{v,w} contains all modular forms for X(N), except cuspforms of weight 1.

 $\alpha: (\mathbb{Z}/N\mathbb{Z})^2 \simeq \mathcal{E}[N]$

For $v, w \in (\mathbb{Z}/N\mathbb{Z})^2$ such that v, w, v + w are all nonzero, let

 $\lambda_{\mathbf{v},\mathbf{w}}: (\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(\mathbf{v})$ to $\alpha(\mathbf{w})$.

Theorem (Makdisi, 2011)

- **1** $\lambda_{v,w}$ is a modular form of weight 1 for X(N).
- The R-algebra generated by the λ_{v,w} contains all modular forms for X(N), except cuspforms of weight 1.
- **3** The $\lambda_{v,w}$ are moduli-friendly!

9 Pick $p \nmid 6\ell N$ and $A, B \in \mathbb{Z}$ such that

 $a = \operatorname{lcm} \left([\mathbb{F}_{\rho}(\mathcal{E}[N]), \mathbb{F}_{\rho}] \ , \ \operatorname{ord} \rho_{f,\mathfrak{l}}(\operatorname{Frob}_{\rho}) \right)$

is small, where (\mathcal{E}) : $y^2 = x^3 + Ax + B$.

• Pick $p \nmid 6\ell N$ and $A, B \in \mathbb{Z}$ such that

 $a = \operatorname{lcm} \left([\mathbb{F}_{p}(\mathcal{E}[N]), \mathbb{F}_{p}] \ , \ \operatorname{ord} \rho_{f,\mathfrak{l}}(\operatorname{Frob}_{p}) \right)$

is small, where (\mathcal{E}) : $y^2 = x^3 + Ax + B$. 2 Let $N = \prod_i l_i^{v_i}$.

• Pick $p \nmid 6\ell N$ and $A, B \in \mathbb{Z}$ such that

 $a = \operatorname{lcm} \left([\mathbb{F}_{p}(\mathcal{E}[N]), \mathbb{F}_{p}] , \operatorname{ord} \rho_{f,\mathfrak{l}}(\operatorname{Frob}_{p}) \right)$

is small, where (\mathcal{E}) : $y^2 = x^3 + Ax + B$. • Let $N = \prod_i I_i^{v_i}$. For each *i*, find a basis

 $\langle Q_i, R_i \rangle = \mathcal{E}[I_i^{v_i}]/\mathbb{F}_q,$

• Pick $p \nmid 6\ell N$ and $A, B \in \mathbb{Z}$ such that

 $a = \operatorname{lcm} \left([\mathbb{F}_{\rho}(\mathcal{E}[N]), \mathbb{F}_{\rho}] , \text{ ord } \rho_{f,\mathfrak{l}}(\operatorname{Frob}_{\rho}) \right)$

is small, where (\mathcal{E}) : $y^2 = x^3 + Ax + B$. 2 Let $N = \prod_i I_i^{v_i}$. For each *i*, find a basis

 $\langle Q_i, R_i \rangle = \mathcal{E}[I_i^{v_i}]/\mathbb{F}_q,$

then lift it to \mathbb{Z}_q using $\psi_{l_i^{v_i}}(x) \in \mathbb{Q}[x]$.

1 Pick $p \nmid 6\ell N$ and $A, B \in \mathbb{Z}$ such that

 $a = \operatorname{lcm} \left([\mathbb{F}_{\rho}(\mathcal{E}[N]), \mathbb{F}_{\rho}], \operatorname{ord} \rho_{f,\mathfrak{l}}(\operatorname{Frob}_{\rho}) \right)$

is small, where (\mathcal{E}) : $y^2 = x^3 + Ax + B$. 2 Let $N = \prod_i I_i^{v_i}$. For each *i*, find a basis

 $\langle Q_i, R_i \rangle = \mathcal{E}[I_i^{v_i}]/\mathbb{F}_q,$

then lift it to \mathbb{Z}_q using $\psi_{l_i^{\vee_i}}(x) \in \mathbb{Q}[x]$. Let $Q = \sum_i Q_i$, $R = \sum_i R_i \rightsquigarrow (\mathcal{E}, \alpha)/\mathbb{Z}_q$.

1 Pick $p \nmid 6\ell N$ and $A, B \in \mathbb{Z}$ such that

 $a = \operatorname{lcm} \left([\mathbb{F}_{\rho}(\mathcal{E}[N]), \mathbb{F}_{\rho}], \operatorname{ord} \rho_{f,\mathfrak{l}}(\operatorname{Frob}_{\rho}) \right)$

is small, where (\mathcal{E}) : $y^2 = x^3 + Ax + B$. 2 Let $N = \prod_i I_i^{v_i}$. For each *i*, find a basis

 $\langle Q_i, R_i \rangle = \mathcal{E}[I_i^{v_i}]/\mathbb{F}_q,$

then lift it to \mathbb{Z}_q using $\psi_{l_i^{\vee_i}}(x) \in \mathbb{Q}[x]$. Let $Q = \sum_i Q_i$, $R = \sum_i R_i \rightsquigarrow (\mathcal{E}, \alpha)/\mathbb{Z}_q$. 2 Let $P_{\gamma} = (\mathcal{E}, \alpha \circ \gamma) \in X(N)$ for $\gamma \in SL_2(\mathbb{Z}/N\mathbb{Z})/\pm 1$.

1 Pick $p \nmid 6\ell N$ and $A, B \in \mathbb{Z}$ such that

 $a = \operatorname{lcm} \left([\mathbb{F}_{\rho}(\mathcal{E}[N]), \mathbb{F}_{\rho}], \operatorname{ord} \rho_{f,\mathfrak{l}}(\operatorname{Frob}_{\rho}) \right)$

is small, where (\mathcal{E}) : $y^2 = x^3 + Ax + B$. 2 Let $N = \prod_i I_i^{v_i}$. For each *i*, find a basis

 $\langle Q_i, R_i \rangle = \mathcal{E}[I_i^{v_i}]/\mathbb{F}_q,$

then lift it to \mathbb{Z}_q using $\psi_{l_i^{\gamma_i}}(x) \in \mathbb{Q}[x]$. Let $Q = \sum_i Q_i, R = \sum_i R_i \rightsquigarrow (\mathcal{E}, \alpha)/\mathbb{Z}_q$. 3 Let $P_{\gamma} = (\mathcal{E}, \alpha \circ \gamma) \in X(N)$ for $\gamma \in SL_2(\mathbb{Z}/N\mathbb{Z})/\pm 1$. 4 Form the matrix $(\lambda_{v,w}(P_{\gamma}))_{\{P_{\gamma}\} \times \{(v,w)\}}$.

• Pick $p \nmid 6\ell N$ and $A, B \in \mathbb{Z}$ such that

 $a = \operatorname{lcm} \left([\mathbb{F}_{p}(\mathcal{E}[N]), \mathbb{F}_{p}] , \text{ ord } \rho_{f,\mathfrak{l}}(\operatorname{Frob}_{p}) \right)$

is small, where (\mathcal{E}) : $y^2 = x^3 + Ax + B$. 2 Let $N = \prod_i I_i^{v_i}$. For each *i*, find a basis

 $\langle Q_i, R_i \rangle = \mathcal{E}[I_i^{v_i}]/\mathbb{F}_q,$

then lift it to \mathbb{Z}_q using $\psi_{l_i^{\nu_i}}(x) \in \mathbb{Q}[x]$. Let $Q = \sum_i Q_i, R = \sum_i R_i \rightsquigarrow (\mathcal{E}, \alpha)/\mathbb{Z}_q$. 3 Let $P_{\gamma} = (\mathcal{E}, \alpha \circ \gamma) \in X(N)$ for $\gamma \in SL_2(\mathbb{Z}/N\mathbb{Z})/\pm 1$. 4 Form the matrix $(\lambda_{\nu,w}(P_{\gamma}))_{\{P_{\gamma}\}\times\{(\nu,w)\}}$.

 \rightsquigarrow We can compute in the Jacobian of X(N)/R just by looking at one E/R!

Example 1

Let

$$f=q+(-i-1)q^2+(i-1)q^3+O(q^4)\in S_2ig(\Gamma_1(16)ig)$$
 and $\mathfrak{l}=(5,i-2).$

We choose p = 43, because $\rho_{f,l}(Frob_{43})$ has order only 4.

We catch $\rho_{f,l}$ in the 5-torsion of the Jacobian of $X_1(16)$ (genus 2).

Let

and

$$f=\Delta=q-24q^2+252q^3+O(q^4)\in S_{12}ig({ar \Gamma}_1(1)ig)$$
l ${\mathfrak l}=17.$

We choose p = 47, because $\rho_{f,l}(Frob_{47})$ has order only 4.

We catch $\rho_{f,l}$ in the 17-torsion of the Jacobian of $X_1(17)$ (genus 5).

We do not have to evaluate the forms at all the P_{γ} .

We can replace \mathcal{L} , which gives all modular forms of weight 2, by modular forms of weight 2 that vanish at some cusps.

Moduli interpretation of cusps of $X_1(N)$: a point of order N on a Néron polygon.

Moduli interpretation of cusps of $X_1(N)$: a point of order N on a Néron polygon.

Moduli interpretation of cusps of $X_1(N)$: a point of order N on a Néron polygon.

Let

and

$$f=\Delta=q-24q^2+252q^3+O(q^4)\in S_{12}ig({ar \Gamma}_1(1)ig)$$
l ${\mathfrak l}=17.$

We choose p = 47, because $\rho_{f,l}(Frob_{47})$ has order only 4.

We catch $\rho_{f,l}$ in the 17-torsion of the Jacobian of $X_1(17)$ (genus 5).

The complex-analytic method

Modular forms represented by q-expansions.

Comparison with the complex-analytic method

Genus	<i>p</i> -adic	Complex
2	3s on 4 cores	5m on 64 cores
13	11m on 64 cores	12h on 64 cores
26	11h on 64 cores	3d on $pprox$ 100 cores

 $\rho_{f,\mathfrak{l}}$ is afforded by

$$\bigcap_{n\in\mathbb{N}} \ker(T_n - a_n(f) \bmod \mathfrak{l}) \subset \operatorname{Jac}[\ell].$$

However, the *p*-adic method carves it out by using the characteristic polynomial of $Frob_p$, which cannot do better than

$$\bigcap_{n\in\mathbb{N}} \ker(T_n - a_n(f) \bmod \mathfrak{l})^{\infty} \subset \operatorname{Jac}[\ell].$$

Implement Hecke action

• Improve random generation of points on the Jacobian

• Generalise to Shimura curves and Hilbert modular forms

Implement Hecke action

• Improve random generation of points on the Jacobian

 Generalise to Shimura curves and Hilbert modular forms Missing ingredient: analogue of Makdisi's λ_{ν,w}.

Thank you !