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Congruence graphs

joint with Vandita Patel (Manchester University)



Modular forms

Let n be a positive integer, the congruence subgroup Γ0(n) is a

subgroup of SL2(Z ) given by

Γ0(n) =

{(
a b

c d

)
∈ SL2(Z ) : n | c

}
.

Given a pair of positive integers n (level) and k (weight), a

modular form f for Γ0(n) is an holomorphic function on the

complex upper half-plane H satisfying

f (γz) = f

(
az + b

cz + d

)
= (cz + d)k f (z) ∀γ ∈ Γ0(n), z ∈ H

and a growth condition for the coefficients of its power series

expansion

f (z) =
∞∑
0

amq
m, where q = e2πiz .
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Newforms

There are families of operators acting on the space of modular

forms. In particular, the Hecke operators Tp for every prime p.

These operators describe the interplay between different group

actions on the complex upper half-plane.

We will consider only cuspidal newforms: cuspidal modular forms

(a0 = 0), normalized (a1 = 1), which are eigenforms for the Hecke

operators and arise from level n.

We will denote by Sk(n)C the space of cuspforms and by Sk(n)newC
the subspace of newforms.
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Congruence between newforms

Let f and g be two newforms.

f =
∑

amq
m g =

∑
bmq

m.

Then Q f = Q ({am}) is a number field, the Hecke eigenvalue

field of f .

Definition

We say that f and g are congruent mod p, if there exists an

ideal p dividing p in the compositum of the Hecke eigenvalue fields

of f and g such that

am ≡ bm mod p for all m.
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Example: S2(77)
new
C

f0(q) = q−3q3−2q4−q5−q7 +6q9−q11 +6q12−4q13 +3q15 +. . .

f1(q) = q+q3−2q4 +3q5 +q7−2q9−q11−2q12−4q13 +3q15 + . . .

f2(q) = q+q2+2q3−q4−2q5+2q6−q7−3q8+q9−2q10+q11+. . .

f3,4(q) = q+αq2 + (−α + 1) q3 + 3q4−2q5 + (α− 5) q6 +q7 + . . .

where α satisfies x2 − 5 = 0.

The Hecke eigenvalue fields are Q for f0, f1, f2 and Q (
√

5) for f3,4.

The following congruences hold:

f0 ≡ f1 mod 2, f1 ≡ f3,4 mod p 5, f2 ≡ f3,4 mod p 2,

where p 2 = (2), p 5 | 5 are primes in Q (
√

5). This is the complete

list of possible congruences!
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Congruence Graphs

• Nodes correspond to Hecke orbits of newforms of level and

weight in a given set (for f ∈ Sk(n)new a Hecke orbit is the set

of forms τ(f ) for τ : Q f → Q ).

• We draw an edge between two nodes whenever there is a

prime ` for which there is a congruence mod ` between forms

in the orbits.

Let S be the set of divisors of a positive integer and let W be a

finite set of weights, GS,W denotes the associated graph.
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G[1,2,43,86],[2]
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G[1,3,11,33],[2,4]

8



Checking congruences



How do we check congruence?

Sturm Theorem

Let n ≥ 1 be an integer. Let f (q) =
∑

amq
m be a modular form

of level n and weight k , with coefficients in the ring of integers of

a number field, and let λ be a maximal ideal herein.

Suppose that the reduction of the q-expansion of f modulo λ

satisfies

am ≡ 0 mod λ for all m ≤ k

12
[SL2(Z ) : Γ0(n)].

Then am ≡ 0 mod λ for all m.
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Hecke algebras and congruence

graphs



Hecke algebra: connectedness

Definition

The Hecke algebra T(n, k) is the Z -subalgebra of

EndC(S(n, k)C) generated by Hecke operators Tp for every prime

p.

Question (Ash, Mazur)

Is SpecT(n, k) connected?

The congruence graphs are related to the dual graphs of

the spectrum of the Hecke algebra.
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Theorem

SpecT(p, k) is connected for

• p prime ≤ 997 with k = 4,

• p prime ≤ 293 with k = 6, 8,

• p prime ≤ 97 with k = 10, 12.

This follows from G[p],[k] being a connected graphs for p and k as

above.

Theorem

G[p],[4] is a complete graph for p prime ≤ 997.
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Residual modular Galois

representations &

Isomorphism graphs



Theorem (Deligne, Serre, Shimura)

Let n and k be positive integers. Let F be a finite field of

characteristic `, with ` - n, and f : T(n, k) � F a surjective ring

homomorphism. Then there is a (unique) continuous semi-simple

representation:

ρf : Gal(Q /Q )→ GL2(F),

unramified outside n`, such that for all p not dividing n` we have:

Tr(ρf (Frobp)) = f (Tp) and det(ρf (Frobp)) = f (〈p〉)pk−1 in F.

Remark

If f and g are congruent modulo ` then there exists primes

λ, λ′ | ` in Q f and Q g , such that ρf ,λ
∼= ρg ,λ′ .

12



Example: nf = 38 and ng = 58

` = 5

kf = kg = 2

nf = 38 = 2 · 19 ng = 58 = 2 · 29

εf = εg = Ind(1)

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

f (Tp) 1 4 1 3 2 4 3 4 4 0 2 3 2 4

g(Tp) 1 4 1 3 2 4 3 0 4 4 2 3 2 4
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Example: nf = 38 and ng = 58

` = 5

nf = 38 = 2 · 19 ng = 58 = 2 · 29

εf = εg = Ind(1)

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

f (Tp) 1 4 1 3 2 4 3 4 4 0 2 3 2 4

g(Tp) 1 4 1 3 2 4 3 0 4 4 2 3 2 4

It seems that ρf ∼= ρg since for lots of primes p we have

Tr(ρf (Frobp)) = f (Tp) = Tr(ρg (Frobp)) = g(Tp) and

det(ρf (Frobp)) = εf (p) = det(ρg (Frobp)) = εg (p).

How can we prove this?
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Computing ρf is “difficult”, but theoretically it can be done in

polynomial time in n, k,#F:

Edixhoven, Couveignes, de Jong, Merkl, Bruin, Bosman (#F ≤ 32):

Example: for n = 1, k = 22 and ` = 23, the number field
corresponding to Pρf (Galois group isomorphic to PGL2(F23)) is
given by:

x24 − 2x23 + 115x22 + 23x21 + 1909x20 + 22218x19 + 9223x18 + 121141x17

+ 1837654x16 − 800032x15 + 9856374x14 + 52362168x13 − 32040725x12

+ 279370098x11 + 1464085056x10 + 1129229689x9 + 3299556862x8

+ 14586202192x7 + 29414918270x6 + 45332850431x5 − 6437110763x4

− 111429920358x3 − 12449542097x2 + 93960798341x − 31890957224

Mascot, Zeng, Tian (#F ≤ 53).
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Isomorphism Graphs

• Nodes correspond to Hecke orbits of newforms of level and

weight in a given set (for f ∈ Sk(n)new a Hecke orbit is the set

of forms τ(f ) for τ : Q f → Q ).

• We draw an edge between two nodes if for two forms f and

g in the respective orbits there is a prime `, and there exist

primes λ, λ′ | ` such that

ρf ,λ
∼= ρg ,λ′

.Let S be the set of divisors of a positive integer and let W be a

finite set of weights, GρS,W denotes the associated graph.
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G[1,2,43,86],[2] Gρ[1,2,43,86],[2]
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G[1,3,11,33],[2,4] Gρ[1,3,11,33],[2,4]
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Checking isomorphisms

joint with Peter Bruin (Leiden University)



Degeneracy maps



Degeneracy maps

Let ` be a prime and let n, k ∈ Z≥1 be such that ` - n.

Suppose n = mpr with r ≥ 1 and where p is a prime not dividing m.

We have two degeneracy maps Bp and B1 on X1(n)F` :

X1(m, pr )F`
B1

ww

Bp

''
X1(m, pr−1)F` X1(m, pr−1)F`
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Degeneracy maps : B1

Let ` be a prime and let n, k ∈ Z≥1 be such that ` - n.

Suppose n = mpr with r ≥ 1 and where p is a prime not dividing m.

We have two degeneracy maps B1 and Bp on X1(n)F` :

X1(m, pr )F`

B1

��

(E ,P,Q)

B1

��
X1(m, pr−1)F` (E ,P, pQ)

Moduli interpretation for X1(n)F` : E/S elliptic curve over an

F`-scheme S , with P and Q points of order m and pr .

20



Degeneracy maps: Bp

Let ` be a prime and let n, k ∈ Z≥1 be such that ` - n.

Suppose n = mpr with r ≥ 1 and where p is a prime not dividing m.

We have two degeneracy maps B1 and Bp on X1(n)F` :

X1(m, pr )F`

Bp

��

(E ,P,Q)

Bp

��
X1(m, pr−1)F` (E/〈pr−1Q〉, β(P), β(Q))

Moduli interpretation for X1(n)F` : E/S elliptic curve over an

F`-scheme S , with P and Q points of order m and pr , where β is

an isogeny such that

〈pr−1Q〉 � E
β−→ E/〈pr−1Q〉.
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Degeneracy maps

Let m, n, d , k ∈ Z≥1 with m | n and d | n
m the degeneracy map

B∗d ,m,n : M(Γ1(m), k)F` → M(Γ1(n), k)F`

is the map induced in cohomology by the map Bd .

In terms of the q-expansion this map is the substitution q 7→ qd :

f =
∑
n≥0

an(f )qn 7−→ B∗d(f ) =
∑
n≥0

an(f )qdn
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For every prime number p, using the degeneracy maps, we define

the following F`-linear map:

ηp : M(Γ1(n), k)F` →

M(Γ1(np), k)F` if p | n

M(Γ1(np2), k)F` if p - n

by

ηp =

B∗1,n,np − B∗p,n,npTp if p | n;

B∗1,n,np2 − B∗p,n,np2Tp + pk−1B∗p2,n,np2 〈p〉 if p - n.

Compatibility Hecke operators and degeneracy maps: ηp(Tp) = 0.
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How do we check isomorphisms of Galois representations?

Let nf , ng , k ∈ Z≥1 and let ` be a prime number ` - nf ng , denote:

N := lcm(nf , ng )
∏

p|nf ng prime

p,

Bnaive(nf , ng , k , `) :=
k+`+1

12
[SL2(Z ) : Γ0(N)].

Lemma

Let f : T(nf , k)→ F` and g : T(ng , k)→ F` be ring

homomorphisms. If εf = εg and f (Tp) = g(Tp) for all primes

p - N and p ≤ Bnaive(nf , ng , k, `), then ρf ∼= ρg .
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The previous lemma is not “efficient”: using degeneracy maps, we

move the problem of comparing forms of different level and weight

to the problem of comparing forms of the same level, but this level

is very BIG. It is an improvement on the results of Takai of 2011.

This approach avoids the study of the primes dividing the level, that

are the primes where the associated representation can ramify.
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Example: nf = 38 and ng = 58

` = 5

nf = 38 = 2 · 19 ng = 58 = 2 · 29

εf = εg = Ind(1)

Bnaive(nf , ng , k, `) = 1322400

To prove that ρf ∼= ρg we have to show

Tr(ρf (Frobp)) = f (Tp) = Tr(ρg (Frobp)) = g(Tp)

for all prime p ≤ 1322400.
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Serre’s Conjecture



Theorem (Khare, Wintenberger, Dieulefait, Kisin),

Serre’s Conjecture

Let ` be a prime number and let ρ : Gal(Q /Q )→ GL2(F`) be an

odd, absolutely irreducible, continuous representation. Then ρ is

modular of level nρ, weight kρ and character ε(ρ).

• nρ (the level) is the Artin conductor away from `.

• kρ (the weight) is given by a recipe in terms of ρ|I` .
• ε(ρ) : (Z /nρZ )∗ → F∗` is given by:

det ρ = ε(ρ)χ
kρ−1
` ,

where χ` is the cyclotomic character mod `.
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Local representation at primes

dividing the level and at `



Theorem (Gross, Vignéras, Fontaine, Serre: Conjec-

ture 3.2.6?)

Let ρ : GQ → GL(V ) be a continuous, odd, irreducible

representation, with V a 2-dimensional F`-vector space. Let

f : T(nρ, kρ)→ F` be a ring homomorphism such that ρf ∼= ρ.

Let p be a prime divisor of `n.

(1) If f (Tp) 6= 0, then there exists a stable line D ⊂ V for the

action of Gp, such that Ip acts trivially on V /D. Moreover, the

eigenvalue of Frobp acting on V /D is equal to f (Tp).

(2) If f (Tp) = 0, then there exists no stable line D ⊂ V as in (1).

(1) ⇒ ρf |Gp is reducible;

(2) ⇒ ρf |Gp is irreducible.
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Descendant and ancestors



Let n, k ∈ Z≥1 such that n ≥ 1, ` - n and 2 ≤ k ≤ max{4, `+1}.

Let f : T(Γ1(n), k)→ F` and p 6= ` a prime. Let

Rp(f ) =

 roots of x2 − f (Tp)x + f (〈p〉)pk−1 if p - n,

roots of x2 − f (Tp)x if p | n.

Definition

A p-descendant of (n, k, f ) is a triple of the form (np, k , g),

where g : T(Γ1(np), k)→ F` is a ring homomorphism satisfying

• g(Tq) = f (Tq) for all primes q 6= p,

• g(Tp) ∈ Rp(n, k, f ),

• εg (d) = g(〈d〉) = f (〈d mod n〉) for all d ∈ (Z /npZ )×.
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Lemma

Let f : T(Γ1(n), k)→ F` be a ring homomorphism, and let p 6= `

be a prime number. Then

{g(Tp) | g is a p-descendant of (n, k, f )} = Rp(f ).
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Let n ∈ Z≥1 be such that ` - n.

Definition (companion)

Let f : T(Γ1(n), `)→ F` be a ring homomorphism. A companion

of f is a ring homomorphism g : T(Γ1(n), `)→ F` such that

εf = εg , f (Tp) = g(Tp) for all primes p 6= `, f (T`) 6= g(T`) and

f (T`)g(T`) = f (〈`〉).
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Let n ∈ Z≥1 be such that ` - n.

Definition (companion)

Let f : T(Γ1(n), `)→ F` be a ring homomorphism. A companion

of f is a ring homomorphism g : T(Γ1(n), `)→ F` such that:

• εf = εg ;

• f (Tp) = g(Tp) for all primes p 6= `;

• f (T`) 6= g(T`) and f (T`)g(T`) = f (〈`〉).

Remarque

This means that f (T`) ∈ F`
×

and g(T`) is a root of the quadratic

polynomial x2 −
(
f (T`) + f (〈`〉)

f (T`)

)
x + f (〈`〉), different from f (T`).
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For all integers n ≥ 1 and k ≥ 2, multiplication by the Hasse

invariant defines an injective F`-linear map

ιn,k,` : M(Γ1(n), k)F` � M(Γ1(n), k + `− 1)F` .

This map is compatible with the Hecke and diamond operators so

there is a canonical surjective ring homomorphism

πn,k,` : T(Γ1(n), k + `− 1)F` � T(Γ1(n), k)F`

such that for each element T ∈ T(Γ1(n), k + `− 1)F` , we have

ιn,k,` ◦ (πn,k,`(T )) = T ◦ ιn,k,`.
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Let nh, kh ∈ Z≥1 be such that ` - nh and 2 ≤ kh ≤ max{4, `+1}.
Let h : T(Γ1(nh), kh)→ F` be a ring homomorphism.

Definition (descendants, Old(h))

The set of descendants of (nh, kh, h), denoted by Old(h), is the

minimal set of triples (n, k , f ) consisting of positive integers n, k

and a ring homomorphism f : T(Γ1(n), k)→ F` such that the

following hold:

• the triple (nh, kh, h) is in Old(h);

• if (n, k, f ) ∈ Old(h) then for every prime p 6= ` every

p-descendant g of (n, k , f ) satifies (np, k , g) ∈ Old(h);
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Definition (descendants, Old(h))

• (“multiplication by the Hasse invariant”) if (n, k , f ) ∈ Old(h)

with k + `− 1 ≤ max{4, `+1}, then

(n, k + `− 1, f ◦ πn,k,`) ∈ Old(h);

• (“division by the Hasse invariant”) if k + `− 1 ≤ max{4, `+1}
and (n, k + `− 1, f ◦ πn,k,`) ∈ Old(h) then triple

(n, k , f ) ∈ Old(h);

• if (n, `, f ) ∈ Old(h) and f admits a companion g then

(n, `, g) ∈ Old(h).
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Definition (ancestor)

Given positive integers n, k and a ring homomorphism

f : T(Γ1(n), k)→ F`, an ancestor of f is any triple (nh, kh, h) as

above such that (n, k , f ) is a descendant of (nh, kh, h).

Old(h, n) = {(k , f ) : (n, k , f ) ∈ Old(h)}

Old(h, n, k) = {f : (n, k, f ) ∈ Old(h)}.
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All triples (n, k, f ) ∈ Old(h) satisfy the following properties:

• ` - n;

• nh | n;

• 2 ≤ k ≤ max{4, `+1};
• k ≡ kh mod `−1;

• f (Tp) = h(Tp) for all p - n`;

• f (〈d〉) = h(〈d〉) for all d ∈ (Z /nZ )∗.
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Goal

We would like to give computational criteria for deciding whether

a given form is in Old(h).
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We define a finite subset C`(h) ⊂ F` by

C`(h) =


{
h(T`),

h(〈`〉)
h(T`)

}
if kh ≡ ` mod `−1 and h(T`) 6= 0;

{h(T`)} if kh 6≡ ` mod `−1 or h(T`) = 0.

Let n be a multiple of nh with ` - n, and let p be a prime divisor

of n. We define a finite subset Cp(h, n) ⊂ F` by

Cp(h, n) =


{h(Tp)} if p - n/nh;

Rp(h) if p ‖ n/nh;

{0} ∪ Rp(h) if p2 | n/nh.

39



Lemma

We have

{f (T`) : (n, k , f ) ∈ Old(h)} ⊆ C`(h).

Lemma

Let n be a multiple of nh with ` - n, and let p be a prime number

different from `. Then we have

{f (Tp) : (k , f ) ∈ Old(h, n)} = Cp(h, n).
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Proposition

Let (nh, kh, h) be as above, and let (n, k , f ) be a descendant

of (nh, kh, h). Then

ρf ∼= ρh.
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Proposition

Let ρ : GQ → AutF` V be a semi-simple modular two-dimensional

representation. Then there exist an integer kh with

2 ≤ kh ≤ max{4, `+1} and kh ≡ kρ mod `−1 and a ring

homomorphism

h : T(Γ1(nρ), kh)→ F`

satisfying ρh ∼= ρ (up twisting by the cyclotomic character) and

such that every triple (nf , kf , f ) satisfying ρf ∼= ρ lies in Old(h).
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Sketch of the proof.

First suppose that ρ is irreducible. By assumption, ρ is modular.

By the Khare–Wintenberger theorem (Serre’s conjecture), there

exists a ring homomorphism h : T(Γ1(nρ), kρ)→ F` such that ρ

and ρh are isomorphic.

Now let (nf , kf , f ) be a triple satisfying ρf ∼= ρ. Using the results

of Gross, Vignéras and Fontaine for the restriction of the

representation at primes dividing the level and `, we can show that

(nf , kf , f ) is a descendant of (nρ, kh, h).

43



Sketch continuation.

Next suppose that ρ is reducible. Then there are characters

ε1, ε2 : GQ → F∗` of conductors n1, n2, say, satisfying n1n2 | nρ,

such that ρ is of the form

ρ ∼= ε1 ⊕ ε2χ
kρ−1
` .

To ρ we associate an appropriate Eisenstein series E of level nρ

and weight kh ≡ kρ mod `−1. Let h : T(Γ1(nρ), kh)→ F` be a

ring homomorphism obtained by composing

E : T(Γ1(nρ), kh)→ Z with the reduction map. We can show that

(nf , kf , f ) is a descendant of (nρ, kh, h).
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S-linked



Definition (S-linked)

Let f : T(Γ1(nf ), kf )→ F` and g : T(Γ1(ng ), kg )→ F` be ring

homomorphisms. Let S be any set of primes not dividing nf ng `.

We say that f and g are S-linked if the following conditions hold:

• kf ≡ kg mod `−1;

• for all primes p ∈ S we have f (Tp) = g(Tp) = ap;

• there exist nh, kh ∈ Z≥1 and a ring homomorphism
h : T(Γ1(nh), kh)→ F` such that

• nh | gcd(nf , ng );

• 2 ≤ kh ≤ max{4, `+1} and kh ≡ kf ≡ kg mod `−1;

• εf = Ind(εh) and εg = Ind(εh);

• for all p ∈ S we have h(Tp) = ap;

• f (T`) ∈ C`(h), ∀p | nf ng we have f (Tp) ∈ Cp(h, nf ).

• g(T`) ∈ C`(h), ∀p | nf ng we have g(Tp) ∈ Cp(h, ng ).
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For any choice of (nh, kh, h) as above, we also say that f and g are

S-linked by (nh, kh, h).

Lemma

Let (nh, kh, h) be as above, and let (nf , kf , f ) and (ng , kg , g) be

descendants . Then for every set S of primes not dividing nf ng `,

the forms f and g are S-linked by (nh, kh, h).
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Let nf , ng , kf and kg be positive integers satisfying ` - nf ng and

2 ≤ kf , kg ≤ max{4, `+1}. We define

k̃ =


6 if ` = 2,

`+ 2 if ` > 2 and kf = kg = `,

`+ 1 if ` > 2 and kf ≡ kg ≡ 2 mod `−1,

kf (= kg ) otherwise.
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Definition (distinguishing set)

A distinguishing set for (nf , ng , k̃) is a set S of primes such that

each of the anaemic Hecke algebras T′(Γ0(nf ), k̃) and

T′(Γ0(ng ), k̃) is generated as a Z -algebra by the subset

{Tp | p ∈ S} of the respective algebra.
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Lemma

Let f : T(Γ1(nf ), kf )→ F` and g : T(Γ1(ng ), kg )→ F` be ring

homomorphisms, and let S be a distinguishing set. If the triples

(nf , kf , f ) and (ng , kg , g) are S-linked, then they have a common

ancestor.
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Let us define

B(n, k̃) =
k̃

12
[SL2(Z ) : Γ0(n)]

and

B(nf , ng , k̃) = max{B(nf , k̃),B(ng , k̃)}.

Furthermore, we define

Definition (SB)

SB = {p prime | p - nf ng ` and p ≤ B(nf , ng , k̃)}.
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Lemma

Let f : T(Γ1(nf ), kf )→ F` and g : T(Γ1(ng ), kg )→ F` be ring

homomorphisms. If f and g are SB -linked, then (nf , kf , f )

and (ng , kg , g) have a common ancestor.
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Theorem

Let f : T(Γ1(nf ), kf )→ F` and g : T(Γ1(ng ), kg )→ F` be ring

homomorphisms. Then for any distinguishing set of primes S , the

following are equivalent:

1. f and g are S-linked;

2. f and g are SB -linked;

3. f and g have a common ancestor;

4. ρf and ρg are isomorphic.
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Examples



Example 1: nf = 38 and ng = 58

` = 5

kf = kg = 2, k̃ = 6

nf = 38 = 2 · 19 ng = 58 = 2 · 29

B(nf , ng , k̃) = 45 < Bnaive(nf , ng , k, `) = 1322400.

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

f (Tp) 1 4 1 3 2 4 3 4 4 0 2 3 2 4

g(Tp) 1 4 1 3 2 4 3 0 4 4 2 3 2 4
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p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

f (Tp) 1 4 1 3 2 4 3 4 4 0 2 3 2 4

g(Tp) 1 4 1 3 2 4 3 0 4 4 2 3 2 4

Let us consider all mod 5 eigenforms of level d ∈ {1, 2} and weight

k ∈ {2, 6}: we have

(d , k) (1,6) (2,2) (2,6) (2,6)

E6 E
(2)
2 E

(1)
6 E

(2)
6

54



p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

f (Tp) 1 4 1 3 2 4 3 4 4 0 2 3 2 4

g(Tp) 1 4 1 3 2 4 3 0 4 4 2 3 2 4

E6(Tp) 3 4 1 3 2 4 3 0 4 0 2 3 2 4

E
(2)
2 (Tp) 1 4 1 3 2 4 3 0 4 0 2 3 2 4

E
(1)
6 (Tp) 2 4 1 3 2 4 3 0 4 0 2 3 2 4

E
(2)
6 (Tp) 1 4 1 3 2 4 3 0 4 0 2 3 2 4

nf = 38 = 2 · 19

p Cp(E6, 38) Cp(E
(2)
2 , 38) Cp(E

(1)
6 , 38) Cp(E

(2)
6 , 38)

2 {1, 2} {1} {2} {1}
19 {1, 4} {1, 4} {1, 4} {1, 4}
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p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

f (Tp) 1 4 1 3 2 4 3 4 4 0 2 3 2 4

g(Tp) 1 4 1 3 2 4 3 0 4 4 2 3 2 4

E6(Tp) 3 4 1 3 2 4 3 0 4 0 2 3 2 4

E
(2)
2 (Tp) 1 4 1 3 2 4 3 0 4 0 2 3 2 4

E
(1)
6 (Tp) 2 4 1 3 2 4 3 0 4 0 2 3 2 4

E
(2)
6 (Tp) 1 4 1 3 2 4 3 0 4 0 2 3 2 4

nf = 38 = 2 · 19

p Cp(E6, 38) Cp(E
(2)
2 , 38) Cp(E

(1)
6 , 38) Cp(E

(2)
6 , 38)

2 {1, 2} {1} {2} {1}
19 {1, 4} {1, 4} {1, 4} {1, 4}

So E6 and E
(2)
2 are both ancestors of f .
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p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

f (Tp) 1 4 1 3 2 4 3 4 4 0 2 3 2 4

g(Tp) 1 4 1 3 2 4 3 0 4 4 2 3 2 4

E6(Tp) 3 4 1 3 2 4 3 0 4 0 2 3 2 4

E
(2)
2 (Tp) 1 4 1 3 2 4 3 0 4 0 2 3 2 4

E
(1)
6 (Tp) 2 4 1 3 2 4 3 0 4 0 2 3 2 4

E
(2)
6 (Tp) 1 4 1 3 2 4 3 0 4 0 2 3 2 4

ng = 58 = 2 · 29

p Cp(E6, 58) Cp(E
(2)
2 , 58) Cp(E

(1)
6 , 58) Cp(E

(2)
6 , 58)

2 {1, 2} {1} {2} {1}
29 {1, 4} {1, 4} {1, 4} {1, 4}

So E6 and E
(2)
2 are both ancestors of g . Therefore:

ρf ∼= ρg ∼= ρE6
∼= 1⊕ χ5,

where χ5 is the mod5 cyclotomic character.
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Example 2: nh = 57 and ng = 58

` = 5

kh = kg = 2, k̃ = 6

nh = 57 = 3 · 19 ng = 58 = 2 · 29

B(nh, ng , k̃) = 45 < Bnaive(nf , ng , k̃ , `) = 15868800.

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

h(Tp) 3 1 1 3 2 4 3 4 4 0 2 3 2 4

g(Tp) 1 4 1 3 2 4 3 0 4 4 2 3 2 4
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p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

h(Tp) 3 1 1 3 2 4 3 4 4 0 2 3 2 4

g(Tp) 1 4 1 3 2 4 3 0 4 4 2 3 2 4

Let us consider all mod 5 eigenforms of level 1 and weight

k ∈ {2, 6}: so we have only E6.
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p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

h(Tp) 3 1 1 3 2 4 3 4 4 0 2 3 2 4

g(Tp) 1 4 1 3 2 4 3 0 4 4 2 3 2 4

E6(Tp) 3 4 1 3 2 4 3 0 4 0 2 3 2 4

E6 is a common ancestors of h and g . We have that h̃ satisfies:

h̃(q) = E6(q)− E6(q3)− E6(q19) + 3E6(q57).

Therefore:

ρh ∼= ρg ∼= ρE6
∼= 1⊕ χ5.
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Database

joint with Bruin, Cremona, Roberts, Sutherland



Database

Certified complete database of 2-dimensional mod `

representations of GQ which are odd, irreducible, of conductor at

most 100, weight at most max{4, `+ 1}, for ` = 2, 3 and 5.

Moreover, we required the representation to be defined over F`.

This database will be included in the LMFDB.
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Isomorphisms of modular Galois

representations and graphs

Samuele Anni

Seminair Lithe and Fast Algorithmic Number Theory

3 November 2020 - Bordeaux

Thanks!
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