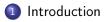
On the hardness of code equivalence problem in rank metric

A. Couvreur, T. Debris-Alazard, P. Gaborit

Lfant seminar, Bordeaux, January 12, 2021



In rank metric

- The code equivalence problem for \mathbb{F}_{q^m} -linear codes
- The general case

2 In Hamming metric

3) In rank metric

- The code equivalence problem for \mathbb{F}_{q^m} -linear codes
- The general case

Problem 1

Let V_1, V_2 be metric spaces, decide whether they are isometric.

The metric may be:

Problem 1

Let V_1 , V_2 be metric spaces, decide whether they are isometric.

The metric may be:

• Euclidean metric (lattice isometry/similitude problem);

Problem 1

Let V_1 , V_2 be metric spaces, decide whether they are isometric.

The metric may be:

- Euclidean metric (lattice isometry/similitude problem);
- Hamming metric (code permutation/monomial equivalence problem);

Problem 1

Let V_1, V_2 be metric spaces, decide whether they are isometric.

The metric may be:

- Euclidean metric (lattice isometry/similitude problem);
- Hamming metric (code permutation/monomial equivalence problem);
- Today's purpose rank metric.

In Hamming metric

- The code equivalence problem for \mathbb{F}_{q^m} -linear codes
- The general case

Code equivalence problems in Hamming metric

Problem 2 (Permutation Equivalence of Codes (PEC))

Let $\mathscr{C}_1, \mathscr{C}_2 \subseteq \mathbb{F}_q^n$ be two codes. Decide whether there exists $P \in \mathfrak{S}_n$ such that

$$\mathscr{C}_1 = \mathscr{C}_2 \cdot \boldsymbol{P}.$$

Problem 3 (Monomial Equivalence of Codes (MEC))

Let $\mathscr{C}_1, \mathscr{C}_2 \subseteq \mathbb{F}_q^n$ be two codes. Decide whether there exists $P \in \mathfrak{S}_n$ and $D \in Diag(n)$ such that

$$\mathscr{C}_1 = \mathscr{C}_2 \cdot \boldsymbol{D} \cdot \boldsymbol{P}.$$

Previous works on equivalence in Hamming metric

Theoretical results

- Code equivalence is harder than graph isomorphism (Petrank, Roth, 1997);
- Code equivalence is **not** *NP*-hard (unless polynomial time hierarchy collapses)
- If C ∩ C[⊥] = {0} then code equivalence is as hard as graph isomorphism (Bardet, Otmani, Saeed 2019)

Previous works on equivalence in Hamming metric

Theoretical results

- Code equivalence is harder than graph isomorphism (Petrank, Roth, 1997);
- Code equivalence is **not** *NP*-hard (unless polynomial time hierarchy collapses)
- If C ∩ C[⊥] = {0} then code equivalence is as hard as graph isomorphism (Bardet, Otmani, Saeed 2019)

Algorithms

- Leon (1982);
- Sendrier (2000) solves equivalence in $O(2^{\dim \mathscr{C} \cap \mathscr{C}^{\perp}} n^{\omega})$;
- Feulner (2009), techniques from symmetric cryptography;
- Saeed (2017), Gröbner bases.

In rank metric

- The code equivalence problem for \mathbb{F}_{q^m} -linear codes
- The general case

Matrix codes

The space of $m \times n$ matrices with entries in \mathbb{F}_q is denoted by $\mathcal{M}_{m,n}(\mathbb{F}_q)$.

Definition 1

A matrix code is a subspace \mathscr{C}^{mat} of $\mathcal{M}_{m,n}(\mathbb{F}_q)$ endowed with the rank metric :

$$d_R(\boldsymbol{A},\boldsymbol{B})=Rk\,(\boldsymbol{A}-\boldsymbol{B}).$$

Vector codes

• Fix an \mathbb{F}_q -basis \mathcal{B} of \mathbb{F}_{q^m} . Then, to any subspace $\mathscr{C} \subseteq \mathbb{F}_{q^m}^n$ corresponds a matrix code

$$\mathscr{C}^{\mathrm{mat}} \subseteq \mathcal{M}_{m,n}(\mathbb{F}_q).$$

Conversely, let a be a primitive element of F_{q^m}/F_q and C(a) the matrix representing the F_q-linear map x → ax in a basis B. A matrix code C^{mat} such that

$$C(a) \cdot \mathscr{C}^{\mathrm{mat}} \subseteq \mathscr{C}^{\mathrm{mat}}$$

comes from a vector code.

Stabilizer algebras

Definition 2

Let $\mathscr{C} \subseteq \mathcal{M}_{m,n}(\mathbb{F}_q)$ be a matrix code. The left (resp. right) stabilizer algebra of \mathscr{C} is defined as

$$\begin{split} \mathsf{Stab}_L(\mathscr{C}) \stackrel{\text{def}}{=} \{ \pmb{P} \in \mathcal{M}_m(\mathbb{F}_q) \mid \pmb{P} \cdot \mathscr{C} \subseteq \mathscr{C} \} \\ \text{resp.} \quad \mathsf{Stab}_R(\mathscr{C}) \stackrel{\text{def}}{=} \{ \pmb{Q} \in \mathcal{M}_n(\mathbb{F}_q) \mid \mathscr{C} \cdot \pmb{Q} \subseteq \mathscr{C} \} \end{split}$$

Lemma 1

A matrix code $\mathscr{C} \subseteq \mathcal{M}_{m,n}(\mathbb{F}_q)$ whose left stabilizer algebra contains a representation of \mathbb{F}_{q^m} is \mathbb{F}_{q^m} -linear.

Rank-preserving linear maps

Theorem 1

The group of linear automorphisms $\phi : \mathcal{M}_{m,n}(\mathbb{F}_q) \to \mathcal{M}_{m,n(\mathbb{F}_q)}$ preserving the ranks is spanned by the maps:

- $X \mapsto A \cdot X$ for some $A \in GL_m(\mathbb{F}_q)$;
- $X \mapsto X \cdot B$ for some $B \in GL_n(\mathbb{F}_q)$;
- (only for m = n): $\mathbf{X} \mapsto \mathbf{X}^T$.

Equivalence problem in rank metric

Problem 4 (Rank Equivalence of Matrix Codes (REMC))

Given $\mathscr{C}_1^{mat}, \mathscr{C}_2^{mat} \in \mathcal{M}_{m,n}(\mathbb{F}_q)$, decide wheter there exists $\boldsymbol{P} \in GL_m(\mathbb{F}_q)$ and $\boldsymbol{Q} \in GL_n(\mathbb{F}_q)$ such that

$$\mathscr{C}_1^{mat} = \boldsymbol{P} \cdot \mathscr{C}_2^{mat} \cdot \boldsymbol{Q}.$$

Our contribution

Theorem 2 (C., Debris-Alazard, Gaborit, 2020)

For \mathbb{F}_{q^m} -linear codes $\mathscr{C}_1^{vec}, \mathscr{C}_2^{vec} \subseteq \mathbb{F}_{q^m}^n$, the equivalence problem in rank metric is in \mathcal{P} if $q = (mn)^{O(1)}$. Else it is in \mathcal{ZPP} .

Theorem 3 (C., Debris-Alazard, Gaborit, 2020)

For general matrix spaces, the equivalence problem in rank metric is harder than the equivalence problem in Hamming metric.

Statement

If the vector structure is known:

Problem 5 (Rank Equivalence of Vector Codes (REVC)) Given $\mathscr{C}_1, \mathscr{C}_2 \subseteq \mathbb{F}_{a^m}^n$, decide whether there exists $\boldsymbol{P} \in GL_n(\mathbb{F}_q)$ such that

$$\mathscr{C}_1 = \mathscr{C}_2 \cdot \boldsymbol{P}$$

If not:

Problem 6 (Rank Equivalence of Hidden Vector Codes (REHVC))

Given $\mathscr{C}_1^{mat}, \mathscr{C}_2^{mat} \subseteq \mathcal{M}_{m,n}(\mathbb{F}_q)$ constructed from \mathbb{F}_{q^m} -linear codes with possibly distinct bases. Decide whether there exists $\mathbf{P} \in GL_m(\mathbb{F}_q)$ and $\mathbf{Q} \in GL_n(\mathbb{F}_q)$ such that

$$\mathscr{C}_1^{mat} = \boldsymbol{P} \cdot \mathscr{C}_2^{mat} \cdot \boldsymbol{Q}.$$

Reducing to another problem

Even when the vector structure is hidden, P may be recovered separately by computing the left stabilizer algebras which are conjugated under P. Hence we are reduced to:

Problem 7 (Right equivalence)

Given matrix codes $\mathscr{C}_1^{mat}, \mathscr{C}_2^{mat} \subseteq \mathcal{M}_{m,n}(\mathbb{F}_q)$, decide whether there exists $P \in GL_n(\mathbb{F}_q)$ such that

$$\mathscr{C}_1^{mat} = \mathscr{C}_2^{mat} \cdot \boldsymbol{P}.$$

Reducing to another problem

Even when the vector structure is hidden, P may be recovered separately by computing the left stabilizer algebras which are conjugated under P. Hence we are reduced to:

Problem 7 (Right equivalence)

Given matrix codes $\mathscr{C}_1^{mat}, \mathscr{C}_2^{mat} \subseteq \mathcal{M}_{m,n}(\mathbb{F}_q)$, decide whether there exists $P \in GL_n(\mathbb{F}_q)$ such that

$$\mathscr{C}_1^{mat} = \mathscr{C}_2^{mat} \cdot \boldsymbol{P}.$$

Fact

Finding the space of $\mathbf{P} \in \mathcal{M}_n(\mathbb{F}_q)$ such that $\mathscr{C}_2^{mat} \cdot \mathbf{P} \subseteq \mathscr{C}_1^{mat}$ boils down to solve a linear system.

Reducing to another problem

Even when the vector structure is hidden, P may be recovered separately by computing the left stabilizer algebras which are conjugated under P. Hence we are reduced to:

Problem 7 (Right equivalence)

Given matrix codes $\mathscr{C}_1^{mat}, \mathscr{C}_2^{mat} \subseteq \mathcal{M}_{m,n}(\mathbb{F}_q)$, decide whether there exists $P \in GL_n(\mathbb{F}_q)$ such that

$$\mathscr{C}_1^{mat} = \mathscr{C}_2^{mat} \cdot \boldsymbol{P}.$$

Fact

Finding the space of $\mathbf{P} \in \mathcal{M}_n(\mathbb{F}_q)$ such that $\mathscr{C}_2^{mat} \cdot \mathbf{P} \subseteq \mathscr{C}_1^{mat}$ boils down to solve a linear system.

But, what if the space of solutions contains singular matrices? How to decide whether there is a nonsingular one in it?

Theorem 4

Let $\mathscr{C}_1^{mat}, \mathscr{C}_2^{mat} \in \mathcal{M}_{m,n}(\mathbb{F}_q)$ such that $\operatorname{Stab}_R(\mathscr{C}_1^{mat})$ is a division algebra. If there exists $\mathbf{Q} \in \operatorname{GL}_n(\mathbb{F}_q)$ such that

$$\mathscr{C}_1^{mat} = \mathscr{C}_2^{mat} \cdot \boldsymbol{Q}$$

then any $\mathbf{P} \in \mathcal{M}_n(\mathbb{F}_q)$ such that $\mathscr{C}_1^{mat} \cdot \mathbf{P} \subseteq \mathscr{C}_2^{mat}$ is nonsingular.

Theorem 4

Let $\mathscr{C}_1^{mat}, \mathscr{C}_2^{mat} \in \mathcal{M}_{m,n}(\mathbb{F}_q)$ such that $\operatorname{Stab}_R(\mathscr{C}_1^{mat})$ is a division algebra. If there exists $\mathbf{Q} \in \operatorname{GL}_n(\mathbb{F}_q)$ such that

$$\mathscr{C}_1^{mat} = \mathscr{C}_2^{mat} \cdot oldsymbol{Q}$$

then any $\boldsymbol{P} \in \mathcal{M}_n(\mathbb{F}_q)$ such that $\mathscr{C}_1^{mat} \cdot \boldsymbol{P} \subseteq \mathscr{C}_2^{mat}$ is nonsingular.

Proof.

Suppose that $\exists P$ singular such that $\mathscr{C}_1^{mat} \cdot P \subseteq \mathscr{C}_2^{mat}$. Then

$$\mathscr{C}_1^{\mathrm{mat}} \cdot \boldsymbol{P} \cdot \boldsymbol{Q} \subseteq \mathscr{C}_2^{\mathrm{mat}} \cdot \boldsymbol{Q} = \mathscr{C}_1^{\mathrm{mat}}$$

Hence $PQ \in \text{Stab}_R(\mathscr{C}_1^{\text{mat}})$ and is singular: a contradiction.

Theorem 4

Let $\mathscr{C}_1^{mat}, \mathscr{C}_2^{mat} \in \mathcal{M}_{m,n}(\mathbb{F}_q)$ such that $\operatorname{Stab}_R(\mathscr{C}_1^{mat})$ is a division algebra. If there exists $\mathbf{Q} \in \operatorname{GL}_n(\mathbb{F}_q)$ such that

$$\mathscr{C}_1^{mat} = \mathscr{C}_2^{mat} \cdot \boldsymbol{Q}$$

then any $\mathbf{P} \in \mathcal{M}_n(\mathbb{F}_q)$ such that $\mathscr{C}_1^{mat} \cdot \mathbf{P} \subseteq \mathscr{C}_2^{mat}$ is nonsingular.

Consequence. In this situation, the problem is easy to solve:

Theorem 4

Let $\mathscr{C}_1^{mat}, \mathscr{C}_2^{mat} \in \mathcal{M}_{m,n}(\mathbb{F}_q)$ such that $\operatorname{Stab}_R(\mathscr{C}_1^{mat})$ is a division algebra. If there exists $\mathbf{Q} \in \operatorname{GL}_n(\mathbb{F}_q)$ such that

$$\mathscr{C}_1^{mat} = \mathscr{C}_2^{mat} \cdot \boldsymbol{Q}$$

then any $\mathbf{P} \in \mathcal{M}_n(\mathbb{F}_q)$ such that $\mathscr{C}_1^{mat} \cdot \mathbf{P} \subseteq \mathscr{C}_2^{mat}$ is nonsingular.

Consequence. In this situation, the problem is easy to solve:

• Compute the space of $\boldsymbol{P} \in \mathcal{M}_n(\mathbb{F}_q)$ such that $\mathscr{C}_1^{\mathrm{mat}} \cdot \boldsymbol{P} \subseteq \mathscr{C}_2^{\mathrm{mat}}$;

Theorem 4

Let $\mathscr{C}_1^{mat}, \mathscr{C}_2^{mat} \in \mathcal{M}_{m,n}(\mathbb{F}_q)$ such that $\operatorname{Stab}_R(\mathscr{C}_1^{mat})$ is a division algebra. If there exists $\boldsymbol{Q} \in \operatorname{GL}_n(\mathbb{F}_q)$ such that

$$\mathscr{C}_1^{mat} = \mathscr{C}_2^{mat} \cdot \boldsymbol{Q}$$

then any $\mathbf{P} \in \mathcal{M}_n(\mathbb{F}_q)$ such that $\mathscr{C}_1^{mat} \cdot \mathbf{P} \subseteq \mathscr{C}_2^{mat}$ is nonsingular.

Consequence. In this situation, the problem is easy to solve:

- Compute the space of $\boldsymbol{P} \in \mathcal{M}_n(\mathbb{F}_q)$ such that $\mathscr{C}_1^{\mathrm{mat}} \cdot \boldsymbol{P} \subseteq \mathscr{C}_2^{\mathrm{mat}}$;
- 2 Pick a nonzero element **P** in the solution space:
 - if **P** is singular, then the codes are **not** right equivalent;
 - else they are right equivalent and *P* realizes the equivalence.

About finite dimensional algebras

A subalgebra $\mathcal{A} \subseteq \mathcal{M}_n(\mathbb{F}_q)$ is

- simple if it has no nontrivial two-sided ideals. Artin Wedderburn theory \Rightarrow any simple algebra over \mathbb{F}_q are isomorphic to $\mathcal{M}_r(\mathbb{F}_{q^\ell})$ for some r, ℓ .
- semi-simple if it is isomorphic to a cartesian product of simple algebras.

Definition 3 (Jacobson radical)

The radical of an algebra \mathcal{A} is defined as

$$\mathsf{Rad}(\mathcal{A}) \stackrel{\text{def}}{=} \{ \mathbf{N} \in \mathcal{A} \mid \forall \mathbf{M} \in \mathcal{A}, \ \mathbf{MN} \text{ is nilpotent} \}$$

Theorem 5

 $\mathcal{A}/\mathsf{Rad}(\mathcal{A})$ is semi-simple.

A picture

About finite dimensional algebras – algorithms

- Friedl, Rónyai 1985: the Jacobson radical and the Artin Wedderburn decomposition can be computed in polynomial time. Their algorithm rests on two tools:
 - linear algebra;
 - factorisation of univariate polynomials (this is the why of \mathcal{P} v.s. \mathcal{ZPP}).
- Rónyai 1990. Given a simple algebra the isomorphism with $\mathcal{M}_r(\mathbb{F}_{q^\ell})$ can be explicitly computed.

Input. Two matrix codes $\mathscr{C}_1^{\mathrm{mat}}, \mathscr{C}_2^{\mathrm{mat}} \subseteq \mathcal{M}_{m,n}(\mathbb{F}_q).$

Input. Two matrix codes $\mathscr{C}_1^{\mathrm{mat}}, \mathscr{C}_2^{\mathrm{mat}} \subseteq \mathcal{M}_{m,n}(\mathbb{F}_q).$

• Compute their right stabilizer algebras;

Input. Two matrix codes $\mathscr{C}_1^{\mathrm{mat}}, \mathscr{C}_2^{\mathrm{mat}} \subseteq \mathcal{M}_{m,n}(\mathbb{F}_q).$

- Compute their right stabilizer algebras;
- If they are local (i.e. $\mathcal{A}/\mathsf{Rad}(\mathcal{A})$ is a field), then, take any element of $Cond(\mathscr{C}_1^{\mathrm{mat}}, \mathscr{C}_2^{\mathrm{mat}}) \setminus \mathsf{Rad}(\mathsf{Stab}_R(\mathscr{C}_1^{\mathrm{mat}}))$ and check whether it is singular.

Input. Two matrix codes $\mathscr{C}_1^{\mathrm{mat}}, \mathscr{C}_2^{\mathrm{mat}} \subseteq \mathcal{M}_{m,n}(\mathbb{F}_q).$

- Compute their right stabilizer algebras;
- If they are local (i.e. $\mathcal{A}/\mathsf{Rad}(\mathcal{A})$ is a field), then, take any element of $Cond(\mathscr{C}_1^{\mathrm{mat}}, \mathscr{C}_2^{\mathrm{mat}}) \setminus \mathsf{Rad}(\mathsf{Stab}_R(\mathscr{C}_1^{\mathrm{mat}}))$ and check whether it is singular.
- Compute the Artin–Weddurburn decomposition of $\operatorname{Stab}_R(\mathscr{C}_1^{\operatorname{mat}})/\operatorname{Rad}(\operatorname{Stab}_R(\mathscr{C}_1^{\operatorname{mat}}))$, deduce a decomposition of

 $1=e_1+\cdots+e_r$

as a sum of minimal orthogonal idempotents; lift idempotents (effective Wedderburn Malcev) and compare the codes

$$\mathscr{C}_1^{\mathrm{mat}} e_1, \ldots, \mathscr{C}_1^{\mathrm{mat}} e_r$$

with the corresponding codes from $\mathscr{C}_2^{\mathrm{mat}}$.

CDG

A picture

A picture

The general problem

Theorem 6

The general rank equivalence of matrix codes (REMC) problem is harder than the Hamming metric monomial equivalence problem.

Let $\mathscr{C}_1, \mathscr{C}_2 \subseteq \mathbb{F}_{q^m}$ with generator matrices $\boldsymbol{G}_1, \boldsymbol{G}_2$.

$$\boldsymbol{G}_{1} = \left(\begin{array}{c|c} \boldsymbol{c}_{1}^{\top} & \boldsymbol{c}_{2}^{\top} & \cdots & \boldsymbol{c}_{n}^{\top} \end{array} \right), \quad \boldsymbol{G}_{2} = \left(\begin{array}{c|c} \boldsymbol{d}_{1}^{\top} & \boldsymbol{d}_{2}^{\top} & \cdots & \boldsymbol{d}_{n}^{\top} \end{array} \right)$$

$$\boldsymbol{G}_{1} = \left(\begin{array}{c|c} \boldsymbol{c}_{1}^{\top} & \boldsymbol{c}_{2}^{\top} & \cdots & \boldsymbol{c}_{n}^{\top} \end{array} \right), \quad \boldsymbol{G}_{2} = \left(\begin{array}{c|c} \boldsymbol{d}_{1}^{\top} & \boldsymbol{d}_{2}^{\top} & \cdots & \boldsymbol{d}_{n}^{\top} \end{array} \right)$$

We look for $S \in GL_k(\mathbb{F}_q)$ and $P \in (\mathbb{F}_q^{\times})^n \ltimes \mathfrak{S}_n$ such that $G_1 = SG_2P$.

$$\boldsymbol{G}_{1} = \left(\begin{array}{c|c} \boldsymbol{c}_{1}^{\top} & \boldsymbol{c}_{2}^{\top} & \cdots & \boldsymbol{c}_{n}^{\top} \end{array} \right), \quad \boldsymbol{G}_{2} = \left(\begin{array}{c|c} \boldsymbol{d}_{1}^{\top} & \boldsymbol{d}_{2}^{\top} & \cdots & \boldsymbol{d}_{n}^{\top} \end{array} \right)$$

We look for $S \in GL_k(\mathbb{F}_q)$ and $\boldsymbol{P} \in (\mathbb{F}_q^{\times})^n \ltimes \mathfrak{S}_n$ such that $\boldsymbol{G}_1 = \boldsymbol{S}\boldsymbol{G}_2\boldsymbol{P}.$

Define

$$\mathscr{C}_{1}^{\mathrm{mat}} \stackrel{\mathsf{def}}{=} \mathrm{Span}_{\mathbb{F}_{q}} \left\{ \boldsymbol{c}_{i}^{\top} \cdot \boldsymbol{c}_{i} \right\}, \quad \mathscr{C}_{2}^{\mathrm{mat}} \stackrel{\mathsf{def}}{=} \mathrm{Span}_{\mathbb{F}_{q}} \left\{ \boldsymbol{d}_{i}^{\top} \cdot \boldsymbol{d}_{i} \right\}$$

$$\boldsymbol{G}_{1} = \left(\begin{array}{c|c} \boldsymbol{c}_{1}^{\top} & \boldsymbol{c}_{2}^{\top} & \cdots & \boldsymbol{c}_{n}^{\top} \end{array} \right), \quad \boldsymbol{G}_{2} = \left(\begin{array}{c|c} \boldsymbol{d}_{1}^{\top} & \boldsymbol{d}_{2}^{\top} & \cdots & \boldsymbol{d}_{n}^{\top} \end{array} \right)$$

We look for $S \in GL_k(\mathbb{F}_q)$ and $\boldsymbol{P} \in (\mathbb{F}_q^{\times})^n \ltimes \mathfrak{S}_n$ such that $\boldsymbol{G}_1 = \boldsymbol{S}\boldsymbol{G}_2\boldsymbol{P}.$

Define

$$\mathscr{C}_{1}^{\mathrm{mat}} \stackrel{\mathsf{def}}{=} \mathrm{Span}_{\mathbb{F}_{q}} \left\{ \boldsymbol{c}_{i}^{\top} \cdot \boldsymbol{c}_{i} \right\}, \quad \mathscr{C}_{2}^{\mathrm{mat}} \stackrel{\mathsf{def}}{=} \mathrm{Span}_{\mathbb{F}_{q}} \left\{ \boldsymbol{d}_{i}^{\top} \cdot \boldsymbol{d}_{i} \right\}$$

Fact

These matrix spaces are independent from **P**! In addition:

$$\mathscr{C}_1^{mat} = \boldsymbol{S} \mathscr{C}_2^{mat} \boldsymbol{S}^\top.$$

Last observation

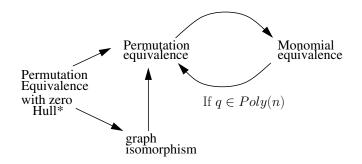
Remark

It might be possible that \mathscr{C}_1^{mat} and \mathscr{C}_2^{mat} are equivalent while $\mathscr{C}_1, \mathscr{C}_2$ are **not** monomially equivalent. To address this issue, we consider slightly more complicated matrix codes:

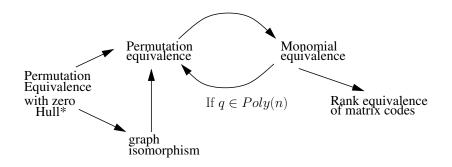
$$\mathscr{C}_1^{mat} \stackrel{def}{=} \operatorname{Span} \left\{ \left(\begin{array}{c} \boldsymbol{c}_i^\top \cdot \boldsymbol{c}_i \\ \boldsymbol{M}_i \end{array} \right) \right\},$$

where $M_i \in \mathcal{M}_k(\mathbb{F}_q)$ is zero but at the *i*-th row which is all-one.

A picture



A picture



• In Hamming metric

- In Hamming metric
 - permutation equivalence is "most of the times" easy to solve;

- In Hamming metric
 - permutation equivalence is "most of the times" easy to solve;
 - monomimal equivalence is hard to solve.

- In Hamming metric
 - permutation equivalence is "most of the times" easy to solve;
 - monomimal equivalence is hard to solve.
- In rank metric
 - Equivalence of $\mathbb{F}_{q^m}\text{-linear}$ codes would be easy even when hiding the $\mathbb{F}_{q^m}\text{-linear}$ structure

- In Hamming metric
 - permutation equivalence is "most of the times" easy to solve;
 - monomimal equivalence is hard to solve.
- In rank metric
 - Equivalence of $\mathbb{F}_{q^m}\text{-linear}$ codes would be easy even when hiding the $\mathbb{F}_{q^m}\text{-linear}$ structure
 - Equivalence of non structured matrix codes is at least as hard (in the worst case) to monomial equivalence in Hamming metric.

Thank you for your attention!