Modular Galois representations p-adically using Makdisi's moduli-friendly forms

Nicolas Mascot

Trinity College Dublin

LFANT seminar
IMB
September $22^{\text {nd }} 2020$

Goal: Modular Galois representations

Let $f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in S_{k}\left(\Gamma_{1}(N), \varepsilon\right), k \geqslant 2$, be a newform with coefficient field $K_{f}=\mathbb{Q}\left(a_{n}, n \geqslant 2\right)$.

Pick a prime \mathfrak{l} of K_{f} above some $\ell \in \mathbb{N}$.

Goal: Modular Galois representations

Let $f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in S_{k}\left(\Gamma_{1}(N), \varepsilon\right), k \geqslant 2$, be a newform with coefficient field $K_{f}=\mathbb{Q}\left(a_{n}, n \geqslant 2\right)$.

Pick a prime \mathfrak{l} of K_{f} above some $\ell \in \mathbb{N}$.

Theorem (Deligne, Serre)

There exists a Galois representation

$$
\rho_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\mathrm{l}}\right),
$$

which is unramified outside ℓN, and such that the image of any Frobenius element at $p \nmid \ell N$ has characteristic polynomial

$$
x^{2}-a_{p} x+\varepsilon(p) p^{k-1} \in \mathbb{F}_{[}[x]
$$

Goal: Modular Galois representations

Let $f=q+\sum_{n=2}^{+\infty} a_{n} q^{n} \in S_{k}\left(\Gamma_{1}(N), \varepsilon\right), k \geqslant 2$, be a newform with coefficient field $K_{f}=\mathbb{Q}\left(a_{n}, n \geqslant 2\right)$.

Pick a prime \mathfrak{l} of K_{f} above some $\ell \in \mathbb{N}$.

Theorem (Deligne, Serre)

There exists a Galois representation

$$
\rho_{f, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\mathrm{l}}\right),
$$

which is unramified outside ℓN, and such that the image of any Frobenius element at $p \nmid \ell N$ has characteristic polynomial

$$
x^{2}-a_{p} x+\varepsilon(p) p^{k-1} \in \mathbb{F}_{[}[x]
$$

Goal : compute $\rho_{f, l}$.

Modular Galois representations in Jacobians

Under reasonable hypotheses, $\rho_{f, \text { l }}$ is afforded by a Galois-stable piece $T \subseteq J[\ell]$, where J is the Jacobian of the modular curve $X_{1}\left(N^{\prime}\right)$,

$$
N^{\prime}=\left\{\begin{aligned}
N & \text { if } k=2, \\
\ell N & \text { if } k>2 .
\end{aligned}\right.
$$

More general case

Suppose we know a "nice" curve C / \mathbb{Q} such that some Galois-stable \mathbb{F}_{ℓ}-subspace $T \subseteq J[\ell]$ affords some interesting Galois representation ρ, where $J=\operatorname{Jac}(C)$.

More general case

Suppose we know a "nice" curve C / \mathbb{Q} such that some Galois-stable \mathbb{F}_{ℓ}-subspace $T \subseteq J[\ell]$ affords some interesting Galois representation ρ, where $J=\operatorname{Jac}(C)$.

To isolate $T \subset J[\ell]$, we assume that for one good prime $p \neq \ell$, we know

$$
\chi_{\rho}(x)=\operatorname{det}\left(x-\left.\operatorname{Frob}_{p}\right|_{T}\right) \in \mathbb{F}_{\ell}[x]
$$

and

$$
L(x)=\operatorname{det}\left(x-\operatorname{Frob}_{p} \mid J\right) \in \mathbb{Z}[x],
$$

and that

$$
\operatorname{gcd}\left(\chi_{\rho}, L / \chi_{\rho}\right)=1 \in \mathbb{F}_{\ell}[x] .
$$

A p-adic strategy

(1) Find $q=p^{a}$ such that $T \subseteq J\left(\mathbb{F}_{q}\right)[\ell]$,
(2) Generate \mathbb{F}_{q}-points of T until we get an \mathbb{F}_{ℓ}-basis,
(0) Lift this basis from $J\left(\mathbb{F}_{q}\right)$ to $J\left(\mathbb{Z}_{q} / p^{e}\right), e \gg 1$,

- Form all linear combinations of these points in $T \subseteq J\left(\mathbb{Z}_{q} / p^{e}\right)[\ell]$,
(0) $F(x)=\prod_{t \in T}(x-\theta(t))$, where $\theta: J \rightarrow \mathbb{A}^{1}$,
(0) Identify $F(x) \in \mathbb{Q}[x]$.

Getting a basis of T

Idea: $J\left(\mathbb{F}_{q}\right) \longrightarrow J\left(\mathbb{F}_{q}\right)\left[\ell^{\infty}\right] \longrightarrow J\left(\mathbb{F}_{q}\right)[\ell] \longrightarrow T$.

$$
\begin{aligned}
\because J\left(\mathbb{F}_{q}\right)= & \operatorname{Res}\left(L(x), x^{a}-1\right)=\ell^{b} M \\
& \rightsquigarrow \forall t \in J\left(\mathbb{F}_{q}\right), M \cdot t \in J\left(\mathbb{F}_{q}\right)\left[\ell^{\infty}\right]
\end{aligned}
$$

Getting a basis of T

Idea: $J\left(\mathbb{F}_{q}\right) \longrightarrow J\left(\mathbb{F}_{q}\right)\left[\ell^{\infty}\right] \longrightarrow J\left(\mathbb{F}_{q}\right)[\ell] \longrightarrow T$.

$$
\begin{aligned}
\bullet \# J\left(\mathbb{F}_{q}\right)= & \operatorname{Res}\left(L(x), x^{a}-1\right)=\ell^{b} M \\
& \rightsquigarrow \forall t \in J\left(\mathbb{F}_{q}\right), M \cdot t \in J\left(\mathbb{F}_{q}\right)\left[\ell^{\infty}\right] .
\end{aligned}
$$

- $L(x)=\chi_{\rho}(x) \psi(x) \in \mathbb{F}_{\ell}[x]$

$$
\rightsquigarrow \forall t \in J\left(\mathbb{F}_{q}\right)[\ell], \psi\left(\operatorname{Frob}_{p}\right) \cdot t \in T .
$$

Reminder: line bundles

Let $\mathcal{O}_{C}=$ regular functions on C.

Definition

A line bundle on C is a locally free \mathcal{O}_{C}-module.

Reminder: line bundles

Let $\mathcal{O}_{C}=$ regular functions on C.

Definition

A line bundle on C is a locally free \mathcal{O}_{C}-module.

Example 1

Differential forms: for all $P \in C$, there exists ω such that the other differential forms are of the form $f \omega$ near P for some function f on C which is regular near P.

Reminder: line bundles

Let $\mathcal{O}_{C}=$ regular functions on C.

Definition

A line bundle on C is a locally free \mathcal{O}_{C}-module.

Example 1

Differential forms: for all $P \in C$, there exists ω such that the other differential forms are of the form $f \omega$ near P for some function f on C which is regular near P.

Example 2

If C is a modular curve, then for all $k \in \mathbb{N}$, modular forms of weight k form a line bundle over C.

Makdisi's algorithms

- Fix a line bundle \mathcal{L} on C of degree $d_{0} \gg_{g} 1$, and $n \gg_{d_{0}} 1$ points $P_{1}, \cdots, P_{n} \in C\left(\mathbb{Q}_{q}\right)$ along with local trivialisations of \mathcal{L} at the P_{i}.

Makdisi's algorithms

- Fix a line bundle \mathcal{L} on C of degree $d_{0}>_{g} 1$, and $n \gg_{d_{0}} 1$ points $P_{1}, \cdots, P_{n} \in C\left(\mathbb{Q}_{q}\right)$ along with local trivialisations of \mathcal{L} at the P_{i}.
- A basis v_{1}, v_{2}, \cdots of the global section space $H^{0}(\mathcal{L})$ can be represented by the matrix

$$
\left(\begin{array}{ccc}
s_{1}\left(P_{1}\right) & s_{2}\left(P_{1}\right) & \cdots \\
\vdots & \vdots & \\
s_{1}\left(P_{n}\right) & s_{2}\left(P_{n}\right) & \cdots
\end{array}\right)
$$

Makdisi's algorithms

- Fix a line bundle \mathcal{L} on C of degree $d_{0} \gg_{g} 1$, and $n \gg_{d_{0}} 1$ points $P_{1}, \cdots, P_{n} \in C\left(\mathbb{Q}_{q}\right)$ along with local trivialisations of \mathcal{L} at the P_{i}.
- A basis v_{1}, v_{2}, \cdots of the global section space $H^{0}(\mathcal{L})$ can be represented by the matrix

$$
\left(\begin{array}{ccc}
s_{1}\left(P_{1}\right) & s_{2}\left(P_{1}\right) & \cdots \\
\vdots & \vdots & \\
s_{1}\left(P_{n}\right) & s_{2}\left(P_{n}\right) & \cdots
\end{array}\right)
$$

We can deduce a matrix representing $H^{0}\left(\mathcal{L}^{\otimes 2}\right)$, because Riemann-Roch \& our assumptions ensure that the multiplication map

$$
H^{0}(\mathcal{L}) \otimes H^{0}(\mathcal{L}) \longmapsto H^{0}\left(\mathcal{L}^{\otimes 2}\right)
$$

is surjective.

Makdisi's algorithms

- Fix a line bundle \mathcal{L} on C of degree $d_{0}>_{g} 1$, and $n \gg_{d_{0}} 1$ points $P_{1}, \cdots, P_{n} \in C\left(\mathbb{Q}_{q}\right)$ along with local trivialisations of \mathcal{L} at the P_{i}.
- A point $[D]-[\mathcal{L}] \in J$ is represented by the subspace

$$
W=H^{0}\left(\mathcal{L}^{\otimes 2}(-D)\right) \subset H^{0}\left(\mathcal{L}^{\otimes 2}\right)
$$

i.e. by the matrix

$$
\left(\begin{array}{ccc}
w_{1}\left(P_{1}\right) & w_{2}\left(P_{1}\right) & \cdots \\
\vdots & \vdots & \\
w_{1}\left(P_{n}\right) & w_{2}\left(P_{n}\right) & \cdots
\end{array}\right),
$$

where w_{1}, w_{2}, \cdots is a basis of W.

Group law

Let $a=[A]-[\mathcal{L}], b=[B]-[\mathcal{L}] \in J$ represented by $H^{0}\left(\mathcal{L}^{\otimes 2}(-A)\right), H^{0}\left(\mathcal{L}^{\otimes 2}(-B)\right)$.

Algorithm (Makdisi, 2004)

(1) $H^{0}\left(\mathcal{L}^{\otimes 2}(-A)\right) \otimes H^{0}\left(\mathcal{L}^{\otimes 2}(-B)\right) \longrightarrow H^{0}\left(\mathcal{L}^{\otimes 4}(-A-B)\right)$.
(2) $H^{0}\left(\mathcal{L}^{\otimes 3}(-A-B)\right)$

$$
=\left\{s \in H^{0}\left(\mathcal{L}^{\otimes 3}\right) \mid s \cdot H^{0}(\mathcal{L}) \subset H^{0}\left(\mathcal{L}^{\otimes 4}(-A-B)\right)\right\}
$$

(0) Take $f \in H^{0}\left(\mathcal{L}^{\otimes 3}(-A-B)\right)$.

Observation: given any section s of $\mathcal{L}^{\otimes 3}, f / s$ is a function whose divisor is $A+B+C-3[\mathcal{L}]$
$\rightsquigarrow c:=[C]-[\mathcal{L}]=[A]+[B]-2[\mathcal{L}]=-(a+b) \in J$.

- $H^{0}\left(\mathcal{L}^{\otimes 2}(-C)\right)$

$$
=\left\{s \in H^{0}\left(\mathcal{L}^{\otimes 2}\right) \mid s \cdot H^{0}\left(\mathcal{L}^{\otimes 3}(-A-B)\right) \subset f \cdot H^{0}\left(\mathcal{L}^{\otimes 2}\right)\right\}
$$

Modular curves

Curves
Points

	Pairs (E, α)
$X(N)$	where $\alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \simeq E[N]$
	and $e_{N}(\alpha(1,0), \alpha(0,1))=\zeta_{N}$
$X_{1}(N)$	Pairs (E, P)
\downarrow	where $P \in E$
$X(1)$	has exact order N

where ζ_{N} is a fixed primitive N-th root of 1 .

Makdisi for $X(N)$

Need line bundle \mathcal{L} :
Pick \mathcal{L} whose sections are modular forms of weight 2.

Need points P_{1}, \cdots, P_{n} to evaluate forms at:
Fix (E, α), take the

$$
(E, \alpha \circ \gamma)
$$

for $\gamma \in \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) / \pm 1$.

Still need to "evaluate" a basis of the pace of forms of weight 2 at the $P_{i} \ldots$

Algebraic modular forms

Let $k \in \mathbb{N}$, and R a commutative ring such that $6 N \in R^{\times}$.

Algebraic modular forms

Let $k \in \mathbb{N}$, and R a commutative ring such that $6 N \in R^{\times}$.

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to isomorphism classes of triples
$(E / R, \alpha, \omega)$ where ω generates the differential forms on E / R

Algebraic modular forms

Let $k \in \mathbb{N}$, and R a commutative ring such that $6 N \in R^{\times}$.

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to isomorphism classes of triples $(E / R, \alpha, \omega)$ where ω generates the differential forms on E / R, and such that

$$
f(E, \alpha, u \omega)=u^{-k} f(E, \alpha, \omega)
$$

for all $u \in R^{\times}$.

Algebraic modular forms

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to triples $(E / R, \alpha, \omega)$, such that

$$
f(E, \alpha, u \omega)=u^{-k} f(E, \alpha, \omega)
$$

for all $u \in R^{\times}$.

Algebraic modular forms

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to triples $(E / R, \alpha, \omega)$, such that

$$
f(E, \alpha, u \omega)=u^{-k} f(E, \alpha, \omega)
$$

for all $u \in R^{\times}$.
Short Weierstrass

$$
\begin{aligned}
(\mathcal{E}): & y^{2}=x^{3}+A x+B \\
& \rightsquigarrow \omega=d x / 2 y .
\end{aligned}
$$

Algebraic modular forms

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to triples $(E / R, \alpha, \omega)$, such that

$$
f(E, \alpha, u \omega)=u^{-k} f(E, \alpha, \omega)
$$

for all $u \in R^{\times}$.
Short Weierstrass

$$
\begin{gathered}
(\mathcal{E}): y^{2}=x^{3}+A x+B \\
\rightsquigarrow \omega=d x / 2 y .
\end{gathered}
$$

Isomorphic to

$$
\left(\mathcal{E}^{\prime}\right): y^{2}=x^{3}+A^{\prime} x+B^{\prime}
$$

$$
\text { by }(x, y) \mapsto\left(u^{2} x, u^{3} y\right), A^{\prime}=u^{4} A, B^{\prime}=u^{6} B, \omega^{\prime}=u^{-1} \omega
$$

Algebraic modular forms

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to pairs $(\mathcal{E} / R, \alpha)$, such that

$$
f\left(\mathcal{E}^{\prime}, \alpha\right)=u^{k} f(\mathcal{E}, \alpha)
$$

for all $u \in R^{\times}$.
Short Weierstrass

$$
\begin{aligned}
(\mathcal{E}): & y^{2}=x^{3}+A x+B \\
& \rightsquigarrow \omega=d x / 2 y .
\end{aligned}
$$

Isomorphic to

$$
\left(\mathcal{E}^{\prime}\right): y^{2}=x^{3}+A^{\prime} x+B^{\prime}
$$

$$
\text { by }(x, y) \mapsto\left(u^{2} x, u^{3} y\right), A^{\prime}=u^{4} A, B^{\prime}=u^{6} B, \omega^{\prime}=u^{-1} \omega \text {. }
$$

Algebraic modular forms

Definition

An algebraic modular form of weight k for $X(N)$ over R is a rule f assigning a value to pairs $(\mathcal{E} / R, \alpha)$, such that

$$
f\left(\mathcal{E}^{\prime}, \alpha\right)=u^{k} f(\mathcal{E}, \alpha)
$$

for all $u \in R^{\times}$.

Examples

$\mathcal{E} \mapsto A$ is a modular form of weight 4.
$\mathcal{E} \mapsto \Delta:=-64 A^{3}-432 B^{2}$ is a modular form of weight 12.

$$
\text { by }(x, y) \mapsto\left(u^{2} x, u^{3} y\right), A^{\prime}=u^{4} A, B^{\prime}=u^{6} B, \omega^{\prime}=u^{-1} \omega \text {. }
$$

Makdisi's moduli-friendly forms

$$
\alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \simeq \mathcal{E}[N]
$$

For $v, w \in(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $v, w, v+w$ are all nonzero, let $\lambda_{v, w}:(\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(v)$ to $\alpha(w)$.

Makdisi's moduli-friendly forms

$$
\alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \simeq \mathcal{E}[N]
$$

For $v, w \in(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $v, w, v+w$ are all nonzero, let $\lambda_{v, w}:(\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(v)$ to $\alpha(w)$.

Theorem (Makdisi, 2011)

(1) $\lambda_{v, w}$ is a modular form of weight 1 for $X(N)$.

Makdisi's moduli-friendly forms

$$
\alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \simeq \mathcal{E}[N]
$$

For $v, w \in(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $v, w, v+w$ are all nonzero, let $\lambda_{v, w}:(\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(v)$ to $\alpha(w)$.

Theorem (Makdisi, 2011)

(1) $\lambda_{v, w}$ is a modular form of weight 1 for $X(N)$.
(2) The R-algebra generated by the $\lambda_{v, w}$ contains all modular forms for $X(N)$, except cuspforms of weight 1 .

Makdisi's moduli-friendly forms

$$
\alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \simeq \mathcal{E}[N]
$$

For $v, w \in(\mathbb{Z} / N \mathbb{Z})^{2}$ such that $v, w, v+w$ are all nonzero, let $\lambda_{v, w}:(\mathcal{E}, \alpha) \longmapsto$ slope of line joining $\alpha(v)$ to $\alpha(w)$.

Theorem (Makdisi, 2011)

(1) $\lambda_{v, w}$ is a modular form of weight 1 for $X(N)$.
(2) The R-algebra generated by the $\lambda_{v, w}$ contains all modular forms for $X(N)$, except cuspforms of weight 1 .
(0) The $\lambda_{v, w}$ are moduli-friendly!

Construction of a p-adic model of $\operatorname{Jac}(X(N))$

(1) Pick $p \nmid \sigma \ell N$ and $A, B \in \mathbb{Z}$ such that

$$
a=\operatorname{lcm}\left(\left[\mathbb{F}_{p}(\mathcal{E}[N]), \mathbb{F}_{p}\right], \text { ord } \rho_{f, l}\left(\operatorname{Frob}_{p}\right)\right)
$$

is small, where $(\mathcal{E}): y^{2}=x^{3}+A x+B$.

Construction of a p-adic model of $\operatorname{Jac}(X(N))$

(1) Pick $p \nmid \sigma \ell N$ and $A, B \in \mathbb{Z}$ such that

$$
a=\operatorname{lcm}\left(\left[\mathbb{F}_{p}(\mathcal{E}[N]), \mathbb{F}_{p}\right], \operatorname{ord} \rho_{f, l}\left(\operatorname{Frob}_{p}\right)\right)
$$

is small, where $(\mathcal{E}): y^{2}=x^{3}+A x+B$.
(2) Let $N=\prod_{i} l_{i}^{v_{i}}$.

Construction of a p-adic model of $\operatorname{Jac}(X(N))$

(1) Pick $p \nmid 6 \ell N$ and $A, B \in \mathbb{Z}$ such that

$$
a=\operatorname{lcm}\left(\left[\mathbb{F}_{p}(\mathcal{E}[N]), \mathbb{F}_{p}\right], \text { ord } \rho_{f, l}\left(\operatorname{Frob}_{p}\right)\right)
$$

is small, where $(\mathcal{E}): y^{2}=x^{3}+A x+B$.
(2) Let $N=\prod_{i} l_{i}^{V_{i}}$. For each i, find a basis

$$
\left\langle Q_{i}, R_{i}\right\rangle=\mathcal{E}\left[V_{i}^{i}\right] / \mathbb{F}_{q},
$$

Construction of a p-adic model of $\operatorname{Jac}(X(N))$

(1) Pick $p \nmid 6 \ell N$ and $A, B \in \mathbb{Z}$ such that

$$
a=\operatorname{lcm}\left(\left[\mathbb{F}_{p}(\mathcal{E}[N]), \mathbb{F}_{p}\right], \operatorname{ord} \rho_{f, l}\left(\operatorname{Frob}_{p}\right)\right)
$$

is small, where $(\mathcal{E}): y^{2}=x^{3}+A x+B$.
(2) Let $N=\prod_{i} l_{i}^{V_{i}}$. For each i, find a basis

$$
\left\langle Q_{i}, R_{i}\right\rangle=\mathcal{E}\left[\nu_{i}^{i}\right] / \mathbb{F}_{q},
$$

then lift it to \mathbb{Z}_{q} using $\psi_{l_{i}{ }^{v_{i}}}(x) \in \mathbb{Q}[x]$.

Construction of a p-adic model of $\operatorname{Jac}(X(N))$

(1) Pick $p \nmid 6 \ell N$ and $A, B \in \mathbb{Z}$ such that

$$
a=\operatorname{lcm}\left(\left[\mathbb{F}_{p}(\mathcal{E}[N]), \mathbb{F}_{p}\right], \operatorname{ord} \rho_{f, l}\left(\operatorname{Frob}_{p}\right)\right)
$$

is small, where $(\mathcal{E}): y^{2}=x^{3}+A x+B$.
(2) Let $N=\prod_{i} V_{i}^{V_{i}}$. For each i, find a basis

$$
\left\langle Q_{i}, R_{i}\right\rangle=\mathcal{E}\left[\nu_{i}^{v_{i}}\right] / \mathbb{F}_{q},
$$

then lift it to \mathbb{Z}_{q} using $\psi_{l_{i}}(x) \in \mathbb{Q}[x]$.
Let $Q=\sum_{i} Q_{i}, R=\sum_{i} R_{i} \rightsquigarrow(\mathcal{E}, \alpha) / \mathbb{Z}_{q}$.

Construction of a p-adic model of $\operatorname{Jac}(X(N))$

(1) Pick $p \nmid 6 \ell N$ and $A, B \in \mathbb{Z}$ such that

$$
a=\operatorname{lcm}\left(\left[\mathbb{F}_{p}(\mathcal{E}[N]), \mathbb{F}_{p}\right], \text { ord } \rho_{f, \mathrm{l}}\left(\operatorname{Frob}_{p}\right)\right)
$$

is small, where $(\mathcal{E}): y^{2}=x^{3}+A x+B$.
(2) Let $N=\prod_{i} I_{i}^{v_{i}}$. For each i, find a basis

$$
\left\langle Q_{i}, R_{i}\right\rangle=\mathcal{E}\left[l_{i}^{\nu_{i}}\right] / \mathbb{F}_{q}
$$

then lift it to \mathbb{Z}_{q} using $\psi_{l_{i}^{v_{i}}}(x) \in \mathbb{Q}[x]$.
Let $Q=\sum_{i} Q_{i}, R=\sum_{i} R_{i} \rightsquigarrow(\mathcal{E}, \alpha) / \mathbb{Z}_{q}$.
(3) Let $P_{\gamma}=(\mathcal{E}, \alpha \circ \gamma) \in X(N)$ for $\gamma \in \operatorname{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) / \pm 1$.

Construction of a p-adic model of $\operatorname{Jac}(X(N))$

(1) Pick $p \nmid 6 \ell N$ and $A, B \in \mathbb{Z}$ such that

$$
a=\operatorname{lcm}\left(\left[\mathbb{F}_{p}(\mathcal{E}[N]), \mathbb{F}_{p}\right], \text { ord } \rho_{f, \mathrm{l}}\left(\operatorname{Frob}_{p}\right)\right)
$$

is small, where $(\mathcal{E}): y^{2}=x^{3}+A x+B$.
(2) Let $N=\prod_{i} l_{i}^{v_{i}}$. For each i, find a basis

$$
\left\langle Q_{i}, R_{i}\right\rangle=\mathcal{E}\left[l_{i}^{v_{i}}\right] / \mathbb{F}_{q}
$$

then lift it to \mathbb{Z}_{q} using $\psi_{l_{i}^{v_{i}}}(x) \in \mathbb{Q}[x]$.
Let $Q=\sum_{i} Q_{i}, R=\sum_{i} R_{i} \rightsquigarrow(\mathcal{E}, \alpha) / \mathbb{Z}_{q}$.
(3) Let $P_{\gamma}=(\mathcal{E}, \alpha \circ \gamma) \in X(N)$ for $\gamma \in \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) / \pm 1$.
(9) Form the matrix $\left(\lambda_{v, w}\left(P_{\gamma}\right)\right)_{\left\{P_{\gamma}\right\} \times\{(v, w)\}}$.

Construction of a p-adic model of $\operatorname{Jac}(X(N))$

(1) Pick $p \nmid 6 \ell N$ and $A, B \in \mathbb{Z}$ such that

$$
a=\operatorname{lcm}\left(\left[\mathbb{F}_{p}(\mathcal{E}[N]), \mathbb{F}_{p}\right], \text { ord } \rho_{f, \mathrm{l}}\left(\operatorname{Frob}_{p}\right)\right)
$$

is small, where $(\mathcal{E}): y^{2}=x^{3}+A x+B$.
(2) Let $N=\prod_{i} I_{i}^{v_{i}}$. For each i, find a basis

$$
\left\langle Q_{i}, R_{i}\right\rangle=\mathcal{E}\left[l_{i}^{v_{i}}\right] / \mathbb{F}_{q}
$$

then lift it to \mathbb{Z}_{q} using $\psi_{l_{i}^{v_{i}}}(x) \in \mathbb{Q}[x]$.
Let $Q=\sum_{i} Q_{i}, R=\sum_{i} R_{i} \rightsquigarrow(\mathcal{E}, \alpha) / \mathbb{Z}_{q}$.
(3) Let $P_{\gamma}=(\mathcal{E}, \alpha \circ \gamma) \in X(N)$ for $\gamma \in \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) / \pm 1$.
(9) Form the matrix $\left(\lambda_{v, w}\left(P_{\gamma}\right)\right)_{\left\{P_{\gamma}\right\} \times\{(v, w)\}}$.
\rightsquigarrow We can compute in the Jacobian of $X(N) / R$ just by looking at one E / R !

Example 1

Let

$$
f=q+(-i-1) q^{2}+(i-1) q^{3}+O\left(q^{4}\right) \in S_{2}\left(\Gamma_{1}(16)\right)
$$

and

$$
\mathfrak{l}=(5, i-2)
$$

We choose $p=43$, because $\rho_{f, l}\left(\mathrm{Frob}_{43}\right)$ has order only 4 .

We catch $\rho_{f, r}$ in the 5-torsion of the Jacobian of $X_{1}(16)$ (genus 2).

Example 2

Let

$$
f=\Delta=q-24 q^{2}+252 q^{3}+O\left(q^{4}\right) \in S_{12}\left(\Gamma_{1}(1)\right)
$$

and

$$
\mathfrak{l}=17
$$

We choose $p=47$, because $\rho_{f, l}\left(\mathrm{Frob}_{47}\right)$ has order only 4 .

We catch $\rho_{f, r}$ in the 17 -torsion of the Jacobian of $X_{1}(17)$ (genus 5).

Optimisation

We do not have to evaluate the forms at all the P_{γ}.

We can replace \mathcal{L}, which gives all modular forms of weight 2 , by modular forms of weight 2 that vanish at some cusps.

The Galois action on cusps

Moduli interpretation of cusps of $X_{1}(N)$: a point of order N on a Néron polygon.

The Galois action on cusps

Moduli interpretation of cusps of $X_{1}(N)$: a point of order N on a Néron polygon.

The Galois action on cusps

Moduli interpretation of cusps of $X_{1}(N)$: a point of order N on a Néron polygon.

Example 2

Let

$$
f=\Delta=q-24 q^{2}+252 q^{3}+O\left(q^{4}\right) \in S_{12}\left(\Gamma_{1}(1)\right)
$$

and

$$
\mathfrak{l}=17
$$

We choose $p=47$, because $\rho_{f, l}\left(\mathrm{Frob}_{47}\right)$ has order only 4 .

We catch $\rho_{f, r}$ in the 17 -torsion of the Jacobian of $X_{1}(17)$ (genus 5).

The complex-analytic method

Modular forms represented by q-expansions.

Comparison with the complex-analytic method

Genus	p-adic	Complex
2	3 s on 4 cores	5 m on 64 cores
13	11 m on 64 cores	12 h on 64 cores
26	11 h on 64 cores	3 d on ≈ 100 cores

Comparison with the complex-analytic method

$\rho_{f, r}$ is afforded by

$$
\bigcap_{n \in \mathbb{N}} \operatorname{ker}\left(T_{n}-a_{n}(f) \bmod \mathfrak{l}\right) \subset \operatorname{Jac}[\ell]
$$

However, the p-adic method carves it out by using the characteristic polynomial of Frob_{p}, which cannot do better than

$$
\bigcap_{n \in \mathbb{N}} \operatorname{ker}\left(T_{n}-a_{n}(f) \bmod \mathfrak{l}\right)^{\infty} \subset \operatorname{Jac}[\ell] .
$$

Future work

- Implement Hecke action
- Improve random generation of points on the Jacobian
- Generalise to Shimura curves and Hilbert modular forms

Future work

- Implement Hecke action
- Improve random generation of points on the Jacobian
- Generalise to Shimura curves and Hilbert modular forms Missing ingredient: analogue of Makdisi's $\lambda_{v, w}$.

Any questions?

Thank you!

