The conjugacy problem in $\mathrm{GL}(n, \mathbf{Z})$

Tommy Hofmann (joint with Bettina Eick \& Eamonn O'Brien)
Bordeaux, December 1st, 2020

Saarland University

The conjugacy problem

Dehn's problems (1911)

Let G be a group..

1. [...] (Word problem)
2. Given $g, h \in G$, decide whether g and h conjugated, that is, whether there exists $k \in G$ such that $k^{-1} g k=h$.
(Conjugacy problem)
3. [...] (Isomorphism problem)

Building block for advanced algorithms in algorithm group theory.

Group based cryptography

- Public key cryptography protocols from "any" group G.
- Security is connected to the hardness of the conjugacy problem in G.

Originally formulated for finitely presented groups, where all three problems are undecidable.

The problem

Problem

Let $A, B \in \mathrm{M}_{n}(\mathbf{Z})$ be matrices over \mathbf{Z}. Decide if there exists a matrix $P \in \mathrm{GL}_{n}(\mathbf{Z})=\left\{A \in \mathrm{M}_{n}(\mathbf{Z}) \mid \operatorname{det}(A)= \pm 1\right\}$ such that

$$
P^{-1} A P=B \quad(\Leftrightarrow \quad A P=P B) .
$$

Find such a P in case it exists.

Example

Consider

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \quad B=\left(\begin{array}{cc}
5 & -2 \\
-1 & 0
\end{array}\right)
$$

Do there exist $a, b, c, d \in \mathbf{Z}$ such that

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
5 & -2 \\
-1 & 0
\end{array}\right) \text { and } a d-b c= \pm 1 ?
$$

(Or $a, b, c, d, e \in \mathbf{Z}$ with \ldots and $(a d-b c) \cdot e=1)$.

Conjugacy of matrices over fields

- Over C we have the Jordan canonical form.
- A matrix $A \in \mathrm{M}_{n}(\mathbf{C})$ is conjugate to a unique matrix of the form

$$
\left(\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{r}
\end{array}\right) \text {, where } J_{i}=\left(\begin{array}{ccccc}
\lambda_{i} & 1 & & & \\
& \lambda_{i} & 1 & & \\
& & \ddots & \ddots & \\
& & & \lambda_{i} & 1 \\
& & & & \lambda_{i}
\end{array}\right) \text { and } \lambda_{i} \in \mathbf{C} \text {. }
$$

- For arbitrary fields, there is the rational normal form (Frobenius normal form).
- Rational normal forms can be efficiently computed.
- Conjugacy problem over fields is solved (in the case the conjugating element is in GL_{n})

Conjugacy of matrices over the integers

Now let $A, B \in \mathrm{M}_{n}(\mathbf{Z})$. We want to decide if there exists $P \in \mathrm{GL}_{n}(\mathbf{Z})$ with $P^{-1} A P=B$.

- It is necessary that there exists $P \in \mathrm{GL}_{n}(\mathbf{Q})$ with $A=P^{-1} B P$.
- This is not sufficient:

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & -5 \\
3 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -5 / 3
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & 3 \\
-5 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -5 / 3
\end{array}\right), \text { but } \\
\left(\begin{array}{ll}
1 & -5 \\
3 & -1
\end{array}\right) \neq P^{-1}\left(\begin{array}{cc}
1 & 3 \\
-5 & -1
\end{array}\right) P, \text { for all } P \in \mathrm{GL}_{2}(\mathbf{Z}) .
\end{gathered}
$$

From now on we assume that A and B are conjugated over \mathbf{Q}. In particular A and B have the same characteristic polynomial.

Conjugacy of matrices over the integers

Theorem (Latimer-MacDuffee 1933)

Let $A, B \in \mathrm{M}_{n}(\mathbf{Z})$ with irreducible characteristic polynomial $f \in \mathbf{Z}[x]$.
Let $\mathcal{O}=\mathbf{Z}[x] /(f)$. Then there are "canonical" \mathcal{O}-ideals I_{A} and I_{B} such that
A, B are conjugated in $\mathrm{GL}_{n}(\mathbf{Z}) \Longleftrightarrow I_{A} \cong I_{B}$ as \mathcal{O}-ideals.

- The ring \mathcal{O} is an order in the algebraic number field $\mathbf{Q}[x] /(f)$.
- We enter the domain of (computational) algebraic number theory.
- There exist ("efficient") algorithms to solve this.
- Worst case: Subexponential complexity in the size of A and B (assuming GRH and other heuristics).

Conjugacy of matrices over the integers

Theorem can be used to determine all (conjugacy classes) of integer matrices with a given irreducible characteristic polynomial.

Example

- Let $f=x^{2}+13 \in \mathbf{Z}[x]$.
- $\mathcal{O}=\mathbf{Z}[x] /\left(x^{2}+13\right)=\mathbf{Z}[\sqrt{-13}]=\mathcal{O}_{K}$, where $K=\mathbf{Q}(\sqrt{-13})$.
- $\operatorname{Cl}(\mathcal{O})=\{\overline{\langle 1, \sqrt{-13}\rangle}, \overline{\langle 2,1+\sqrt{-13}\rangle}\}$.

$$
\langle 1, \sqrt{-13}\rangle \longrightarrow\left(\begin{array}{cc}
0 & 1 \\
-13 & 0
\end{array}\right), \quad\langle 2,1+\sqrt{-13}\rangle \longrightarrow\left(\begin{array}{cc}
-1 & 2 \\
-7 & 1
\end{array}\right) .
$$

- There are exactly two conjugacy classes of integer matrices with characteristic polynomial $x^{2}+13$.

Conjugacy of matrices over the integers

Theorem (Sarkisyan 1977, Grunewald 1980)

There exists an algorithm that decides if two given matrices $A, B \in \mathrm{M}_{n}(\mathbf{Z})$ are conjugated in $\mathrm{GL}_{n}(\mathbf{Z})$. The algorithm also finds a conjugating element.

Decidable yes, but practical?
Grunewald 1980:
We have not tried to write out very effective algorithms, a lot of them depend highly exponentially on the data. But for dimension 2 and 3 it is possible to modify the procedure [...] to actually obtain not too inefficient computer programs.

Remark

For a matrix $T \in \mathrm{M}_{n}(\mathbf{Z})$ the algorithm of Grunewald also gives a finite generating set of the arithmetic group

$$
C_{Z}(T)=\left\{X \in \mathrm{GL}_{n}(\mathbf{Z}) \mid X T=T X\right\}
$$

Conjugacy of matrices over the integers

Special cases:

- Latimer-MacDuffee 1933: Algorithm for matrices with irreducible characteristic polynomial.
- Opgenorth-Plesken-Schultz 1998: Algorithm for matrices of finite order (implemented in Magma by Kirschmer).
- Husert 2016: Algorithm for nilpotent and semisimple matrices (implemented in Magma for nilpotent matrices and matrices with irreducible minimal polynomial).
- Marseglia 2018: Algorithm for matrices with squarefree characteristic polynomial (Magma and Oscar/Hecke).
- Nebe 2019: Algorithms (based on a local-global principle) for certain semisimple matrices.
(All of them are more or less practical).

Conjugacy of matrices over the integers

Theorem (Eick-H.-O'Brien 2019)
There exists an "efficient" algorithm for solving the conjugacy problem of integer matrices. It can also compute generators of centralizers.

- Based on the approach of Grunewald.
- Corrections and improved theoretical results.
- A mix of computational number and group theory.

How it works-from matrices to modules

$A, B \in \mathrm{M}_{n}(\mathbf{Z})$.

- Decompose $A=S+N$ with $S N=N S, S$ semisimple with minimal polynomial $f \in \mathbf{Z}[x]$ and N nilpotent ($N^{\prime}=0$).
- Let $R=\mathbf{Z}[x, y]$ and consider \mathbf{Z}^{n}. Let x act as S and y as N. Since $f(x)$ and y^{\prime} act as zero (and commute), \mathbf{Z}^{n} is naturally a $\mathbf{Z}[x, y] /\left(f, y^{\prime}\right)$-module (call it M_{A}).
- Now $\mathbf{Z}[x] /(f)=\mathcal{O}$ is an order in the étale \mathbf{Q}-algebra $\mathbf{Q}[x] /(f)$ and M_{A} is an $\mathcal{O}[y] /\left(y^{\prime}\right)$-module.

Proposition

The matrices A and B are conjugated in $\mathrm{GL}_{n}(\mathbf{Z})$ if and only if M_{A} and M_{B} are isomorphic $\mathcal{O}[y] /\left(y^{\prime}\right)$-modules.

- Now reduction to f irreducible and $\mathcal{O}=\mathcal{O}_{K}$, where $K=\mathbf{Q}[x] /(f)$.
- Solve the isomorphism problem (and more) for $\mathcal{O}_{K}[y] /\left(y^{\prime}\right)$-modules.

How it works-fun with modules

Standard submodules

A $\mathcal{O}_{K}[y] /\left(y^{\prime}\right)$-module N is standard, if

$$
N \cong\left(\mathcal{O}_{K}[y] /(y)\right)^{r_{1}} \oplus\left(\mathcal{O}_{K}[y] /\left(y^{2}\right)\right)^{r_{2}} \oplus \cdots \oplus\left(\mathcal{O}_{K}[y] /\left(y^{\prime}\right)\right)^{r_{1}}
$$

for some integers $r_{1}, \ldots, r_{l} \in \mathbf{Z}_{\geq 0}$ (the type).

- Play a similar role like free submodules for finitely generated projective \mathcal{O}_{K}-modules.
- Can solve the isomorphism problem (just compare the type).
- Can compute automorphism group $\mathrm{Aut}_{\mathcal{O}_{K}[y] /\left(y^{\prime}\right)}(N)$ of a standard module N. (Involves computing

$$
\operatorname{GL}_{r_{1}}\left(\mathcal{O}_{K}\right) \times \cdots \times \operatorname{GL}_{r_{l}}\left(\mathcal{O}_{K}\right)
$$

This is "easy" except when $r_{1}=2$ and K imaginary quadratic.)

How it works-fun with modules

Standard submodules

A $\mathcal{O}_{K}[y] /\left(y^{\prime}\right)$-module N is standard, if

$$
N \cong\left(\mathcal{O}_{K}[y] /(y)\right)^{r_{1}} \oplus\left(\mathcal{O}_{K}[y] /\left(y^{2}\right)\right)^{r_{2}} \oplus \cdots \oplus\left(\mathcal{O}_{K}[y] /\left(y^{\prime}\right)\right)^{r_{1}}
$$

for some integers $r_{1}, \ldots, r_{l} \in \mathbf{Z}_{\geq 0}$ (the type).

- Theoretical results on the location (in the submodule lattice) and the number of standard submodules of a given module. (Similar to locating free submodules of f.g. projective \mathcal{O}_{K}-modules using Cl_{K}.)
- One can efficiently determine the standard submodules of a given $\mathcal{O}_{K}[y] /\left(y^{\prime}\right)$-module.

How it works-fun with modules

Now let M, \hat{M} be $\mathcal{O}_{K}[y] /\left(y^{\prime}\right)$-modules. We want to decide if $M \cong \hat{M}$.

Theorem

Let $N \subseteq M$ be standard of index c and $\left\{\hat{N}_{1}, \ldots, \hat{N}_{r}\right\}$ all standard submodules of \hat{M} with index c. Then $M \cong \hat{M}$ if and only if there exist $1 \leq i \leq r$ and an isomorphism $\varphi: N \rightarrow \hat{N}_{i}$ such that $\varphi(c M)=\varphi(c \hat{M})$ (that is, the unique extension of φ to $\mathbf{Q} \otimes N$ maps M to \hat{M}).

How it works-in practice

Full implementation with no restriction on the input (in Magma).

Example

Consider the 10 by 10 matrices

$$
\left(\begin{array}{cccccccccc}
-14 & -4 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
-7 & -2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-3 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -14 & -4 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & -7 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -3 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0
\end{array}\right),\left(\begin{array}{cccccccccc}
-9 & 9 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -7 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-4 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -3 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -7 & -9 & 1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & -7 & -9 & 0 & 0 & 0 & 0 \\
9 & -7 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 6 \\
0 & 0 & 1 & 0 & 3 & 4 & 0 & 0 & 0 & 0 \\
-9 & 8 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-9 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -7 \\
\hline
\end{array}\right) .
$$

- Minimal polynomial is $\left(x^{5}+16 x^{4}-3 x+1\right)^{2}$.
- Implementation takes 8 seconds to find a conjugating matrix.

Very difficult to estimate the runtime of the algorithm (theory and practice).

How it works-in practice

Example

Consider

$$
T=\left(\begin{array}{ccc}
-5 & 8 & -5 \\
4 & -7 & 5 \\
1 & -2 & 2
\end{array}\right) \in \mathrm{M}_{3}(\mathbf{Z})
$$

Our implementation shows in 0.3 seconds that
$C_{\mathbf{Z}}(T)=\left\langle\left(\begin{array}{ccc}860 & 1206 & -975 \\ 603 & 1001 & -795 \\ 195 & 318 & -253\end{array}\right),\left(\begin{array}{ccc}4 & 6 & -5 \\ 3 & 5 & -5 \\ 1 & 2 & -3\end{array}\right),\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)\right\rangle$.

Practical limitations

Practical limitations fall into two categories:

Number theory

- Computation of ring of integers (given $\mathcal{O}=\mathbf{Z}[x] /(f)$, find \mathcal{O}_{K}).
- Computation of the class group (to solve principal ideal problems).

Group theory

- Large number of standard submodules.
- Computations with orbit-stabilizer algorithm (and large orbits).

Other applications and limitations

The algorithm can be applied to solve the problem for $\mathrm{SL}_{n}(\mathbf{Z})$ (requires generators $\left.C_{\mathbf{Z}}(X)\right)$ and $\mathrm{PGL}_{n}(\mathbf{Z})$.

What the algorithm cannot do:

- Find a canonical form for the conjugacy classes in $\mathrm{GL}_{n}(\mathbf{Z})$ (similar to the Jordan normal form or rational canonical form over fields).
- Determine the finitely many $\mathrm{GL}_{n}(\mathbf{Z})$-conjugacy classes for a fixed semisimple $\mathrm{GL}_{n}(\mathbf{Q})$-conjugacy class.

Outlook—What now?

Find an algorithm with nice complexity (as in the Latimer-MacDuffee theorem).

There are lots of variations of this problem, which are all known to be decidable (but no efficient algorithms are known).

- Simultaneous conjugacy problem: $P^{-1} A_{i} P=B_{i}$ for all $1 \leq i \leq r$, where $A_{1}, \ldots, A_{r}, B_{1}, \ldots, B_{r} \in \mathrm{M}_{n}(\mathbf{Z})$.

Replace $\mathrm{GL}_{n}(\mathbf{Z})$ with

- $\mathrm{GL}_{n}(\mathcal{O})$ (for some "arithmetic" ring \mathcal{O}),
- $\mathrm{Sp}_{2 n}(\mathbf{Z})$ or $\mathrm{O}_{n}(f)$, where f is an integral quadratic form,
- an arithmetic group $\Gamma \subseteq G(\mathbf{Z})$, where $G=\left\langle f_{1}, \ldots, f_{l}\right\rangle$ is an algebraic subgroup of GL_{n} given by a finite set of polynomial equations over Q (Grunewald-Segal 1980).
julia> using Hecke
julia> A = matrix(ZZ, 2, 2, [1, 2, 3, 4])
[1 2 2]
$\left[\begin{array}{ll}3 & 4\end{array}\right]$
julia> $B=\operatorname{matrix}(Z Z, 2,2,[5,-2,-1,0])$
$\left[\begin{array}{ll}5 & -2\end{array}\right]$
$\left[\begin{array}{ll}-1 & 0\end{array}\right]$
julia> isconjugate(A, B)
(true, [1 0]
$\left.\left[\begin{array}{ll}2 & -1\end{array}\right]\right)$

Thank you.

