Isomorphisms of modular Galois representations and graphs

Samuele Anni

Seminair Lithe and Fast Algorithmic Number Theory

3 November 2020 - Bordeaux
Université d'Aix-Marseille, Institut de Mathématiques

Congruence graphs

joint with Vandita Patel (Manchester University)

Modular forms

Let n be a positive integer, the congruence subgroup $\Gamma_{0}(n)$ is a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ given by

$$
\Gamma_{0}(n)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): n \mid c\right\} .
$$

Given a pair of positive integers n (level) and k (weight), a modular form f for $\Gamma_{0}(n)$ is an holomorphic function on the complex upper half-plane \mathbb{H} satisfying

$$
f(\gamma z)=f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z) \quad \forall \gamma \in \Gamma_{0}(n), z \in \mathbb{H}
$$

and a growth condition for the coefficients of its power series expansion

$$
f(z)=\sum_{0}^{\infty} a_{m} q^{m}, \quad \text { where } \quad q=e^{2 \pi i z}
$$

Newforms

There are families of operators acting on the space of modular forms. In particular, the Hecke operators T_{p} for every prime p. These operators describe the interplay between different group actions on the complex upper half-plane.

We will consider only cuspidal newforms: cuspidal modular forms $\left(a_{0}=0\right)$, normalized $\left(a_{1}=1\right)$, which are eigenforms for the Hecke operators and arise from level n.

We will denote by $S_{k}(n)_{\mathbb{C}}$ the space of cuspforms and by $S_{k}(n)_{\mathbb{C}}^{n e w}$ the subspace of newforms.

Congruence between newforms

Let f and g be two newforms.

$$
f=\sum a_{m} q^{m} \quad g=\sum b_{m} q^{m}
$$

Then $\mathbb{Q}_{f}=\mathbb{Q}\left(\left\{a_{m}\right\}\right)$ is a number field, the Hecke eigenvalue field of f.

Definition

We say that f and g are congruent mod p, if there exists an ideal \mathfrak{p} dividing p in the compositum of the Hecke eigenvalue fields of f and g such that

$$
a_{m} \equiv b_{m} \bmod \mathfrak{p} \quad \text { for all } m
$$

Example: $S_{2}(77)_{\mathbb{C}}^{n e w}$

$$
\begin{aligned}
& f_{0}(q)=q-3 q^{3}-2 q^{4}-q^{5}-q^{7}+6 q^{9}-q^{11}+6 q^{12}-4 q^{13}+3 q^{15}+\ldots \\
& f_{1}(q)=q+q^{3}-2 q^{4}+3 q^{5}+q^{7}-2 q^{9}-q^{11}-2 q^{12}-4 q^{13}+3 q^{15}+\ldots \\
& f_{2}(q)=q+q^{2}+2 q^{3}-q^{4}-2 q^{5}+2 q^{6}-q^{7}-3 q^{8}+q^{9}-2 q^{10}+q^{11}+\ldots \\
& f_{3,4}(q)=q+\alpha q^{2}+(-\alpha+1) q^{3}+3 q^{4}-2 q^{5}+(\alpha-5) q^{6}+q^{7}+\ldots
\end{aligned}
$$ where α satisfies $x^{2}-5=0$.

The Hecke eigenvalue fields are \mathbb{Q} for f_{0}, f_{1}, f_{2} and $\mathbb{Q}(\sqrt{5})$ for $f_{3,4}$. The following congruences hold:

$$
f_{0} \equiv f_{1} \bmod 2, \quad f_{1} \equiv f_{3,4} \bmod \mathfrak{p}_{5}, \quad f_{2} \equiv f_{3,4} \bmod \mathfrak{p}_{2}
$$

where $\mathfrak{p}_{2}=(2), \mathfrak{p}_{5} \mid 5$ are primes in $\mathbb{Q}(\sqrt{5})$. This is the complete list of possible congruences!

Congruence Graphs

- Nodes correspond to Hecke orbits of newforms of level and weight in a given set (for $f \in S_{k}(n)^{\text {new }}$ a Hecke orbit is the set of forms $\tau(f)$ for $\left.\tau: \mathbb{Q}_{f} \rightarrow \overline{\mathbb{Q}}\right)$.
- We draw an edge between two nodes whenever there is a prime ℓ for which there is a congruence $\bmod \ell$ between forms in the orbits.

Let S be the set of divisors of a positive integer and let W be a finite set of weights, $\mathcal{G}_{S, W}$ denotes the associated graph.

$\mathcal{G}_{[1,3,11,33],[2,4]}$

Checking congruences

How do we check congruence?

Sturm Theorem

Let $n \geq 1$ be an integer. Let $f(q)=\sum a_{m} q^{m}$ be a modular form of level n and weight k, with coefficients in the ring of integers of a number field, and let λ be a maximal ideal herein.

Suppose that the reduction of the q-expansion of f modulo λ satisfies

$$
a_{m} \equiv 0 \quad \bmod \lambda \quad \text { for all } m \leq \frac{k}{12}\left[\operatorname{SL}_{2}(\mathbb{Z}): \Gamma_{0}(n)\right]
$$

Then $a_{m} \equiv 0 \bmod \lambda$ for all m.

Hecke algebras and congruence graphs

Hecke algebra: connectedness

Definition

The Hecke algebra $\mathbb{T}(n, k)$ is the \mathbb{Z}-subalgebra of
End $_{\mathbb{C}}\left(S(n, k)_{\mathbb{C}}\right)$ generated by Hecke operators T_{p} for every prime p.

Question (Ash, Mazur)

Is Spec $\mathbb{T}(n, k)$ connected?
The congruence graphs are related to the dual graphs of
the spectrum of the Hecke algebra.

Theorem

Spec $\mathbb{T}(p, k)$ is connected for

- p prime ≤ 997 with $k=4$,
- p prime ≤ 293 with $k=6,8$,
- p prime ≤ 97 with $k=10,12$.

This follows from $\mathcal{G}_{[p],[k]}$ being a connected graphs for p and k as above.

Theorem

$\mathcal{G}_{[p],[4]}$ is a complete graph for p prime ≤ 997.

Residual modular Galois representations \& Isomorphism graphs

Theorem (Deligne, Serre, Shimura)

Let n and k be positive integers. Let \mathbb{F} be a finite field of characteristic ℓ, with $\ell \nmid n$, and $f: \mathbb{T}(n, k) \rightarrow \mathbb{F}$ a surjective ring homomorphism. Then there is a (unique) continuous semi-simple representation:

$$
\rho_{f}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{F}),
$$

unramified outside $n \ell$, such that for all p not dividing $n \ell$ we have:

$$
\operatorname{Tr}\left(\rho_{f}\left(\operatorname{Frob}_{p}\right)\right)=f\left(T_{p}\right) \text { and } \operatorname{det}\left(\rho_{f}\left(\operatorname{Frob}_{p}\right)\right)=f(\langle p\rangle) p^{k-1} \text { in } \mathbb{F} .
$$

Remark

If f and g are congruent modulo ℓ then there exists primes $\lambda, \lambda^{\prime} \mid \ell$ in \mathbb{Q}_{f} and \mathbb{Q}_{g}, such that $\bar{\rho}_{f, \lambda} \cong \bar{\rho}_{g, \lambda^{\prime}}$.

Example: $n_{f}=38$ and $n_{g}=58$

$$
\begin{aligned}
& \ell=5 \\
& k_{f}=k_{g}=2 \\
& n_{f}=38=2 \cdot 19 \quad n_{g}=58=2 \cdot 29 \\
& \epsilon_{f}=\epsilon_{g}=\operatorname{lnd}(\mathbf{1})
\end{aligned}
$$

p	2	3	5	7	11	13	17	19	23	29	31	37	41	43
$f\left(T_{p}\right)$	1	4	1	3	2	4	3	4	4	0	2	3	2	4
$g\left(T_{p}\right)$	1	4	1	3	2	4	3	0	4	4	2	3	2	4

Example: $n_{f}=38$ and $n_{g}=58$

$$
\begin{aligned}
& \ell=5 \\
& n_{f}=38=2 \cdot 19 \quad n_{g}=58=2 \cdot 29 \\
& \epsilon_{f}=\epsilon_{g}=\operatorname{Ind}(\mathbf{1}) \\
& p
\end{aligned} \left\lvert\, \begin{array}{lllllllllllllll}
\\
p & 3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29 & 31 & 37 & 41 & 43 \\
\hline f\left(T_{p}\right) & 1 & 4 & 1 & 3 & 2 & 4 & 3 & 4 & 4 & 0 & 2 & 3 & 2 & 4 \\
\hline g\left(T_{p}\right) & 1 & 4 & 1 & 3 & 2 & 4 & 3 & 0 & 4 & 4 & 2 & 3 & 2 & 4
\end{array}\right.
$$

It seems that $\rho_{f} \cong \rho_{g}$ since for lots of primes p we have
$\operatorname{Tr}\left(\rho_{f}\left(\operatorname{Frob}_{p}\right)\right)=f\left(T_{p}\right)=\operatorname{Tr}\left(\rho_{g}\left(\operatorname{Frob}_{p}\right)\right)=g\left(T_{p}\right)$ and $\operatorname{det}\left(\rho_{f}\left(\operatorname{Frob}_{p}\right)\right)=\epsilon_{f}(p)=\operatorname{det}\left(\rho_{g}\left(\operatorname{Frob}_{p}\right)\right)=\epsilon_{g}(p)$.

How can we prove this?

Computing ρ_{f} is "difficult", but theoretically it can be done in polynomial time in $n, k, \# \mathbb{F}$:

Edixhoven, Couveignes, de Jong, Merkl, Bruin, Bosman (\#F ≤ 32):
Example: for $n=1, k=22$ and $\ell=23$, the number field corresponding to $\mathbb{P} \rho_{f}$ (Galois group isomorphic to $\mathrm{PGL}_{2}\left(\mathbb{F}_{23}\right)$) is given by:

$$
\begin{aligned}
x^{24} & -2 x^{23}+115 x^{22}+23 x^{21}+1909 x^{20}+22218 x^{19}+9223 x^{18}+121141 x^{17} \\
& +1837654 x^{16}-800032 x^{15}+9856374 x^{14}+52362168 x^{13}-32040725 x^{12} \\
& +279370098 x^{11}+1464085056 x^{10}+1129229689 x^{9}+3299556862 x^{8} \\
& +14586202192 x^{7}+29414918270 x^{6}+45332850431 x^{5}-6437110763 x^{4} \\
& -111429920358 x^{3}-12449542097 x^{2}+93960798341 x-31890957224
\end{aligned}
$$

Mascot, Zeng, Tian (\#F ≤ 53).

Isomorphism Graphs

- Nodes correspond to Hecke orbits of newforms of level and weight in a given set (for $f \in S_{k}(n)^{\text {new }}$ a Hecke orbit is the set of forms $\tau(f)$ for $\left.\tau: \mathbb{Q}_{f} \rightarrow \overline{\mathbb{Q}}\right)$.
- We draw an edge between two nodes if for two forms f and g in the respective orbits there is a prime ℓ, and there exist primes $\lambda, \lambda^{\prime} \mid \ell$ such that

$$
\bar{\rho}_{f, \lambda} \cong \bar{\rho}_{g, \lambda^{\prime}}
$$

Let S be the set of divisors of a positive integer and let W be a finite set of weights, $\mathcal{G}_{S, W}^{\rho}$ denotes the associated graph.

$\mathcal{G}_{[1,3,11,33],[2,4]}$

$\mathcal{G}_{[1,3,11,33],[2,4]}^{\rho}$

Checking isomorphisms

joint with Peter Bruin (Leiden University)

Degeneracy maps

Degeneracy maps

Let ℓ be a prime and let $n, k \in \mathbb{Z}_{\geq 1}$ be such that $\ell \nmid n$.
Suppose $n=m p^{r}$ with $r \geq 1$ and where p is a prime not dividing m. We have two degeneracy maps B_{p} and B_{1} on $X_{1}(n)_{\overline{\mathbb{F}}_{\ell}}$:

Degeneracy maps : B_{1}

Let ℓ be a prime and let $n, k \in \mathbb{Z}_{\geq 1}$ be such that $\ell \nmid n$.
Suppose $n=m p^{r}$ with $r \geq 1$ and where p is a prime not dividing m.
We have two degeneracy maps B_{1} and B_{p} on $X_{1}(n)_{\overline{\mathbb{F}}_{\ell}}$:

Moduli interpretation for $X_{1}(n)_{\overline{\mathbb{F}}_{\ell}}: E / S$ elliptic curve over an $\overline{\mathbb{F}}_{\ell}$-scheme S, with P and Q points of order m and p^{r}.

Degeneracy maps: B_{p}

Let ℓ be a prime and let $n, k \in \mathbb{Z}_{\geq 1}$ be such that $\ell \nmid n$.
Suppose $n=m p^{r}$ with $r \geq 1$ and where p is a prime not dividing m.
We have two degeneracy maps B_{1} and B_{p} on $X_{1}(n)_{\overline{\mathbb{F}}_{\ell}}$:

$$
\begin{array}{cc}
X_{1}\left(m, p^{r}\right)_{\overline{\mathbb{F}}_{\ell}} & (E, P, Q) \\
B_{p} \downarrow & B_{p} \\
\chi_{1}\left(m, p^{r-1}\right)_{\overline{\mathbb{F}}_{\ell}} & \left(E /\left\langle p^{r-1} Q\right\rangle, \beta(P), \beta(Q)\right)
\end{array}
$$

Moduli interpretation for $X_{1}(n)_{\overline{\mathbb{F}}_{\ell}}: E / S$ elliptic curve over an $\overline{\mathbb{F}}_{\ell}$-scheme S, with P and Q points of order m and p^{r}, where β is an isogeny such that

$$
\left\langle p^{r-1} Q\right\rangle \mapsto E \xrightarrow{\beta} E /\left\langle p^{r-1} Q\right\rangle .
$$

Degeneracy maps

Let $m, n, d, k \in \mathbb{Z}_{\geq 1}$ with $m \mid n$ and $d \left\lvert\, \frac{n}{m}\right.$ the degeneracy map

$$
B_{d, m, n}^{*}: M\left(\Gamma_{1}(m), k\right)_{\overline{\mathbb{F}}_{\ell}} \rightarrow M\left(\Gamma_{1}(n), k\right)_{\overline{\mathbb{F}}_{\ell}}
$$

is the map induced in cohomology by the map B_{d}.
In terms of the q-expansion this map is the substitution $q \mapsto q^{d}$:

$$
f=\sum_{n \geq 0} a_{n}(f) q^{n} \longmapsto B_{d}^{*}(f)=\sum_{n \geq 0} a_{n}(f) q^{d n}
$$

For every prime number p, using the degeneracy maps, we define the following $\overline{\mathbb{F}}_{\ell}$-linear map:

$$
\eta_{p}: M\left(\Gamma_{1}(n), k\right)_{\overline{\mathbb{F}}_{\ell}} \rightarrow \begin{cases}M\left(\Gamma_{1}(n p), k\right)_{\overline{\mathbb{F}}_{\ell}} & \text { if } p \mid n \\ M\left(\Gamma_{1}\left(n p^{2}\right), k\right)_{\overline{\mathbb{F}}_{\ell}} & \text { if } p \nmid n\end{cases}
$$

by

$$
\eta_{p}= \begin{cases}B_{1, n, n p}^{*}-B_{p, n, n p}^{*} T_{p} & \text { if } p \mid n ; \\ B_{1, n, n p^{2}}^{*}-B_{p, n, n p^{2}}^{*} T_{p}+p^{k-1} B_{p^{2}, n, n p^{2}}^{*}\langle p\rangle & \text { if } p \nmid n .\end{cases}
$$

Compatibility Hecke operators and degeneracy maps: $\eta_{p}\left(T_{p}\right)=0$.

How do we check isomorphisms of Galois representations?

Let $n_{f}, n_{g}, k \in \mathbb{Z}_{\geq 1}$ and let ℓ be a prime number $\ell \nmid n_{f} n_{g}$, denote:

$$
\begin{aligned}
N & :=\operatorname{lcm}\left(n_{f}, n_{g}\right) \prod_{p \mid n_{f} n_{g} \text { prime }} p \\
B_{\text {naive }}\left(n_{f}, n_{g}, k, \ell\right) & :=\frac{k+\ell+1}{12}\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right] .
\end{aligned}
$$

Lemma

Let $f: \mathbb{T}\left(n_{f}, k\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ and $g: \mathbb{T}\left(n_{g}, k\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ be ring homomorphisms. If $\epsilon_{f}=\epsilon_{g}$ and $f\left(T_{p}\right)=g\left(T_{p}\right)$ for all primes $p \nmid N$ and $p \leq B_{\text {naive }}\left(n_{f}, n_{g}, k, \ell\right)$, then $\rho_{f} \cong \rho_{g}$.

The previous lemma is not "efficient": using degeneracy maps, we move the problem of comparing forms of different level and weight to the problem of comparing forms of the same level, but this level is very BIG. It is an improvement on the results of Takai of 2011.

This approach avoids the study of the primes dividing the level, that are the primes where the associated representation can ramify.

Example: $n_{f}=38$ and $n_{g}=58$

$$
\begin{aligned}
& \ell=5 \\
& n_{f}=38=2 \cdot 19 n_{g}=58=2 \cdot 29 \\
& \epsilon_{f}=\epsilon_{g}=\operatorname{lnd}(\mathbf{1}) \\
& \quad B_{\text {naive }}\left(n_{f}, n_{g}, k, \ell\right)=1322400
\end{aligned}
$$

To prove that $\rho_{f} \cong \rho_{g}$ we have to show

$$
\operatorname{Tr}\left(\rho_{f}\left(\operatorname{Frob}_{p}\right)\right)=f\left(T_{p}\right)=\operatorname{Tr}\left(\rho_{g}\left(\operatorname{Frob}_{p}\right)\right)=g\left(T_{p}\right)
$$

for all prime $p \leq 1322400$.

Serre's Conjecture

Theorem (Khare, Wintenberger, Dieulefait, Kisin),

Serre's Conjecture

Let ℓ be a prime number and let $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{\ell}\right)$ be an odd, absolutely irreducible, continuous representation. Then ρ is modular of level n_{ρ}, weight k_{ρ} and character $\epsilon(\rho)$.

- n_{ρ} (the level) is the Artin conductor away from ℓ.
- k_{ρ} (the weight) is given by a recipe in terms of $\left.\rho\right|_{I_{\ell}}$.
- $\epsilon(\rho):\left(\mathbb{Z} / n_{\rho} \mathbb{Z}\right)^{*} \rightarrow \overline{\mathbb{F}}_{\ell}^{*}$ is given by:

$$
\operatorname{det} \rho=\epsilon(\rho) \chi_{\ell}^{k_{\rho}-1},
$$

where χ_{ℓ} is the cyclotomic character $\bmod \ell$.

Local representation at primes dividing the level and at ℓ

Theorem (Gross, Vignéras, Fontaine, Serre: Conjec-

ture 3.2.6?)
Let $\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}(V)$ be a continuous, odd, irreducible representation, with V a 2-dimensional $\overline{\mathbb{F}}_{\ell}$-vector space. Let $f: \mathbb{T}\left(n_{\rho}, k_{\rho}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ be a ring homomorphism such that $\rho_{f} \cong \rho$. Let p be a prime divisor of ℓn.
(1) If $f\left(T_{p}\right) \neq 0$, then there exists a stable line $D \subset V$ for the action of G_{p}, such that I_{p} acts trivially on V / D. Moreover, the eigenvalue of Frob_{p} acting on V / D is equal to $f\left(T_{p}\right)$.
(2) If $f\left(T_{p}\right)=0$, then there exists no stable line $D \subset V$ as in (1).
(1) $\left.\Rightarrow \rho_{f}\right|_{G_{p}}$ is reducible;
(2) $\left.\Rightarrow \rho_{f}\right|_{G_{p}}$ is irreducible.

Descendant and ancestors

Let $n, k \in \mathbb{Z}_{\geq 1}$ such that $n \geq 1$, $\ell \nmid n$ and $2 \leq k \leq \max \{4, \ell+1\}$.
Let $f: \mathbb{T}\left(\Gamma_{1}(n), k\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ and $p \neq \ell$ a prime. Let

$$
R_{p}(f)= \begin{cases}\text { roots of } x^{2}-f\left(T_{p}\right) x+f(\langle p\rangle) p^{k-1} & \text { if } p \nmid n \\ \text { roots of } x^{2}-f\left(T_{p}\right) x & \text { if } p \mid n\end{cases}
$$

Definition

A p-descendant of (n, k, f) is a triple of the form $(n p, k, g)$, where $g: \mathbb{T}\left(\Gamma_{1}(n p), k\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ is a ring homomorphism satisfying

- $g\left(T_{q}\right)=f\left(T_{q}\right)$ for all primes $q \neq p$,
- $g\left(T_{p}\right) \in R_{p}(n, k, f)$,
- $\epsilon_{g}(d)=g(\langle d\rangle)=f(\langle d \bmod n\rangle)$ for all $d \in(\mathbb{Z} / n p \mathbb{Z})^{\times}$.

Lemma

Let $f: \mathbb{T}\left(\Gamma_{1}(n), k\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ be a ring homomorphism, and let $p \neq \ell$ be a prime number. Then

$$
\left\{g\left(T_{p}\right) \mid g \text { is a } p \text {-descendant of }(n, k, f)\right\}=R_{p}(f)
$$

Let $n \in \mathbb{Z}_{\geq 1}$ be such that $\ell \nmid n$.

Definition (companion)

Let $f: \mathbb{T}\left(\Gamma_{1}(n), \ell\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ be a ring homomorphism. A companion of f is a ring homomorphism $g: \mathbb{T}\left(\Gamma_{1}(n), \ell\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ such that $\epsilon_{f}=\epsilon_{g}, f\left(T_{p}\right)=g\left(T_{p}\right)$ for all primes $p \neq \ell, f\left(T_{\ell}\right) \neq g\left(T_{\ell}\right)$ and $f\left(T_{\ell}\right) g\left(T_{\ell}\right)=f(\langle\ell\rangle)$.

Let $n \in \mathbb{Z}_{\geq 1}$ be such that $\ell \nmid n$.

Definition (companion)

Let $f: \mathbb{T}\left(\Gamma_{1}(n), \ell\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ be a ring homomorphism. A companion of f is a ring homomorphism $g: \mathbb{T}\left(\Gamma_{1}(n), \ell\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ such that:

- $\epsilon_{f}=\epsilon_{g}$;
- $f\left(T_{p}\right)=g\left(T_{p}\right)$ for all primes $p \neq \ell$;
- $f\left(T_{\ell}\right) \neq g\left(T_{\ell}\right)$ and $f\left(T_{\ell}\right) g\left(T_{\ell}\right)=f(\langle\ell\rangle)$.

Remarque

This means that $f\left(T_{\ell}\right) \in \overline{\mathbb{F}}_{\ell} \times$ and $g\left(T_{\ell}\right)$ is a root of the quadratic polynomial $x^{2}-\left(f\left(T_{\ell}\right)+\frac{f(\langle\ell\rangle)}{f\left(T_{\ell}\right)}\right) x+f(\langle\ell\rangle)$, different from $f\left(T_{\ell}\right)$.

For all integers $n \geq 1$ and $k \geq 2$, multiplication by the Hasse invariant defines an injective $\overline{\mathbb{F}}_{\ell}$-linear map

$$
\iota_{n, k, \ell}: M\left(\Gamma_{1}(n), k\right)_{\overline{\mathbb{F}}_{\ell}} \longleftrightarrow M\left(\Gamma_{1}(n), k+\ell-1\right)_{\overline{\mathbb{F}}_{\ell}}
$$

This map is compatible with the Hecke and diamond operators so there is a canonical surjective ring homomorphism

$$
\pi_{n, k, \ell}: \mathbb{T}\left(\Gamma_{1}(n), k+\ell-1\right)_{\overline{\mathbb{F}}_{\ell}} \rightarrow \mathbb{T}\left(\Gamma_{1}(n), k\right)_{\overline{\mathbb{F}}_{\ell}}
$$

such that for each element $T \in \mathbb{T}\left(\Gamma_{1}(n), k+\ell-1\right)_{\overline{\mathbb{F}}_{\ell}}$, we have $\iota_{n, k, \ell} \circ\left(\pi_{n, k, \ell}(T)\right)=T \circ \iota_{n, k, \ell}$.

Let $n_{h}, k_{h} \in \mathbb{Z}_{\geq 1}$ be such that $\ell \nmid n_{h}$ and $2 \leq k_{h} \leq \max \{4, \ell+1\}$. Let $h: \mathbb{T}\left(\Gamma_{1}\left(n_{h}\right), k_{h}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ be a ring homomorphism.

Definition (descendants, $\operatorname{Old}(h)$)

The set of descendants of $\left(n_{h}, k_{h}, h\right)$, denoted by $\operatorname{Old}(h)$, is the minimal set of triples (n, k, f) consisting of positive integers n, k and a ring homomorphism $f: \mathbb{T}\left(\Gamma_{1}(n), k\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ such that the following hold:

- the triple $\left(n_{h}, k_{h}, h\right)$ is in $\operatorname{Old}(h)$;
- if $(n, k, f) \in \operatorname{Old}(h)$ then for every prime $p \neq \ell$ every p-descendant g of (n, k, f) satifies $(n p, k, g) \in \operatorname{Old}(h)$;

Definition (descendants, $\operatorname{Old}(h)$)

- ("multiplication by the Hasse invariant") if $(n, k, f) \in \operatorname{Old}(h)$ with $k+\ell-1 \leq \max \{4, \ell+1\}$, then $\left(n, k+\ell-1, f \circ \pi_{n, k, \ell}\right) \in \operatorname{Old}(h)$;
- ("division by the Hasse invariant") if $k+\ell-1 \leq \max \{4, \ell+1\}$ and $\left(n, k+\ell-1, f \circ \pi_{n, k, \ell}\right) \in \operatorname{Old}(h)$ then triple $(n, k, f) \in \operatorname{Old}(h)$;
- if $(n, \ell, f) \in \operatorname{Old}(h)$ and f admits a companion g then $(n, \ell, g) \in \operatorname{Old}(h)$.

Definition (ancestor)

Given positive integers n, k and a ring homomorphism $f: \mathbb{T}\left(\Gamma_{1}(n), k\right) \rightarrow \overline{\mathbb{F}}_{\ell}$, an ancestor of f is any triple $\left(n_{h}, k_{h}, h\right)$ as above such that (n, k, f) is a descendant of $\left(n_{h}, k_{h}, h\right)$.

$$
\begin{aligned}
& \operatorname{Old}(h, n)=\{(k, f):(n, k, f) \in \operatorname{Old}(h)\} \\
& \operatorname{Old}(h, n, k)=\{f:(n, k, f) \in \operatorname{Old}(h)\}
\end{aligned}
$$

All triples $(n, k, f) \in \operatorname{Old}(h)$ satisfy the following properties:

- $\ell \nmid n$;
- $n_{h} \mid n$;
- $2 \leq k \leq \max \{4, \ell+1\}$;
- $k \equiv k_{h} \bmod \ell-1$;
- $f\left(T_{p}\right)=h\left(T_{p}\right)$ for all $p \nmid n \ell$;
- $f(\langle d\rangle)=h(\langle d\rangle)$ for all $d \in(\mathbb{Z} / n \mathbb{Z})^{*}$.

Goal

We would like to give computational criteria for deciding whether a given form is in $\operatorname{Old}(h)$.

We define a finite subset $C_{\ell}(h) \subset \overline{\mathbb{F}}_{\ell}$ by

$$
C_{\ell}(h)= \begin{cases}\left\{h\left(T_{\ell}\right), \frac{h(\langle\ell\rangle)}{h\left(T_{\ell}\right)}\right\} & \text { if } k_{h} \equiv \ell \bmod \ell-1 \text { and } h\left(T_{\ell}\right) \neq 0 \\ \left\{h\left(T_{\ell}\right)\right\} & \text { if } k_{h} \not \equiv \ell \bmod \ell-1 \text { or } h\left(T_{\ell}\right)=0\end{cases}
$$

Let n be a multiple of n_{h} with $\ell \nmid n$, and let p be a prime divisor of n. We define a finite subset $C_{p}(h, n) \subset \overline{\mathbb{F}}_{\ell}$ by

$$
C_{p}(h, n)= \begin{cases}\left\{h\left(T_{p}\right)\right\} & \text { if } p \nmid n / n_{h} ; \\ R_{p}(h) & \text { if } p \| n / n_{h} ; \\ \{0\} \cup R_{p}(h) & \text { if } p^{2} \mid n / n_{h} .\end{cases}
$$

Lemma

We have

$$
\left\{f\left(T_{\ell}\right):(n, k, f) \in \operatorname{Old}(h)\right\} \subseteq C_{\ell}(h)
$$

Lemma

Let n be a multiple of n_{h} with $\ell \nmid n$, and let p be a prime number different from ℓ. Then we have

$$
\left\{f\left(T_{p}\right):(k, f) \in \operatorname{Old}(h, n)\right\}=C_{p}(h, n)
$$

Proposition

Let $\left(n_{h}, k_{h}, h\right)$ be as above, and let (n, k, f) be a descendant of $\left(n_{h}, k_{h}, h\right)$. Then

$$
\rho_{f} \cong \rho_{h} .
$$

Proposition

Let $\rho: G_{\mathbb{Q}} \rightarrow$ Aut $_{\overline{\mathbb{F}}_{\ell}} V$ be a semi-simple modular two-dimensional representation. Then there exist an integer k_{h} with $2 \leq k_{h} \leq \max \{4, \ell+1\}$ and $k_{h} \equiv k_{\rho} \bmod \ell-1$ and a ring homomorphism

$$
h: \mathbb{T}\left(\Gamma_{1}\left(n_{\rho}\right), k_{h}\right) \rightarrow \overline{\mathbb{F}}_{\ell}
$$

satisfying $\rho_{h} \cong \rho$ (up twisting by the cyclotomic character) and such that every triple $\left(n_{f}, k_{f}, f\right)$ satisfying $\rho_{f} \cong \rho$ lies in $\operatorname{Old}(h)$.

Sketch of the proof.

First suppose that ρ is irreducible. By assumption, ρ is modular. By the Khare-Wintenberger theorem (Serre's conjecture), there exists a ring homomorphism $h: \mathbb{T}\left(\Gamma_{1}\left(n_{\rho}\right), k_{\rho}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ such that ρ and ρ_{h} are isomorphic.

Now let (n_{f}, k_{f}, f) be a triple satisfying $\rho_{f} \cong \rho$. Using the results of Gross, Vignéras and Fontaine for the restriction of the representation at primes dividing the level and ℓ, we can show that $\left(n_{f}, k_{f}, f\right)$ is a descendant of $\left(n_{\rho}, k_{h}, h\right)$.

Sketch continuation.

Next suppose that ρ is reducible. Then there are characters $\epsilon_{1}, \epsilon_{2}: G_{\mathbb{Q}} \rightarrow \overline{\mathbb{F}}_{\ell}^{*}$ of conductors n_{1}, n_{2}, say, satisfying $n_{1} n_{2} \mid n_{\rho}$, such that ρ is of the form

$$
\rho \cong \epsilon_{1} \oplus \epsilon_{2} \chi_{\ell}^{k_{\rho}-1}
$$

To ρ we associate an appropriate Eisenstein series E of level n_{ρ} and weight $k_{h} \equiv k_{\rho} \bmod \ell-1$. Let $h: \mathbb{T}\left(\Gamma_{1}\left(n_{\rho}\right), k_{h}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ be a ring homomorphism obtained by composing
$E: \mathbb{T}\left(\Gamma_{1}\left(n_{\rho}\right), k_{h}\right) \rightarrow \overline{\mathbb{Z}}$ with the reduction map. We can show that $\left(n_{f}, k_{f}, f\right)$ is a descendant of $\left(n_{\rho}, k_{h}, h\right)$.

S-linked

Definition (S-linked)

Let $f: \mathbb{T}\left(\Gamma_{1}\left(n_{f}\right), k_{f}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ and $g: \mathbb{T}\left(\Gamma_{1}\left(n_{g}\right), k_{g}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ be ring homomorphisms. Let S be any set of primes not dividing $n_{f} n_{g} \ell$.
We say that f and g are S-linked if the following conditions hold:

- $k_{f} \equiv k_{g} \bmod \ell-1$;
- for all primes $p \in S$ we have $f\left(T_{p}\right)=g\left(T_{p}\right)=a_{p}$;
- there exist $n_{h}, k_{h} \in \mathbb{Z}_{\geq 1}$ and a ring homomorphism
$h: \mathbb{T}\left(\Gamma_{1}\left(n_{h}\right), k_{h}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ such that
- $n_{h} \mid \operatorname{gcd}\left(n_{f}, n_{g}\right)$;
- $2 \leq k_{h} \leq \max \{4, \ell+1\}$ and $k_{h} \equiv k_{f} \equiv k_{g} \bmod \ell-1$;
- $\epsilon_{f}=\operatorname{Ind}\left(\epsilon_{h}\right)$ and $\epsilon_{g}=\operatorname{Ind}\left(\epsilon_{h}\right)$;
- for all $p \in S$ we have $h\left(T_{p}\right)=a_{p}$;
- $f\left(T_{\ell}\right) \in C_{\ell}(h), \forall p \mid n_{f} n_{g}$ we have $f\left(T_{p}\right) \in C_{p}\left(h, n_{f}\right)$.
- $g\left(T_{\ell}\right) \in C_{\ell}(h), \forall p \mid n_{f} n_{g}$ we have $g\left(T_{p}\right) \in C_{p}\left(h, n_{g}\right)$.

For any choice of $\left(n_{h}, k_{h}, h\right)$ as above, we also say that f and g are S-linked by $\left(n_{h}, k_{h}, h\right)$.

Lemma

Let $\left(n_{h}, k_{h}, h\right)$ be as above, and let $\left(n_{f}, k_{f}, f\right)$ and $\left(n_{g}, k_{g}, g\right)$ be descendants. Then for every set S of primes not dividing $n_{f} n_{g} \ell$, the forms f and g are S-linked by $\left(n_{h}, k_{h}, h\right)$.

Let n_{f}, n_{g}, k_{f} and k_{g} be positive integers satisfying $\ell \nmid n_{f} n_{g}$ and $2 \leq k_{f}, k_{g} \leq \max \{4, \ell+1\}$. We define

$$
\tilde{k}= \begin{cases}6 & \text { if } \ell=2 \\ \ell+2 & \text { if } \ell>2 \text { and } k_{f}=k_{g}=\ell \\ \ell+1 & \text { if } \ell>2 \text { and } k_{f} \equiv k_{g} \equiv 2 \bmod \ell-1 \\ k_{f}\left(=k_{g}\right) & \text { otherwise. }\end{cases}
$$

Definition (distinguishing set)

A distinguishing set for $\left(n_{f}, n_{g}, \tilde{k}\right)$ is a set S of primes such that each of the anaemic Hecke algebras $\mathbb{T}^{\prime}\left(\Gamma_{0}\left(n_{f}\right), \tilde{k}\right)$ and $\mathbb{T}^{\prime}\left(\Gamma_{0}\left(n_{g}\right), \tilde{k}\right)$ is generated as a \mathbb{Z}-algebra by the subset $\left\{T_{p} \mid p \in S\right\}$ of the respective algebra.

Lemma

Let $f: \mathbb{T}\left(\Gamma_{1}\left(n_{f}\right), k_{f}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ and $g: \mathbb{T}\left(\Gamma_{1}\left(n_{g}\right), k_{g}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ be ring homomorphisms, and let S be a distinguishing set. If the triples $\left(n_{f}, k_{f}, f\right)$ and $\left(n_{g}, k_{g}, g\right)$ are S-linked, then they have a common ancestor.

Let us define

$$
B(n, \tilde{k})=\frac{\tilde{k}}{12}\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(n)\right]
$$

and

$$
B\left(n_{f}, n_{g}, \tilde{k}\right)=\max \left\{B\left(n_{f}, \tilde{k}\right), B\left(n_{g}, \tilde{k}\right)\right\}
$$

Furthermore, we define

Definition $\left(S_{B}\right)$

$$
S_{B}=\left\{p \text { prime } \mid p \nmid n_{f} n_{g} \ell \text { and } p \leq B\left(n_{f}, n_{g}, \tilde{k}\right)\right\} .
$$

Lemma

Let $f: \mathbb{T}\left(\Gamma_{1}\left(n_{f}\right), k_{f}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ and $g: \mathbb{T}\left(\Gamma_{1}\left(n_{g}\right), k_{g}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ be ring homomorphisms. If f and g are S_{B}-linked, then $\left(n_{f}, k_{f}, f\right)$ and $\left(n_{g}, k_{g}, g\right)$ have a common ancestor.

Theorem

Let $f: \mathbb{T}\left(\Gamma_{1}\left(n_{f}\right), k_{f}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ and $g: \mathbb{T}\left(\Gamma_{1}\left(n_{g}\right), k_{g}\right) \rightarrow \overline{\mathbb{F}}_{\ell}$ be ring homomorphisms. Then for any distinguishing set of primes S, the following are equivalent:

1. f and g are S-linked;
2. f and g are S_{B}-linked;
3. f and g have a common ancestor;
4. ρ_{f} and ρ_{g} are isomorphic.

Examples

Example 1: $n_{f}=38$ and $n_{g}=58$

$$
\left.\begin{array}{l}
\ell=5 \\
k_{f}=k_{g}=2, \tilde{k}=6 \\
n_{f}=38=2 \cdot 19 \quad n_{g}=58=2 \cdot 29 \\
B\left(n_{f}, n_{g}, \tilde{k}\right)=45<B_{\text {naive }\left(n_{f}, n_{g}, k, \ell\right)=1322400 .} \\
p
\end{array} \left\lvert\, \begin{array}{llllllllllllll}
\\
p & 3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29 & 31 & 37 & 41 & 43 \\
\hline f\left(T_{p}\right) & 1 & 4 & 1 & 3 & 2 & 4 & 3 & 4 & 4 & 0 & 2 & 3 & 2 \\
\hline g\left(T_{p}\right) & 1 & 4 & 1 & 3 & 2 & 4 & 3 & 0 & 4 & 4 & 2 & 3 & 2
\end{array}\right.\right) 4 .
$$

p	2	3	5	7	11	13	17	19	23	29	31	37	41	43
$f\left(T_{p}\right)$	1	4	1	3	2	4	3	4	4	0	2	3	2	4
$g\left(T_{p}\right)$	1	4	1	3	2	4	3	0	4	4	2	3	2	4

Let us consider all mod 5 eigenforms of level $d \in\{1,2\}$ and weight $k \in\{2,6\}$: we have

$$
\begin{array}{l|llll}
(d, k) & (1,6) & (2,2) & (2,6) & (2,6) \\
\hline & E_{6} & E_{2}^{(2)} & E_{6}^{(1)} & E_{6}^{(2)}
\end{array}
$$

p	2	3	5	7	11	13	17	19	23	29	31	37	41	43
$f\left(T_{p}\right)$	1	4	1	3	2	4	3	4	4	0	2	3	2	4
$g\left(T_{p}\right)$	1	4	1	3	2	4	3	0	4	4	2	3	2	4
$E_{6}\left(T_{p}\right)$	3	4	1	3	2	4	3	0	4	0	2	3	2	4
$E_{2}^{(2)}\left(T_{p}\right)$	1	4	1	3	2	4	3	0	4	0	2	3	2	4
$E_{6}^{(1)}\left(T_{p}\right)$	2	4	1	3	2	4	3	0	4	0	2	3	2	4
$E_{6}^{(2)}\left(T_{p}\right)$	1	4	1	3	2	4	3	0	4	0	2	3	2	4

$$
n_{f}=38=2 \cdot 19
$$

p	$C_{p}\left(E_{6}, 38\right)$	$C_{p}\left(E_{2}^{(2)}, 38\right)$	$C_{p}\left(E_{6}^{(1)}, 38\right)$	$C_{p}\left(E_{6}^{(2)}, 38\right)$
2	$\{1,2\}$	$\{1\}$	$\{2\}$	$\{1\}$
19	$\{1,4\}$	$\{1,4\}$	$\{1,4\}$	$\{1,4\}$

So E_{6} and $E_{2}^{(2)}$ are both ancestors of f.

p	2	3	5	7	11	13	17	19	23	29	31	37	41	43
$f\left(T_{p}\right)$	1	4	1	3	2	4	3	4	4	0	2	3	2	4
$g\left(T_{p}\right)$	1	4	1	3	2	4	3	0	4	4	2	3	2	4
$E_{6}\left(T_{p}\right)$	3	4	1	3	2	4	3	0	4	0	2	3	2	4
$E_{2}^{(2)}\left(T_{p}\right)$	1	4	1	3	2	4	3	0	4	0	2	3	2	4
$E_{6}^{(1)}\left(T_{p}\right)$	2	4	1	3	2	4	3	0	4	0	2	3	2	4
$E_{6}^{(2)}\left(T_{p}\right)$	1	4	1	3	2	4	3	0	4	0	2	3	2	4

$$
n_{g}=58=2 \cdot 29
$$

p	$C_{p}\left(E_{6}, 58\right)$	$C_{p}\left(E_{2}^{(2)}, 58\right)$	$C_{p}\left(E_{6}^{(1)}, 58\right)$	$C_{p}\left(E_{6}^{(2)}, 58\right)$
2	$\{1,2\}$	$\{1\}$	$\{2\}$	$\{1\}$
29	$\{1,4\}$	$\{1,4\}$	$\{1,4\}$	$\{1,4\}$

So E_{6} and $E_{2}^{(2)}$ are both ancestors of g. Therefore:

$$
\rho_{f} \cong \rho_{g} \cong \rho_{E_{6}} \cong 1 \oplus \chi_{5},
$$

where χ_{5} is the $\bmod 5$ cyclotomic character.

Example 2: $n_{h}=57$ and $n_{g}=58$

$$
\begin{aligned}
& \ell=5 \\
& k_{h}=k_{g}=2, \tilde{k}=6 \\
& n_{h}=57=3 \cdot 19 \quad n_{g}=58=2 \cdot 29 \\
& B\left(n_{h}, n_{g}, \tilde{k}\right)=45<B_{\text {naive }\left(n_{f}, n_{g}, \tilde{k}, \ell\right)=15868800 .} \\
& p
\end{aligned} \left\lvert\, \begin{array}{llllllllllllll}
\\
p & 3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29 & 31 & 37 & 41 & 43 \\
\hline h\left(T_{p}\right) & 3 & 1 & 1 & 3 & 2 & 4 & 3 & 4 & 4 & 0 & 2 & 3 & 2 \\
\hline \\
\hline g\left(T_{p}\right) & 1 & 4 & 1 & 3 & 2 & 4 & 3 & 0 & 4 & 4 & 2 & 3 & 2 \\
4
\end{array}\right.
$$

p	2	3	5	7	11	13	17	19	23	29	31	37	41	43
$h\left(T_{p}\right)$	3	1	1	3	2	4	3	4	4	0	2	3	2	4
$g\left(T_{p}\right)$	1	4	1	3	2	4	3	0	4	4	2	3	2	4

Let us consider all mod 5 eigenforms of level 1 and weight $k \in\{2,6\}$: so we have only E_{6}.

p	2	3	5	7	11	13	17	19	23	29	31	37	41	43
$h\left(T_{p}\right)$	3	1	1	3	2	4	3	4	4	0	2	3	2	4
$g\left(T_{p}\right)$	1	4	1	3	2	4	3	0	4	4	2	3	2	4
$E_{6}\left(T_{p}\right)$	3	4	1	3	2	4	3	0	4	0	2	3	2	4

E_{6} is a common ancestors of h and g. We have that \tilde{h} satisfies:

$$
\tilde{h}(q)=E_{6}(q)-E_{6}\left(q^{3}\right)-E_{6}\left(q^{19}\right)+3 E_{6}\left(q^{57}\right)
$$

Therefore:

$$
\rho_{h} \cong \rho_{g} \cong \rho_{E_{6}} \cong 1 \oplus \chi_{5} .
$$

Database

joint with Bruin, Cremona, Roberts, Sutherland

Database

Certified complete database of 2-dimensional $\bmod \ell$ representations of $G_{\mathbb{Q}}$ which are odd, irreducible, of conductor at most 100 , weight at $\operatorname{most} \max \{4, \ell+1\}$, for $\ell=2,3$ and 5 .
Moreover, we required the representation to be defined over \mathbb{F}_{ℓ}.

This database will be included in the LMFDB.
\qquad

Isomorphisms of modular Galois representations and graphs

Samuele Anni

Seminair Lithe and Fast Algorithmic Number Theory

फดn

3 November 2020 - Bordeaux

Thanks!

