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The conjugacy problem

Dehn’s problems (1911)

Let G be a group..
1. [...] (Word problem)

2. Given g , h ∈ G , decide whether g and h

conjugated, that is, whether there exists

k ∈ G such that k−1gk = h.

(Conjugacy problem)

3. [...] (Isomorphism problem)

Building block for advanced algorithms in algorithm group theory.

Group based cryptography

• Public key cryptography protocols from “any” group G .

• Security is connected to the hardness of the conjugacy problem in G .

Originally formulated for finitely presented groups, where all three

problems are undecidable.



The problem

Problem

Let A,B ∈ Mn(Z) be matrices over Z. Decide if there exists a matrix

P ∈ GLn(Z) = {A ∈ Mn(Z) | det(A) = ±1} such that

P−1AP = B (⇔ AP = PB).

Find such a P in case it exists.

Example

Consider

A =

(
1 2

3 4

)
B =

(
5 −2

−1 0

)
.

Do there exist a, b, c , d ∈ Z such that(
1 2

3 4

)(
a b

c d

)
=

(
a b

c d

)(
5 −2

−1 0

)
and ad − bc = ±1?

(Or a, b, c , d , e ∈ Z with . . . and (ad − bc) · e = 1).



Conjugacy of matrices over fields

• Over C we have the Jordan canonical form.

• A matrix A ∈ Mn(C) is conjugate to a unique matrix of the form

J1
. . .

Jr

 , where Ji =


λi 1

λi 1
. . .

. . .

λi 1

λi

 and λi ∈ C.

• For arbitrary fields, there is the rational normal form (Frobenius

normal form).

• Rational normal forms can be efficiently computed.

• Conjugacy problem over fields is solved (in the case the conjugating

element is in GLn)



Conjugacy of matrices over the integers

Now let A,B ∈ Mn(Z). We want to decide if there exists P ∈ GLn(Z)

with P−1AP = B.

• It is necessary that there exists P ∈ GLn(Q) with A = P−1BP.

• This is not sufficient:(
1 −5

3 −1

)
=

(
1 0

0 −5/3

)−1(
1 3

−5 −1

)(
1 0

0 −5/3

)
, but

(
1 −5

3 −1

)
6= P−1

(
1 3

−5 −1

)
P, for all P ∈ GL2(Z).

From now on we assume that A and B are conjugated over Q. In

particular A and B have the same characteristic polynomial.



Conjugacy of matrices over the integers

Theorem (Latimer–MacDuffee 1933)

Let A,B ∈ Mn(Z) with irreducible characteristic polynomial f ∈ Z[x ].

Let O = Z[x ]/(f ). Then there are “canonical” O-ideals IA and IB such

that

A, B are conjugated in GLn(Z) ⇐⇒ IA ∼= IB as O-ideals.

• The ring O is an order in the algebraic number field Q[x ]/(f ).

• We enter the domain of (computational) algebraic number theory.

• There exist (“efficient”) algorithms to solve this.

• Worst case: Subexponential complexity in the size of A and B

(assuming GRH and other heuristics).



Conjugacy of matrices over the integers

Theorem can be used to determine all (conjugacy classes) of integer

matrices with a given irreducible characteristic polynomial.

Example

• Let f = x2 + 13 ∈ Z[x ].

• O = Z[x ]/(x2 + 13) = Z[
√
−13] = OK , where K = Q(

√
−13).

• Cl(O) = {〈1,
√
−13〉, 〈2, 1 +

√
−13〉}.

•

〈1,
√
−13〉 −→

(
0 1

−13 0

)
, 〈2, 1 +

√
−13〉 −→

(
−1 2

−7 1

)
.

• There are exactly two conjugacy classes of integer matrices with

characteristic polynomial x2 + 13.



Conjugacy of matrices over the integers

Theorem (Sarkisyan 1977, Grunewald 1980)

There exists an algorithm that decides if two given matrices

A,B ∈ Mn(Z) are conjugated in GLn(Z). The algorithm also finds a

conjugating element.

Decidable yes, but practical?

Grunewald 1980:
We have not tried to write out very effective algorithms, a lot of

them depend highly exponentially on the data. But for dimension

2 and 3 it is possible to modify the procedure [...] to actually

obtain not too inefficient computer programs.

Remark

For a matrix T ∈ Mn(Z) the algorithm of Grunewald also gives a finite

generating set of the arithmetic group

CZ(T ) = {X ∈ GLn(Z) | XT = TX}.



Conjugacy of matrices over the integers

Special cases:

• Latimer–MacDuffee 1933: Algorithm for matrices with irreducible

characteristic polynomial.

• Opgenorth–Plesken–Schultz 1998: Algorithm for matrices of finite

order (implemented in Magma by Kirschmer).

• Husert 2016: Algorithm for nilpotent and semisimple matrices

(implemented in Magma for nilpotent matrices and matrices with

irreducible minimal polynomial).

• Marseglia 2018: Algorithm for matrices with squarefree

characteristic polynomial (Magma and Oscar/Hecke).

• Nebe 2019: Algorithms (based on a local-global principle) for certain

semisimple matrices.

(All of them are more or less practical).



Conjugacy of matrices over the integers

Theorem (Eick–H.–O’Brien 2019)

There exists an “efficient” algorithm for solving the conjugacy problem

of integer matrices. It can also compute generators of centralizers.

• Based on the approach of Grunewald.

• Corrections and improved theoretical results.

• A mix of computational number and group theory.



How it works—from matrices to modules

A,B ∈ Mn(Z).

• Decompose A = S + N with SN = NS , S semisimple with minimal

polynomial f ∈ Z[x ] and N nilpotent (N l = 0).

• Let R = Z[x , y ] and consider Zn. Let x act as S and y as N. Since

f (x) and y l act as zero (and commute), Zn is naturally a

Z[x , y ]/(f , y l)-module (call it MA).

• Now Z[x ]/(f ) = O is an order in the étale Q-algebra Q[x ]/(f ) and

MA is an O[y ]/(y l)-module.

Proposition

The matrices A and B are conjugated in GLn(Z) if and only if MA and

MB are isomorphic O[y ]/(y l)-modules.

• Now reduction to f irreducible and O = OK , where K = Q[x ]/(f ).

• Solve the isomorphism problem (and more) for OK [y ]/(y l)-modules.



How it works—fun with modules

Standard submodules

A OK [y ]/(y l)-module N is standard, if

N ∼= (OK [y ]/(y))r1 ⊕ (OK [y ]/(y2))r2 ⊕ · · · ⊕ (OK [y ]/(y l))rl

for some integers r1, . . . , rl ∈ Z≥0 (the type).

• Play a similar role like free submodules for finitely generated

projective OK -modules.

• Can solve the isomorphism problem (just compare the type).

• Can compute automorphism group AutOK [y ]/(y l )(N) of a standard

module N. (Involves computing

GLr1(OK )× · · · ×GLrl (OK ).

This is “easy” except when r1 = 2 and K imaginary quadratic.)



How it works—fun with modules

Standard submodules

A OK [y ]/(y l)-module N is standard, if

N ∼= (OK [y ]/(y))r1 ⊕ (OK [y ]/(y2))r2 ⊕ · · · ⊕ (OK [y ]/(y l))rl

for some integers r1, . . . , rl ∈ Z≥0 (the type).

• Theoretical results on the location (in the submodule lattice) and

the number of standard submodules of a given module.

(Similar to locating free submodules of f.g. projective OK -modules

using ClK .)

• One can efficiently determine the standard submodules of a given

OK [y ]/(y l)-module.



How it works—fun with modules

Now let M, M̂ be OK [y ]/(y l)-modules. We want to decide if M ∼= M̂.

Theorem

Let N ⊆ M be standard of index c and {N̂1, . . . , N̂r} all standard

submodules of M̂ with index c . Then M ∼= M̂ if and only if there exist

1 ≤ i ≤ r and an isomorphism ϕ : N → N̂i such that ϕ(cM) = ϕ(cM̂)

(that is, the unique extension of ϕ to Q⊗ N maps M to M̂).

M M̂

N

c c c

. . .

c c

N̂1 N̂2 N̂r−1 N̂r

cM cM̂

ϕ

Find ψ ∈ Aut(N̂1) with
ψ(ϕ(cM)) = cM̂



How it works—in practice

Full implementation with no restriction on the input (in Magma).

Example

Consider the 10 by 10 matrices
−14 −4 0 0 −1 1 0 0 0 0
−7 −2 0 0 0 0 1 0 0 0
−3 −1 0 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 0 1 0
0 0 0 −1 0 0 0 0 0 1
0 0 0 0 0 −14 −4 0 0 −1
0 0 0 0 0 −7 −2 0 0 0
0 0 0 0 0 −3 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0

 ,


−9 9 0 −1 0 0 0 0 0 −7
0 0 0 −1 0 0 0 0 0 0
−4 4 0 0 0 0 0 0 0 −3
0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −7 −9 1 0 0 0
−1 1 0 0 −7 −9 0 0 0 0
9 −7 0 0 0 0 0 0 1 6
0 0 1 0 3 4 0 0 0 0
−9 8 0 −1 0 0 0 1 0 −7
−9 8 0 0 0 0 0 0 0 −7

 .

• Minimal polynomial is (x5 + 16x4 − 3x + 1)2.

• Implementation takes 8 seconds to find a conjugating matrix.

Very difficult to estimate the runtime of the algorithm (theory and

practice).



How it works—in practice

Example

Consider

T =

−5 8 −5

4 −7 5

1 −2 2

 ∈ M3(Z).

Our implementation shows in 0.3 seconds that

CZ(T ) =

〈860 1206 −975

603 1001 −795

195 318 −253

 ,

4 6 −5

3 5 −5

1 2 −3

 ,

−1 0 0

0 −1 0

0 0 −1

〉 .



Practical limitations

Practical limitations fall into two categories:

Number theory

• Computation of ring of integers (given O = Z[x ]/(f ), find OK ).

• Computation of the class group (to solve principal ideal problems).

Group theory

• Large number of standard submodules.

• Computations with orbit-stabilizer algorithm (and large orbits).



Other applications and limitations

The algorithm can be applied to solve the problem for SLn(Z) (requires

generators CZ(X )) and PGLn(Z).

What the algorithm cannot do:

• Find a canonical form for the conjugacy classes in GLn(Z) (similar

to the Jordan normal form or rational canonical form over fields).

• Determine the finitely many GLn(Z)-conjugacy classes for a fixed

semisimple GLn(Q)-conjugacy class.



Outlook—What now?

Find an algorithm with nice complexity (as in the Latimer–MacDuffee

theorem).

There are lots of variations of this problem, which are all known to be

decidable (but no efficient algorithms are known).

• Simultaneous conjugacy problem: P−1AiP = Bi for all 1 ≤ i ≤ r ,

where A1, . . . ,Ar ,B1, . . . ,Br ∈ Mn(Z).

Replace GLn(Z) with

• GLn(O) (for some “arithmetic” ring O),

• Sp2n(Z) or On(f ), where f is an integral quadratic form,

• an arithmetic group Γ ⊆ G (Z), where G = 〈f1, . . . , fl〉 is an algebraic

subgroup of GLn given by a finite set of polynomial equations over

Q (Grunewald–Segal 1980).



julia> using Hecke

julia> A = matrix(ZZ, 2, 2, [1, 2, 3, 4])

[1 2]

[3 4]

julia> B = matrix(ZZ, 2, 2, [5, -2, -1, 0])

[5 -2]

[-1 0]

julia> isconjugate(A, B)

(true, [1 0]

[2 -1])



Thank you.


